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ON C 1-SUMMABILITY OF SERIES

Paul Erdös and Haim Hanani

1 . INTRODUCTION

Let Ej 1 aj be an infinite series of real, non-negative numbers, and let

(E) _ {Ej}j=1

For any given sequence (E), we denote by

n
Sn (E) _ 2J Ej ajj=1

the n-th partial sum of the series E E j aj, and by

(Ej =±1)

n

	

n
1a,(E) = r E j aj n E sj(E)

j=1

	

j-1

the n-th partial C1-sum of this series . If sn(E), or an (E), converges,

an attainable point of E aj, or, respectively

s(c) = lim sn(E) _ E E j aj
n-x

	

j=I

Q(E) = hm 0'n(E) = r Ej aj
n- .o

	

j=I

1

we call

a C1-attainable point of E aj .
The attainable set S{ aj } is the set of all attainable points s(E) of E a j , and the

C1-attainable set SC { aj } is the set of all C1-attainable points v(E) of E aj .
The sets S{ aj } (and more generally the sets S { cj } , E cj being a series of com-

plex numbers) have been investigated by Hanani [4] and by Calabi and Dvoretzky [2] .
Connected with the sets S { aj } and SC { aj } are the sets T { an} and TC { an} ,

T{ an} being a set of all numbers r for which there exists a reordering E a nd of the
series E an such that r = E an,, and TC { a n} being the set of numbers r' such that
E an can be reordered so that the new series shall be C1-summable to r' . The sets
T{ an } have been investigated by Steinitz [7] and by Lorentz and Zeller [5], and the
sets TCIan} by Mazur [6] and by Bagemihl and Erdös [1] .

In this paper we investigate the sets SC { aj } .
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2. PRELIMINARY PROPOSITIONS

Let L(b), with ó > 0, be the family of series E aj such that for every j either
aj > ó or aj = 0; in particular, let L(ö, {ni}) be the family of series Eaj such that
ani > ó and aj = 0 for j o ni (i=1,2, -) .

The following propositions are well known :

PROPOSITION 1 . If Esj aj converges, then it is also C1-summable to its limit;
that is, for every series E aj, S{ a j} c SC f a j} .

PROPOSITION 2 . If aj 0, then SC { aj } = S{ aj } is perfect.

In particular, the following proposition of Riemann is well known .

PROPOSITION 3 . If aj - 0 and E aj = oo, then SC { aj } = S { aj } is the whole
line .

Also the following propositions are evidently true :

PROPOSITION 4 . If E Ej a j = s and E E j bj = t are two convergent series, then
E (Ej aj + Ej bj) is also convergent, and E (Ej aj + Ej bj) = s + t .

PROPOSITION 5. If EE j aj and E E j bj are two C1-summable series with

cc

	

ocr Ejaj

	

and r EJbj = r,
j=1

	

j=I

then E(Ej aj + Ej bj) is also C 1-summable and F,9'=l (Ej aj + Ej bj) = v + r .

PROPOSITION 6. Every series E aj either

1) has a divergent subseries whose general term tends to zero, or

2) is a sum of two subseries, one of which is an L(6) while the other converges
absolutely.

THEOREM 1 .
E ani such that

3. DIVERGENT SUBSERIES WITH aj 0

Let E aj be a series of non-negative terms having a subseries

is the whole line .

Proof. By (7), there exists a sequence (1) such that E Ej aj is C1-summable .
Write F E j aj = a. By (6), either

Eni ani = +~

	

or

	

En i ki -~ '

E an1,

	

an1. - 0 .

SC{aj } * 0,



(8)

	

r' Eni ani = o0

(the proof for the other case is analogous) ; then the negative terms of the whole
series must diverge :

(9)

because otherwise E ej aj could not be C1-summable .

Let now T be any given real number . We shall construct a sequence {Ej'} such
that I' e,' a j = T .

If a < T, we change the sign of as many of the earliest terms of E ej aj as neces-

sary until for the first time

which by (9) is possible, and we write
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(E denotes the sum of the positive terms of the series, and E the sum of the nega-

tive terms) .

Suppose

ZEjaj

n
-E

Ejaj=x>T2
0 ,

j=I

00

	

00

~ F,!' a .

	

e . a . - 2~ E j aja
j=I

	

j=1

	

j=1

n

By Proposition 5, the series E s j" aj is C1-summable and 11'& j" aj = v + 2K = a" > T .

If v > T, put e j" = E j and u " = a .

Notice that so far the terms of the subseries (8) have not changed their signs .
We now change the sign of those terms of the subseries (8), in the order of their ap-
pearance, for which

Mr ,
Lr e" a < 1 (a" - T)+ ni n i - 2
i=1

is satisfied, Z' being the sum of the terms whose signs have been changed . It follows
from (8) and (6) that there exists a finite or infinite subseries E' Eri i ani = 1/2 (Q " - T) .

Write

ZE j a = Eej ' aj - 2 ~ en11 i an , .

By Proposition 5, the series Z e~ aj is C1-summable and r e! 3,j = Q" - (v" - T) = T .

Theorem 1 is valid for all totally permanent matrices .



4

	

PAUL ERDÖS and HAIM HANANI

The case of a series having a subseries (6) has thus been settled . According to
Proposition 6, any other series Eaj is a sum of an L(6) and an absolutely converg-
ent series. Denoting by P the perfect attainable set of the absolutely convergent
series (see Proposition 2) and by R the C1-attainable set of the L(6), we see in ac-
cordance with Proposition 5 that

(10)

	

SC{aj} = R + P = {r + p: r ER, pEP } .

4. SERIES FOR WHICH SC{aj} IS THE WHOLE LINE

THEOREM 2. Let E aj be a series (of non-negative terms) satisfying

(11)

	

r,aj=cc .

If there exists an 7?o with the property that to each 77 in 0 < n S no there corre-
sponds an

(12)

	

no = %(7J)

such that for every n > no

77n/an ]
(13)

	

an+i > 2an + 77,
i=1

then SC { aj } is the whole line.

Proof. Let v be any real number . We shall construct a sequence (1) such that

(14)

	

r _ j aj=Q .

According to (12) there exists for every 77 = 2-1 (i = io, io+ 1, • • • ) a number

(15 )

	

ni = ni(2 -1)

such that for every n > ni, (13) is satisfied with 77 = 2 -1 .

Choose ej (j = 1, 2, • • • , n
i0

- 1) arbitrarily. For

(16) ni < j < ni+, (i = io, io + 1, . . .) ,

we fix the signs e j as follows :

(a) if a j _,(E) < Q and

(aa) if s j _l(E) S a + 2 -i, we put Ej = 1 ;

(ab) if s j _ 1(E) > v + 2 -i, we choose E j so as to make sj (E) as small as pos-
sible but not less than or + 2 - i ;

(b) if a j _ 1(E) > a and

(ba) if s j _ I(E) > Q - 2 -1 , we put E j = - 1 ;

(bb) if sj_I(E) < Q -
2-1, we choose E j so as to make sj(E) as large as pos-

sible but not greater than or - 2 -1 .



Either v j ultimately approaches v from one side, or else, by the construction of
(e) and condition (11), uj(e) - v changes sign infinitely often .

Suppose that for some j', sj r (e) < Qj,(e) < Q . According to our construction, the
partial sums sj(E) for j :2'! j' must be monotonically increasing until they become
greater than o + 2 - ' (for some i which depends on j according to (16)), and then
they remain greater than v + 2 - i` (i' > i) until vj(e) becomes greater than v. As
long as sj(E) < Qj(e), o'j(E) is monotonically decreasing, but at the moment the in-
creasing sequence sj(e) overtakes the sequence Qj(E), the sequence aj(e) begins to
increase, and it increases until it reaches a peak value greater than v . It follows
easily that the sequence aj(e) attains alternately minima (say vj l(e), aj2 (e), - •- ) and

maxima (vkl (E), ak2(e), . . .) with j l < kl < j 2 < k2 < -, such that

Qjh(g) < Q

	

and

	

Qkh(E) > a

	

(h = 1, 2, . . .) .

For jh j < kh, the sequence Taj(e)I is monotonically increasing, and for
kh < j << jh+I monotonically decreasing .

For our purpose it is now sufficient to prove that for every n > 0 there exists an
index j* such that for every jh > j*

(17)

	

0 < Q - Qjh(E) < n

and for every kh > j*

(18)

	

0 < 6kh(E) - v < '7

holds. We shall prove (18), the proof of (17) being analogous .

Let t be an integer such that

(19)

	

2 -t< n/6,

and let nt be the corresponding index fixed by (15) . Further, let h be an integer
such that kh-1 > nt, and m the greatest index m < kh such that em = 1 . According
to our construction

(20)

	

Qm-1(E) < a

and

(21)

By definition of akh(e), we have

and by (20) and (21)

(22)
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g<sj(e)<v+2-t +2am

	

(m<j<kh) .

kh

Qkh(E) = kh (m - 1) Qm_1(E) + Zr sj(E) i
j =m

6kh(E) < U + k (2 - t + 2am)(kh - m + 1) .
h
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If an,< 2 -; (18) now follows immediately from (19) . If an, > 2 -t , we observe
that Ej = - 1 for m < j < kh and therefore by (21),

holds, for some k i with

kh

E aj< 2 -t + 2am .
j=m+1

Clearly m > nt and consequently, by (13), kh - m < 2 -t m/am . From (13), we also
evidently have 1 < 2 - t m/a,,.,, and from (22), we obtain

Qkh(E)<Q + 1
- •3am •2 .2-t m

,kh

	

am

which by (19) implies (18) .

For series belonging to L(ö), we obtain from Theorem 2 the following

ki

(23)

	

Z a.,
~+a
,

	

> 2a,,
1
+ ó

a=I

(24)

	

n i+ki - ni = o(ni/a„ i ) .

In view of the inequality a,, .

	

> ó, (23) will be satisfied for
1+01

2a„ i
ki> ö +2,

that is, for ki = [C a„ i] with a sufficiently large constant C . Now, if ni+I - ni < pi ny,

where pi+1 < pi, then

ná+1 = n, (1 + ni+1-ni < n i(1 + pi ni -1 )ni

k •
and since nl+i < nl-I, ni+ki< ni(1 + pint -I ) ', hence

then SC { aj } is the whole line.

Proof. For n 3, ni, (13) is evidently satisfied . It remains to show that, for suf-
ficiently large i, the inequality

COROLLARY 1 . Let E aj E L(6, { nil). If

(a) ni+l - ni = o(ni) and a„i = O(n(1- 0/z) (0<y<1),

or if

(b) ni+l - ni= O(nl) and a,li = o(n~l-7)/Z) (4 < y < 1),



nitki
log

	

< kipiny Ini

Suppose now that ki < gin('-Y)/2 (gi+I< gi) . Then_

ni+ki

ni

for sufficiently large i. Since we may assume that pi --- 0 in case (a), and that
q i

	

0 in case (b), it follows that (24) is satisfied .

Putting, in Corollary 1, Y = 1 and Y = 0, respectively, we obtain the still more
special

COROLLARY 2. Let E aj c L(ó, f nil) . If

(a)

	

ni+1 - ni = o(ni)

	

and

	

ani = O(1) ,

or if

(b)

	

n i+1- ni = O(1)

	

and

	

ani = of

	

) ,

then SC { aj } is the whole line .

5 . SERIES FOR WHICH SC{aj} IS EMPTY

The next theorem will be stated generally for series E bj of elements of a
Banach space. The definitions given in Section 1 will apply also under these general
conditions . In particular, our theorem will be true when the bj are real positive
numbers, and in this case the norm signs may be omitted .

THEOREM 3. Let E bj be a series of elements of a Banach space . If there exist
a function f(n) (1 _< f(n) < n) and a positive number 77 > 0 such that for every N
there exists an n > N satisfying

ON C1 -SUMMABILITY OF SERIES

< exp pigin(Y-1V ?- < 1 + 2pigin(
Y-1) ~ 2

(25)

(26)

In particular, we may choose

(27)

I I b,,11- Z I I bn+i I I> (n)
0<Ii1<f(n)

then SC{b j} is empty .

Proof. Assume that SC { b j } 0. Without loss of generality, we may then assume
that 0 e SC {bj } , in other words, that there exists a sequence (1) such that t ej bj = 0 .
Hence for every 77, > 0 and for sufficiently large n we have, for every m
(m < f(n) < n),

11

Sn+i (E)
1

! < 711 n,
i i=0

	

I I

77, = 77/2 .

<17 1 n .

7
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When n l has thus been fixed, there exist indices n satisfying both (25) and (26), and
we shall assume in the sequel that n is such an index .

In order to simplify notation, we shall denote by fn the integer satisfying

(28)

	

f(n) - 1 < fn < f(n) ,

and for m < fn , we put

m

	

m
(29)

	

Am =

	

En+ibn+ig

	

Bm =

	

En-ibn-i,

	

AO = BO = 0 .
i=1

	

i=1

From (26) and (27) follows

(30)

On the other hand, considering

k

I I En bn + AkI I : I I bn I I- E I I bn+i I i,
i=1

we have by (25)

(31)

	

I IEn bn + Aki I > I I Bfn11 + 77n/f(n)

	

(k = 0, 1, • • • , fn) .

We shall now prove that

(32 )

	

I i sn-1(E) I I > I I BJ I i + 2
f(n

	

(j =
0, 1, . . ., fn)

Suppose that it is not so, in other words, that

(33)

for some j (0 < j .< fn ) . We evidently have

(34)
k=0

By (33) and (25 ),

fn

(Sn-1 (E) + En bn + Ak)
k=0

fn

E (sri - 1(e) + En bn + Ak)

Ilsn- 1 (F )II_<IIB;II + 2f(n

< 77n/2 .

fn

(fn + 1)En bn +

	

(sn-1(c) + Ak)
k=o

fn

>(fn +1)iib nii- E Iisn- 1(E)+Ak II •
k=0



and thus, from (34),

fn

(sn_ 1 (E) + sn bn + Ak)
k=0

ON C1-SUMMABILITY OF SERIES

I I Sn-1(E) + AkI I <_ I I s,1(c) 11 + I I AkI I _< I I Bj
11+11

2 f(n + I I Aki I

< IIbnII - 2 f(n)

	

(1 = 0, 1, . . .'

	

),

i=1

> (fn +
1)!j

f(n

	

nn/2 ,

which contradicts (30) . Consequently (32) is established .

Finally, by (32),

fn

	

fn-1

	

fn-1

sn-i(E) _

	

2J (Sn-1(E) - 1) = fnsn-1(E) -

	

Bi
i=0

	

i=0

fn -1

> fnll Sn-l(E)II - E IIBili > nn/2,
i=0

which contradicts (26), and thus our theorem is proved .

Putting f(n) = 1, in Theorem 3, we obtain the well-known, almost trivial result :

COROLLARY 3 . Let E b j be a series of elements of a Banach space . If there
exists a positive number n such that IIbnII > nn for infinitely many n, then SC{bj}
is empty .

Further, putting f(n) = nz n/11 bnI I , in Theorem 3, we obtain

COROLLARY 4 . Let E bj be a series of elements of a Banach space . If there
exist positive numbers 77, nz such that for infinitely many n

( 35 )

	

IIbnII > (1 +nl)
0<IiI<nE IIbnII

11bn+ü1

then SC{bj} is empty .

Corollary 4 enables us to show that, in the case of real series, the conditions of
Corollary 1 are, in some respects, the best possible :

COROLLARY 5 . For each y (0 < y .< 1), there exists a sequence { nil and a
series E aj E L(1, {ni} ) such that

(36 )

	

ni+, - ni = O(nl)

	

and

	

ani = O(n(1-Y)/Z)

9

and CS{aj} is empty .

For m = 1, 2, -,put	 , put

a2m=

	

a2m+ [k.zmY ] = 1 (1 < k< 2m(1-7)),

and let aj = 0 for all other j's . Then apply Corollary 4 with n = 2m and ni = nz = 1/4 .
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There seems to be no hope of finding a reasonably good converse of Theorem 3
or Corollary 4, for elements of a general Banach space or even for complex num-
bers. We shall return to the case of complex series in Section 7 .

For real series the following question arises :

Problem 1 . Let Zaj be a series of real numbers satisfying (11) . What is the
smallest constant C such that, if for every rl > 0 and sufficiently large n

71 n/an]

an+i > Ca n + 77
i=1

(37)

holds, then SC{ an} is the whole line?

From Corollary 4 it follows easily that C > 1 . On the other hand, we were only
able to prove (in Theorem 2) that C < 2 . It seems very likely that this is not the
best possible result. Perhaps C = 1or C = 1 + rl would suffice .

Another problem which we were unable to solve is

Problem 2 . Let Z aj be a series of real numbers . Are the conditions stated in
Theorem 3 and Corollary 4 for SC {aj} to be empty not only sufficient but also nec-
essary?

6 . THE STRUCTURE OF SC { aj }

We know very little about the structure of all the possible sets SC { aj } . The fol-
lowing remarks are rather trivial :

Remark 1 . If SC f aj} # ,0, then the set SC f a j} is infinite .

There exists a sequence (E) such that ZEj aj is C 1- summable, and we may
change the sign of any finite number of elements of Z E j aj .

Remark 2. There exists a series Z aj E L(1) such that SC{aj} contains an in-
terval but does not contain the whole line .

Put

a2n 2,

	

a2n+1 = 2 + 2-n,

	

aj = 0 for j # 2n, 2n + 1

	

(n = 0, 1, . . .) .

Remark 3 . Even if lim supi- oo ni+l/ni is as large as we please, we may con-
struct a series Zaj E L(1, {ni}) such that SC {aj} is the whole line .

Put n2i = n2i-1 + 1, anti-I = o(n2i), anti= anti-l+ bi with Z I bi I bi 0 .

With respect to the sets SC { aj} of series Z aj c L(ö, { nil) for which (36) is
satisfied, we conjecture that the following question has an affirmative answer, in the
case 0 < y < 1 :

Problem 3 . If Zaj E L(6, f nil) and

ni+l - ni = O(ni),

	

ani = O(ni(I-Y)/2)

	

(0 < y < 1) ,

is it true that SC { aj } is either empty or the whole line?



is it true that SC {aj} is either empty or the whole line?

By Corollary 1, we can give a positive answer for the case (a) with y = 1 . On the
other hand we cannot solve Problem 3 even in the case y = 0 .

In connection with Problem 4, we can prove the following theorem :

THEOREM 4. Corresponding to each denumerable set

(38 )

	

by bz, . . . .

each b > 0, and each y (0 < y < 1), there exists a series Za j E L(ö, {ni}), with

Proof. We shall construct a series Z aj satisfying the conditions of the theorem .
Evidently there exists a sequence

(39 )

	

dv dzr . .—

such that 0 < d rn < 26 (n = 1, 2, •" ) and such that every term of the set (38) is a
sum (or difference) of a finite number of terms of (39) . We shall fix the indices n4i
by induction as follows : let n4 be the smallest integer such that n4 > 4 and, n4i
being fixed, we choose n4(i+l) = n4i + [n4i] . The indices nh (h A 0 (mod 4)) we fix
by the rule

n41 -3 + 3 = n4i -Z + 2 = n4i-I + 1 = n 4i .

Further, we put

1-Y

	

(

	

)
an4i-3 - an4i-Z - n4i

	

i = 1, 2,

	

,

and if i is the smallest integer such that n4i > 2"?- for some m, we put

_ 1-y 1
an4i-I - an4i - n4i + 2 dm'

otherwise we put

-y
an4i-1 - a°

_
4i - n

I
4i '
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Perhaps even a stronger conjecture holds :

Problem 4 . If Z aj c L(5, I nil) and

(a) ni+1 - ni = o(d) and ani = O(ni-Y) (0 < y < 1),

or

(b) ni+l - n i = O(nT) and ani = o (ni-Y) (0 < Y < 1),

ni+l - ni = O(ni)

	

and an,
= O(ni-y) ,

such that SC{aj} is denumerable and SC{aj} {bh} h=1 •
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In order that this series should be C1-summable, the sums Zh=p £n4i-h a,4í -h must
differ from zero for at most a finite number of values of i ; hence SC f aj } is denum-
erable. It is also easy to see that all the finite sums (and differences) of the se-
quence (39) are elements of SC f aj}, which proves our theorem .

Problem 5. Is SC f aj } a Borel set, and what are the possible Baire classes into
which the sets SC f aj} can fall? In particular, is it true that if SC f aj} is of second
category in every point of an interval (a, b) then it contains (a, b)? We do not even
have an example where SC f aj } is not an FQ .

7. SERIES WITH COMPLEX TERMS

In this section we shall formulate, without proofs, some general ideas on series
E cj with complex terms . Here again (as in Section 5), all the definitions of Section
1 retain their meaning. The following theorem, similar to Theorem 2, is true .

THEOREM 5. Let E cj be a series of complex numbers . Assume that there
exists, for some fixed ö > 0 and for each 71 > 0, an integer N = N(77) such that, for
every n > N and for every a (0 < a < 2n),

[inlI% I]
(40)

	

Ea I cn+hl > C( 6 ) ' I cn I
h=I

where the a indicates that those cn+h are omitted for which I arg cn+h - a I < 6,
and where C(b) is some constant depending on 6 only. Then SCI cj } is the whole
plane .

We shall refrain from giving a full proof of this theorem and shall confine our-
selves to giving an outline of the proof . Notice that from the conditions of the theo-
rem it follows that the series E cj has at least two directions of divergence (for the
definition, see [4]), the angle between them being not less than 6 . Consequently the
methods of Section 4.1 of [4] may be used .

The general idea of the proof of Theorem 5 is the same as that of Theorem 2,
with the difference that instead of keeping s n(E) in a given half-line as in Theorem 2,
we must now keep the s n(e) in a given quadrant of the plane . This is done by means
of the terms of E cj which are near to two chosen directions of divergence by the
methods of [4], the sum of all other terms being kept small by the result of [3] .

The condition that there should be at least two directions of divergence is essen-
tial. We shall show that without this condition, even under otherwise much stronger
restrictions than those of Theorem 5, the set SC f cj} may be empty . We shall give
an example for the following .

Remark 4 . Let E ci be a series of complex terms . Even if for every n > 0

[nnll cn1 ]
lim

	

E

	

I Cn+hl/I
n

	

h 1

where cn+h is the projection of c n+h on any fixed direction, the set SC f c j} may be
empty .
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Our example will be given under the additional restriction that 1 < I c jI < 2
(j = 1, 2, • • • ) . Put c2k = i (k = 1, 2, . . .), and for 2k < m < 2k+1, put c, = 1 and

c m = 1 + i2 -3k/4 in alternate intervals of length [ 23k/4] each. A simple argument
shows that the conditions of our remark are satisfied and that SC { cj } is empty .

We shall now give several examples showing the possible interrelation between
S{cjj and SC {cj}, for series Ecj of complex terms with

F,Ic jl=-

	

and

	

cj- 0 .

If S{cj} is the whole plane, then evidently SC{cj} = S{cj} . It can easily be
seen, however, that (41) does not imply that S{ c j} is the whole plane, or even that
S{cj} contains a continuum (compare [41) .

The series E (n-1 + i2 - n) (for which (41) is satisfied) shows that the relation
SC f cj} = S{ c j} is also possible in the case where S { c j} contains more than one
point but is not the whole plane .

A simple example of a series for which S(cj) constitutes a proper subset of
SC (c) is E (n -1/ Z + i2 - n) . Here the imaginary part of v(e) (if a(e) exists) lies in
(-1, 1) and determines uniquely the sequence e, hence the real part of v(e) . If

en = (-1)[n1, then Q(e) exists, but s(e) does not exist ; this proves our assertion con-
cerning the relation between the sets S(cj) and SC(cj) . We note incidentally that the
set S(cj) is dense in the strip between the lines y = ± 1 . For if z = x + iy is any
point in this strip and n is any positive number, we can choose a finite number of the
ej in such a way that, regardless of how the remaining elements are chosen, the
imaginary part of s n(e) converges to a value which differs from y by less than n ;
and we can then choose the remaining ej in such a way that the real part of s n(e)
converges to x .

Finally we give two examples of series E cj for which S{c j is dense in the
whole plane and SC { cj } contains S{ c j} properly. In one of them,

(41)

j

	

n n!

and SC { cj } is the whole plane ; in the other,

and SC { cj } is a proper subset of the plane .
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