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ON CIRCUITS AND SUBGRAPHS OF CHROMATIC GRAPHS
P. Erpos

A graph is said to be k-chromatic if its vertices can be split into
classes so that two vertices of the same class are not connected (by an
edge) and such a splitting is not possible for £ —1 classes. Tutte was the
first to show that for every k there is a k-chromatic graph which contains
no triangle [1].

The lower girth of a graph is defined as the smallest integer ¢ so that
our graph has a cirouit of f edges. J. B. Kelly and L. M. Kelly [2] showed
that there exist graphs of arbitrarily high chromatic number and lower
girth 6. I proved [3] that for every ¢ and k there is a graph of chromatic
number % and lower girth £. In fact I showed the following sharper
result: To every % there is an e so that for n > ny(e, k) there is a G™
(G2 will denote a graph of n vertices, G;™ will denote a graph with =
vertices and ! edges) of chromatic number k& and lower girth > ¢ logn.
We shall show that in some sense this result is best possible. First we
introduce some notations. f(m,k%; n) denotes the maximum of the
chromatic number of all graphs G, every subgraph of m vertices of which
has chromatic number not exceeding k; g,(n) is the largest integer for
which there is a G™ of chromatic number & and lower girth g, (n). Clearly
gs(n) is the largest odd integer not exceeding n (since every odd circuit
has chromatic number 3). For k > 3 the determination of g, (n) seems
very difficult. In [3] I provedf (¢;, ¢y, ... Will denote suitable positive
constants)

logn
gk(ﬂ)>01@- (1)
Now I shall prove
TaroreM 1. For k=4 we have
2logn
() Qm—*—k_z) +1.

Theorem 1 and (1) shows that for & =>4 the order of magnitude of
¢.(n) is log n (it would be easy to replace (1) by an explicit inequality).
1t seems likely that for k>3

lim g, (n)/logn
exists, but I have not been able to prove this.

Theorem 1 shows that the chromatic number can be “large™ only if
the lower girth is < elogn. Theorem 1 further implies that every G®

+ In [3], (1) is proved in a slightly different form.
[MaTHEMATIEA 9 (1062), 170-175]
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which is 4-chromatic must contain a circuit of length < 1-+2log,n. I
thought that every 4-chromatic G™ must also contain an odd circuit of
length < ¢, logn. In other words, I conjectured that for a sufficiently
large constant ¢, we have f([c,logn], 2; n) = 3 (agraph all of whose circuits
are even is 2-chromatic). T. Gallai (not knowing of my conjecture)
constructed a 4-chromatic G the smallest odd circuit of which has length
[#}]. Gallai’s example is not yet published. Gallaiand I then conjectured
that the largest value of m for which f(m, 2; n) =k is of the order of
magnitude n1*+2, but we have not even been able to prove that for every
e>0and n > ny(e), f([en], 2; n)=3.

The situation seems to change quite radically if we consider f(m, 3, n)
instead of f(m, 2, 7). In fact I shall prove

TrrorEM 2. To every k there is an e > 0 so that if n = ny(e, k) there
exists a k-chromatic G every subgraph of which having [en] vertices is at
most 3 chromatic.

Instead of Theorem 2 we shall prove the following stronger

TueorEM 3. For m >3 we have
. n\ U8 7 \"1 :
flm, 3; n) >03(E) (log%) g (1)

For f(m, k; n) at present we only can show a trivial upper bound:
- 'ﬁ - .
S, 5 ) < | e +1] @

(2) is indeed trivial since we can split the vertices of G into at most
[n/m]+1 sets each having <{m elements, and by assumption the graphs
spanned by these vertices are at most 4-chromatic.

(2) is certainly very far from being best possible. It is easy to deduce

from a result of Szekeres and myself [4] that for wm >k [f(m, k,2) in
fact is meaningful only for m > k]
flm, ks n) <flh+1, k; n) < cyni=—0i0, (3)

The deduction of (3) from [4] is easy and can be left to the reader (to
simplify his task we only remark that if every subgraph of k-1 vertices of
(" is at most k-chromatic then ¢ cannot contain a complete (k- 1)-gon

Ne+1)
G (k41 )) ;
I further proved that [5]
f(3, 2; n) > cynt/logn. (4)
It seems probable that
f(k_i_ 1, k; .n) > .nl—(uk)—e,
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for every e > 0if n > ny(e, k). Idonot know to what extent the exponent
1 in Theorem 3 can be improved for all values of m.

Proof of Theorem 1. A simple induction argument shows that every
k-chromatic G™ contains a subgraph G every vertex of which has
valency = k—1 (the valency, or order, of a vertex is the number of edges
incident to it). Assume now that G®™ is k-chromatic and is of lower
girth &. Let G be a subgraph of G™ every vertex of which has valency
>Fk—1 and let X; be any vertex of G™. Consider the set of vertices
of G which can be reached from X, by a path of [({—1)/2] or fewer
edges. Clearly every such vertex can be reached by only one such path
(for otherwise ™), and therefore G™, would contain a circuit of fewer
than ¢ edges). Since, further, every vertex of G has valency =>#k—1,
we obtain by a simple argument that there are more than (k—2)¢D
vertices which can be reached from X by a path of [({—1)/2] or fewer
edges. Hence

(k—2)0-202 < (b—2)lE-D02) <o <

which proves Theorem 1+,

The proof of Theorem 3 will use simple probabilistic arguments and
will be similar to previous proofs used by Renyi and the author [5].
First we need two Lemmas which are of independent interest. Denote
by Gy a graph having n vertices and / edges. If the vertices are labelled

then the number of different graphs G/ clearly equals ((;5)). A set of
vertices of Gy is said to be independent if no two of them are connected
by an edge.

Leyma 1. Let I =[rn], r >cq: then for all except possibly -ﬁ;((g))
graphs G\ the maximum number of independent verticesis lessthan (nfr) logr.

Let «,, ..., x, be the vertices of G/™. The number of graphs G for
which ;, ..., #;, is an independent set is clearly

(®79).

Since the vertices can be chosen in (%) ways, the number of graphs G
for which the maximum number of independent points is =wu is not
greater than

OF) <5 <@ 0§ o

<@

+ This idea is used in [3] and also in Lemma 38 of P. Erdés and L. Pésa. ** On the
maximal number of disjoint circuits of a graph ”, Publ. Math. Debrecen, 9 (1962), 3-12.
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By (5) the proof of our lemma will be complete, if we show that, for
w == (nfr) logr, r >cg we have

(2]

() <

(6) can be shown by a simple computation and is left to the reader.
It would be easy to drop the condition » > ¢;, but then (nfr)logr
would have to be replaced by, say,

n log (r+2)
r+c¢,
It seems that the order of magnitude (n/r)logr is not far from being
best possible at least for certain ranges of r.

CorOLLARY. Let l=[rn], ¥ >¢g. Then for all except 115(%)) graphs
G the chromatic number of G{™ is greater than rflogr.

The corollary immediately follows from Lemma 1, since if G® ig
k-chromatic the maximum number of independent vertices must be
>nfk (since the n vertices can be split into %k independent sets).

4/3

Lemma 2. Let 1= [rn]< 4”3 150 Lhen for all but 1%((&‘)) ol
G™ every subgraph spanned by w of its vertices, 4 << u << 10803, contains
fewer than 3u edges.

In particular the lemma implies that these G} contain no complete
quadrilateral. This result is contained in my paper with Rényi quoted
in [6].

Denote by N (u, t), 4 <u <108 nr—3, $u <t <min ({2), ) the number

of graphs G which contain a subgraph G{“. To prove our lemma
we have to show that

SEN(u, 6) < 4 ((f)) (7)
u il

where the summation is extended over 4 <« <10-$nr—3,
fu <t <min ((3), 7).

First we estimate N (u,?). Let x;, ..., %;, be any u vertices of G/,
The number of graphs G™ for which the subgraph spanned by z;, ..., x;,
contains ¢ edges clearly equals

(('z‘)) ((’%)— (S))
t —t J°
Since the vertices x;, ..., 7;, can be chosen in (i;) ways, we evidently have

v 0= (0)(2) (527). ®
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From (8) we obtain by a simple computation

¢t = 3u, |=[rn], »w <10 Cnr-3),
- (BN mte® uels 31\ en\ 23 eul|!
Mo () <% Ga) <(() %

10031\t _ 1075 (108 7r—3)13\ ¢
(Fa) < () =10

9

From (9) we easily obtain by u =>4, t = 3u, that (7) holds and hence our
43
lemma, is proved. (r < ;Ll—;?m was needed to make sure that 10-6nr—3 >4

should be true; in other words, that the range for u should not be empty.)

ndi3 (%
CoroLLARY. Let l=[rn]< B 100° then for all but 110-(%)) graphs

7 every subgraph spanned by w of its vertices w <10 8nr~3 is ai most
3-chromatic.

As stated previously a simple induction argument shows that every
G of chromatic number >4 contains a subgraph G every vertex of
which has valency >3. Thus G® has at least §v edges and the corollary
follows from Lemma 2.

The constant 10~% could easily be replaced by a larger one and the
exponent —3 in 10-%x73 could also be slightly increased, but I do not
pursue these investigations since the corollary is sharp enough to deduce
Theorems 2 and 3 and at present I cannot obtain best possible estimations,
or even estimations which are likely to be anywhere near being best
possible.

Now we can prove Theorem 3. Put r=gig(n/m)3, = [rn]. By

n
the corollary to Lemma 1 we first of all obtain that for all but 190-((5))

graphs G their chromatic number is greater than

S 03(1‘;_) . (log %:) & (10)

logr m

if ¢, is sufficiently small. (Lemma 1 applies since we can assume that
r > ¢;, for if not then m =10"%nc,~3 and for sufficiently small ¢; (1)

becomes trivial.)
13
Secondly, by the corollary to Lemma 2 (since m=4,r< Iil:T]'(_) and

Lemma 2 applies) for all but -]?g(";’) graphs G{™ the chromatic number of
all their subgraphs having at most w vertices is <3 for

u < 10-8 2 =m, (11)
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k3
(10) and (11) implies that for m = m, at least ¢ ((i)) of the grapphs satisfies
(1"), which completes the proof of Theorems 3 and 2.

To conclude T just wish to remark that from (4) one can deduce a
much stronger result than is obtained by putting m = 4 in Theorem 3.
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