ON C,-SUMMABILITY OF SERIES

Paul Erddés and Haim Hanani
1, INTRODUCTION
Let Z; 12; be an infinite series of real, non-negative numbers, and let
(1) (e) = {Sj};:l g =21

be any sequence of signs. For any given sequence (g), we denote by
n
(2) snle) = 22 & &
j=1
the n-th partial sum of the series Z €jaj, and by
n 1 n
(3) on(e) = T €525 =+ 20 s(e)

the n-th partial C,-sum of this series. If s,(e), or o,(c), converges, we call

o0
(4) s(e) = lim s,(e) = 2 &;a;
n— oo j=1
an attainable point of T aj, or, respectively
og
(5) oe) = lim ou(e) = I' €53
n—-so j=1

a C,-attainable point of T a;.

The aftainadble set S{aj} is the set of all attainable points s(g) of Z a;, and the
C,-attainable set SC{a;j} 1is the set of all C,-attainable points o(¢) of = aj.

The sets S{a;} (and more generally the sets S{c;}, Zc; being a series of com-

plex numbers) have been investigated by Hanani [4] and by Calabi and Dvoretzky [2].

Connected with the sets S{a;} and SC{a;j} are the sets T{a,} and TC{a,},
T{a,} being a set of all numbers 7 for which there exists a reordering Z ap, of the
series £a, suchthat 7=Z an;s and TC{a,} being the set of numbers 7' such that

Zapn can be reordered so that the new series shall be C,-summable to 7'. The sets
T{a,} have been investigated by Steinitz [7] and by Lorentz and Zeller [5], and the
sets TC{a,} by Mazur [6] and by Bagemihl and Erdds [1).

In this paper we investigate the sets SC{aj}.
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2. PRELIMINARY PROPOSITIONS

Let L(8), with 6 > 0, be the family of series T aj such that for every j either
aj> 6 or aj=0; in particular, let L(§, {ni}) be the family of series Za; such that
an; >0 and aj =0 for j#n; (i=1, 2, ).

The following propositions are well known:

PROPOSITION 1. If Zgjaj converges, then it is also C,-summable to its limit;
that is, for every series Laj, S{aj} c 8C{aj}.

PROPOSITION 2. If aj — 0, then SC{a;} = S{aj} is perfect.
In particular, the following proposition of Riemann is well known.

PROPOSITION 3. If aj — 0 and T aj =, then SC{aj} = S{a;} is the whole
line,

Also the following propositions are evidently true:

PROPOSITION 4. If Zgjaj=s and Zejbj =t ave two convergent series, then
Z (eja; + £ by) is also convergent, and Z (g aj + £jb;) = s + t.

PROPOSITION 5. If Zgja; and Zejbj are two C,-summable series with

on od
I'sjaj=cr and raibj:f,
j=1 =1
then Z(eja; + £;b;) is also C,-summable and T (g5 a5+ 53 b;)=0+ 7.
PROPOSITION 6. Ewvery sevies Zaj either
1) has a divevgent subseries whose geneval term tends to zevo, or

2) is a sum of two subseries, one of which is an L(38) while the other converges
absolutely.

3. DIVERGENT SUBSERIES WITH aj — 0

THEOREM 1. Let Zaj be a series of non-negative terms having a subseries
Zay, such that

(6) Eanf"": an; = 0.
If
) sc{a} +90,

then SC{a;} is the whole line.

Proof. By (7), there exists a sequence (1) such that Zgjaj is C,-summable.
Write T'gjaj = 0. By (6), either

%-:Eﬂ:i‘i'ﬂi=+ch or  Zitn, ay, = -,
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(% denotes the sum of the positive terms of the series, and Z the sum of the nega-
tive terms).

Suppose

(8) @ Eny ani = %

(the proof for the other case is analogous); then the negative terms of the whole
series must diverge:

(9} zejajz-m,

because otherwise Zgja; could not be C,-summable.

Let now 7 be any given real number. We shall construct a sequence {53} such
that I'gl a; = 7.

If ¢ <7, we change the sign of as many of the earliest terms of Z ¢; a; as neces-

sary until for the first time

n

-a
-Tea=x>T1 A
=5 =
j=1

which by (9) is possible, and we write

n

oo o0

2 eja = 2c.a.-22 ¢.a..
. R it
j=1 j=d j=1

By Proposition 5, the series Ze a; is C;-summable and I"sj‘ a;=0+20=0">7T.

If 0> 7, put 83' =g and o" =0,

Notice that so far the terms of the subseries (8) have not changed their signs.
We now change the sign of those terms of the subseries (8), in the order of their ap-
pearance, for which

. Ry
Eniani52(a -7)

RVE

[
n
—

is satisfied, Z' being the sum of the terms whose signs have been changed. It follows
from (8) and (6) that there exists a finite or infinite subseries _:a" ). ay,; = 1/2(cr- 7).
1

Write
1
! o "a. _ n
Esjaj— Z;EJ 3 2@ F’ﬂiani'

By Proposition 5, the series 253 a is C,-summable and 1"53 a; = o"-(o"-T)=T.

Theorem 1 is valid for all totally permanent matrices.
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The case of a series having a subseries (6) has thus been settled. According to
Proposition 6, any other series Zaj is a sum of an L(6) and an absolutely converg-
ent series. Denoting by P the perfect attainable set of the absolutely convergent
series (see Proposition 2) and by R the C,-attainable set of the L(0), we see in ac-
cordance with Proposition 5 that

(10) SC{aj} =R+ P={r+p:r €R, p€ P}.

4. SERIES FOR WHICH SC{aj} IS THE WHOLE LINE
THEOREM 2. Let Zaj be a sevies (of non-negative terms) satisfying
(11) 2 aj=o,

If there exists an n, with the property that fo each n in 0 < n < N, there corre-
sponds an

(12) n, = n,(1)
such that for every n > n,

[nn/an]
(13) 2 Anyi > 235 + 1,
i=1
then 8C{a;} is the whole line.

Pyroof. Let o be any real number. We shall construct a sequence (1) such that
(14) F Ej aj =0.

According to (12) there exists for every 5 =21 (i = ig, ig+ 1, -+*) a number
(15) n; = ng(27)

such that for every n > nj, (13) is satisfied with n = 2-1,
Choose g; (j=1, 2, -+, n; - 1) arbitrarily. For

(16) g <j<nyyy  (i=ig, g+ 1, ),
we fix the signs £; as follows:

(a) if crj_l(a)g o and
(aa) if s;.1(8) < 0 + 2-%, we put €j = 1;

(ab) if 8;_1(6) >0+ 2-i we choose £; so as to make sj(s) as small as pos-
sible but not less than o + 271

(b) if o;5_1(€) > ¢ and
(ba) if s5.1(8) >0 - 271 we put gj=-1;

(bb) if s;_1(€) <o - 2-1 we choose € j so as to make sj(€) as large as pos-
sible but not greater than o - 2-i,
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Either o ultimately approaches o from one side, or else, by the construction of
(¢) and condition (11), oj(e) - 0 changes sign infinitely often.

Suppose that for some j', sji(¢) < oj1(e) < 0. According to our construction, the
partial sums sj(e) for j = j' must be monotonically increasing until they become
greater than ¢+ 2! (for some i which depends on j according to (16)), and then
they remain greater than o + 2-1" (i' > i) until oj(¢) becomes greater than o. As
long as sj(e) < oj(e), oj(e) is monotonically decreasing, but at the moment the in-
creasing sequence sj(e) overtakes the sequence oj(e), the sequence oj(e) begins to
increase, and it increases until it reaches a peak value greater than o. It follows
easily that the sequence oj(e) attains alternately minima (say crjl(s), O'jz(e), «++) and

maxima (0, (e), Ok, (g), ***) with j; <k, < j, <k, < -+, such that

cjh(e) <o and O'kh(i‘.) >0 f(h=1,2, ).

For jh < j < ky, the sequence {o'j(a)} is monotonically increasing, and for
ky < j < jh+1 monotonically decreasing.

For our purpose it is now sufficient to prove that for every n > 0 there exists an
index j* such that for every j > j*

(17) 0<o-05()<n
and for every ky > j*
(18) 0< okh(s) -0 <
holds. We shall prove (18), the proof of (17) being analogous.
Let t be an integer such that
(19) 2-t<n/6,
and let n¢ be the corresponding index fixed by (15). Further, let h be an integer

such that ky_1 > nt, and m the greatest index m < ky such that ¢, = 1. According
to our construction

(20) Im-1€) <0
and
(21) g<sie)<o+2+2ay M<i<h).

By definition of oy, (€), we have

ky
Tk, (€) =—Eh1* l:(m— Dom-16) + 2 sj(a):| ;

j=m

and by (20) and (21)

(22) Uy (E) <o+ ki (2°t + 2a_ (k- m+ 1),
h
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I ay, < 2°% (18) now follows immediately from (19). If am > 2%, we observe
that g = -1 for m < j < ky, and therefore by (21),

kp
2 aj< 8ty 2am .

j=m+l

Clearly m > n; and consequently, by (13), k - m < 2"'m/a,,. From (13), we also
evidently have 1 < 2-tm/a,,, and from (22), we obtain

.l..sam.z.g-tﬂ,

orkh{s) <o+ e .

which by (19) implies (18).
For series belonging to L(6), we obtain from Theorem 2 the following
COROLLARY 1. Let Zaj € L(5, {nj}). If

(a) nyyp-ni= oY) and an = om{"/2)  (0<y<),
or if
(b) nie1- ni= O@Y) and an =oM% (0<y<),

then SC{aj} is the whole line.

Proof. For n #n;, (13) is evidently satisfied. It remains to show that, for suf-
ficiently large i, the inequality

ki
(23) iB an > 2an,+ 0
a=1
holds, for some k; with
(24) LR T G(ni/ani) i

In view of the inequality a " > 6, (28) will be satisfied for
it —

2a,
k; > 514-2,

that is, for k;=[Cay,] with a sufficiently large constant C. Now, if nj;y - n; <p; ok,
where p;.; < pj, then
1. = 1.
Nty = "i(l + %E)Sni(l +ph,
1

. i _ _1.k
and since nfﬂl <nf 1l Njpx; < 0i(1 + pyn 1™ hence
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ni‘l‘ki -1
log—— < kyp;n]

Suppose now that k; < qingl'y)/z (q;41 < q;). Then

n1+k
< exp piqin (?’ l/2~<1+2p q; n(?’ /2

for sufficiently large i. Since we may assume that p; — 0 in case (a), and that
g; — 0 in case (b), it follows that (24) is satisfied.

Putting, in Corollary 1, ¥ = 1 and y = 0, respectively, we obtain the still more
special

COROLLARY 2. Let Zaje€ L(6, {n;}). If

(a) ni.y - ng=oln) and A, = o(1),
or if
(b) ngy-n=0(1) and  a; =o(ny),

then SC{a;} is the whole line.

5. SERIES FOR WHICH SC{aj]- IS EMPTY

The next theorem will be stated generally for series Zb; of elements of a
Banach space. The definitions given in Section 1 will apply also under these general
conditions. In particular, our theorem will be true when the bj are real positive
numbers, and in this case the norm signs may be omitted.

THEOREM 3. Let I bj be a series of elements of a Banach space. If theve exist

a function f(n) (1 < f(n) < n) and a positive number n > 0 such that for every N
there exists an n > N satisfying

@) loall= T ol > 25,

0< |i|<(n)

then SC{bs} is empty.

Proof. Assume that SC{b;} # p. Without loss of generality, we may then assume
that 0 € SC {b }, in other Words, that there exists a sequence (1) such that Tegjb; = 0.
Hence for every 1, > 0 and for sufficiently large n we have, for every m
(m < f(n) < n),

i I

(26) ZI SpeilE))
'. i=0 |

I
|
sn_i(s)i| <nyn.

<ﬂl n, '

MB

1

[
Ll

In particular, we may choose

(27) m=n/2.
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When 7, has thus been fixed, there exist indices n satisfying both (25) and (26), and
we shall assume in the sequel that n is such an index.

In order to simplify notation, we shall denote by f, the integer satisfying
(28) f(n) - 1< £, < f(n),

and for m < f,, we put

m m
(29) Ap = 2i €x+ibnti, Bm= 2 En-ibn-i, Ag=Bg=0.
i=1 i=1

From (26) and (27) follows
b 3

(30) 20 (sp_1(€) + &q by + Ay || <nmn/2.
k=0

On the other hand, considering

k
[len ba + Axll > [[ball - Zi {[baasl] ,
i=1

we have by (25)
(31) |len oo + Agll> [|Bg || + m0/im) k=0, 1, -, £).
We shall now prove that

(32) lena@ll> |IBsll+ 355 G=0,1, - &)

Suppose that it is not so, in other words, that

(33) leaa @1l < 118511+ 3 755

for some j (0 < j < f,). We evidently have
ffl'.l. fn

(34) 2 (85.1(6) + en by + A = 1€, + Degby + 2 (s, 1) + Ap)
k=0 k=0

fn
2+ Dbl - Z [y 1) + Al
k=0

By (33) and (25),
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1801 + Awll < llsa-1@)] + [[AKll < 11351l + g5 + 144l

<“bﬂ||'%'f{“?.’i')’ (j=0, 19'":fn)’
and thus, from (34),
f

k§0 (8n.1(€) + &, by + Ak) Bt n%'ﬂ%z /2,

which contradicts (30). Consequently (32) is established.
Finally, by (32),
f

£ -1
n
i=1

- f -1 ||
=|| Z (sn-1e) - By)|| =
i=0

n- |

1

fnsn.1(e) - 22 Bj
i=0

|

>fallsaa@ll - 2 [|Byf| > m/2,
i=0

which contradicts (26), and thus our theorem is proved.
Putting f(n) = 1, in Theorem 3, we obtain the well-known, almost trivial result:

COROLLARY 3. Let Zbj be a series of elements of a Banach space, If theve
exists a positive number 7 such that ||by|| > nn for infinitely many n, then SC{b;}
is empiy.

Further, putting f(n)= 7, n/||by||, in Theorem 3, we obtain
COROLLARY 4. Let Zbj be a series of elements of a Banach space, If theve
exist positive numbers 1,, n, such that for infinitely many n

(35) [[bal| > (1 +n1) Z [oaill,
0<]il<n,n/|[bs |
then SC{b;} is empty.

Corollary 4 enables us to show that, in the case of real series, the conditions of
Corollary 1 are, in some respects, the best possible:

COROLLARY 5. For each y (0 <y < 1), there exists a sequence { n;} and a
series Zaj € L(1, {n;}) such that

(36) Ny -n;=0(M) and a = o(n(il-?)/z)

1 l'l_-‘l
and C8{aj} is empty.
For m=1, 2, .+, put
a =N/,

2m

=1 (1<k zm(l"'}')
myfegmy] T HSESETI,

and let aj= 0 for all other j’s. Then apply Corollary 4 with n = 2™ and 1, = , = 1/4.
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There seems to be no hope of finding a reasonably good converse of Theorem 3
or Corollary 4, for elements of a general Banach space or even for complex num-
bers. We shall return to the case of complex series in Section 7.

For real series the following question arises:

Problem 1. Let Zaj be a series of real numbers satisfying (11). What is the
smallest constant C such that, if for every n > 0 and sufficiently large n

[7n/an]
(37) 2 anyi>Cap+1n

i=1
holds, then SC{a,} is the whole line?

From Corollary 4 it follows easily that C > 1, On the other hand, we were only
able to prove (in Theorem 2) that C < 2. It seems very likely that this is not the
best possible result. Perhaps C =1 or C =1+ 5 would suffice.

Another problem which we were unable to solve is

Problem 2. Let Zaj be a series of real numbers. Are the conditions stated in
Theorem 3 and Corollary 4 for SC{a;} to be empty not only sufficient but also nec-
essary?

6. THE STRUCTURE OF SC{aj}
We know very little about the structure of all the possible sets SC{aj}. The fol-
lowing remarks are rather trivial:
Remark 1. 1f SC{aj} # @, then the set SC{a;} is infinite.

There exists a sequence (g) such that Z gjaj is C,-summable, and we may
change the sign of any finite number of elements of Z¢ja;.

Remark 2. There exists a series Z aj € L(1) such that SC{aj} contains an in-
terval but does not contain the whole line.

Put

=2, =2+ 270 a;j=0 for j#2",2%+1 (n=0,1, ).

s Any1

Remark 3. Even if lim sup;— . nj+1/n; is as large as we please, we may con-
struct a series Xaj € L(1, {ni}) such that SC{a;} is the whole line.
Put nzi=npi.1+ 1, any; 1 = o(nzi), Ap,; =any _;+bj with Z |b1] =, by — 0.

With respect to the sets SC{aj} of series Zaj € L(5, {nj}) for which (36) is
satisfied, we conjecture that the following question has an affirmative answer, in the
case 0 < y < 1:

Problem 3. If Zaj € L(6, {n;}) and

npr - = 00%), a2, =012 0<y<),

is it true that SC{a;} is either empty or the whole line?
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Perhaps even a stronger conjecture holds:
Problem 4. 1t Taje L5, {n;}) and

(a) nj41 - nj=of(n}) and ap, = om”") (o<y % 1)y
or
(b) Njyp -0 =0mY) and & = o(n%"'y) 0<y<1,

1
is it true that SC{aj} is either empty or the whole line?

By Corollary 1, we can give a positive answer for the case (a) with ¥ = 1. On the
other hand we cannot solve Problem 3 even in the case y = 0.

In connection with Problem 4, we can prove the following theorem:
THEOREM 4. Corresponding to each denumerable set

(38) by, by, o+,

each 6> 0, and each y (0 <y < 1), there exists a series Zaj € L(8, {ni}), with
I-
Ny - Ny = O(n'{} and ::1.ni = O(n; L

such that SC{a;} is denumerable and SC{a;} > {bn}h=1.

Proof, We shall construct a series T a;j satisfying the conditions of the theorem.
Evidently there exists a sequence

(39) d,, d

3, g, e

such that 0 <dy, <26 (n=1, 2, -++) and such that every term of the set (38) is a
sum (or difference) of a finite number of terms of (39). We shall fix the indices ng;
by induction as follows: let n,4 be the smallest integer such that n'{; >4 and, nyg;

being fixed, we choose n4(j;1) = ng; + [n%;]. The indices ny, (h # 0 (mod 4)) we fix
by the rule
Ngj_ 3+ 3=ngy 2+ 2=ng3 1+ 1=ny;.
Further, we put
fngi 3T Bngi o~ ngy?  (=1,2, ),
and if i is the smallest integer such that ng; > 2™%2 for some m, we put

-y 1, .
Bny 1= 8ny; = Ny +§dm,

otherwise we put

- -—
Bngi1 = Bngg = Pai -



12 PAUL ERDOS and HAIM HANANI

In order that this series should be C,-summable, the sums EI‘LU Eng;_p Bngy ., Must

differ from zero for at most a finite number of values of i; hence SC{aj} is denum-~
erable. It is also easy to see that all the finite sums (and differences) of the se-
quence (39) are elements of SC{a_i }, which proves our theorem.

Problem 5. Is SC{aj} a Borel set, and what are the possible Baire classes into
which the sets SC{a;} can fall? In particular, is it true that if SC{a;} is of second
category in every point of an interval (a, b) then it contains (a, b)? We do not even
have an example where SC{a;} is notan Fj.

7. SERIES WITH COMPLEX TERMS

In this section we shall formulate, without proofs, some general ideas on series
Zc¢j with complex terms. Here again (as in Section 5), all the definitions of Section
1 retain their meaning. The following theorem, similar to Theorem 2, is true.

THEOREM 5. Let Zc¢; be a sevies of complex numbers, Assume that theve
exists, for some fixed 5 > 0 and for each n > 0, an integer N = N(n) such that, for
every n > N and for every a (0 <a < 2n),

[nn/ICn U

(40) Ea |cn+h| > C(0)- |cn | ’
h=1

where the a indicates that those cpyy, are omitied for which |a.r Cn+h - Ol| <o,
and wheve C(0) is some constant depending on & only. Then SC cj} is the whole
plane.

We shall refrain from giving a full proof of this theorem and shall confine our-
selves to giving an outline of the proof. Notice that from the conditions of the theo-
rem it follows that the series Z ¢j has at least two directions of divergence (for the
definition, see [4]), the angle between them being not less than 6. Consequently the
methods of Section 4.1 of [4] may be used.

The general idea of the proof of Theorem 5 is the same as that of Theorem 2,
with the difference that instead of keeping s,(€) in a given half-line as in Theorem 2,
we must now Keep the s,(¢) in a given quadrant of the plane. This is done by means
of the terms of Zc¢j which are near to two chosen directions of divergence by the
methods of [4], the sum of all other terms being kept small by the result of [3].

The condition that there should be at least two directions of divergence is essen-
tial. We shall show that without this condition, even under otherwise much stronger
restrictions than those of Theorem 5, the set SC{c;} may be empty. We shall give
an example for the following.

Remark 4, Let = cj be a series of complex terms. Even if for every 7> 0
. [?','n/| cnl ] '
lim Z |cn+h| |cn|=°°,
n— oo h=1

where cps4n is the projection of cpy4p, on any fixed direction, the set SC{c;} may be
empty.
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Our example will be given under the additional restriction that 1 < |ej| < 2
(j=1,2, ). Put Ck=1 (k=1,2, ), and for 2¥X< m < 251 put ¢y =1 and

Cpp=1+ i2'3k/4 in alternate intervals of length [ 23k/4] each, A simple argument
shows that the conditions of our remark are satisfied and that SC{¢;} is empty.

We shall now give several examples showing the possible interrelation between
S{c;j} and SC{cj}, for series Zcj of complex terms with

(41) Zlejl== and c¢j—0.

Ii S{c;} is the whole plane, then evidently sC{c;j} = S{cj}. It can easily be
seen, however, that (41) does not imply that S{c;} is the whole plane, or even that
S{c;j} contains a continuum (compare [4]).

The series Z (n-1 + i2-1) (for which (41) is satisfied) shows that the relation
sC{c;} = 8{c;} is also possible in the case where S{c;} contains more than one
point but is not the whole plane.

A simple example of a series for which S(cj) constitutes a proper subset of
SC(cy is = (n-1/2 + i2-7), Here the imaginary part of o(¢) (if o(e) exists) lies in
(-1, 1) and determines uniquely the sequence &, hence the real part of ofg). If
B = (-1)["5], then o(e) exists, but s(c) does not exist; this proves our assertion con-
cerning the relation between the sets S(c;) and SC(c;). We note incidentally that the
set S(cj) is dense in the strip between the lines y = +1. For if z = x + iy is any
point in this strip and 7 is any positive number, we can choose a finite number of the
gj in such a way that, regardless of how the remaining elements are chosen, the
imaginary part of s,(¢) converges to a value which differs from y by less than 7;
and we can then choose the remaining £; in such a way that the real part of Sp(e)
converges to x.

Finally we give two examples of series T c¢; for which S{cj} is dense in the
whole plane and SC{c;} contains S{c;} properly. In one of them,

) n-1 n
cj=z+— for D kI<i< Dkl (=23 ),
R k=1 k=1

and SC{c;} is the whole plane; in the other,

n-1 n
5 2 2
=i+ —s for D10 <j< T 10 m=2,3, ),
10" k=1 k=1

and SC{c;} is a proper subset of the plane.
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