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BY
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A set of points some of which are connected by an edge will be called a
graph (. Two vertices are connected by at most one edge, and loops (i.e.,
edges whose endpoints coincide) will be excluded. Vertices will be denoted
by a, 8, - - - , edges will be denoted by ¢, , €2, --- or by («, #) where the edge
(@, 8) connects the vertices « and 8.

(f — ¢ — +-+- — ¢ will denote the graph from which the edges ¢;, --- , &
have been omitted, and G — @; — -+ - — a; denotes the graph from which the
vertices ay , -+, ap and all the edges emanating from them have been omitted;

similarly G + ¢; + -+ - + ¢ will denote the graph to which the edges e, , -+ - e
have been added (without generating a new vertex).

The valency »(a) of a vertex will denote the number of edges emanating
fmm it. G will denote a graph having » vertices and u edges. The graph
(83 k, (i.c., the graph of I vertices any two of which are connected by an edge)
will be talled the complete k-gon.

A graph is called even if every circuit of it has an even number of edges.

Turdn! proved that every

GR V= 2("’;;" 2) =+ ()
forn = (F — 1)t +r,0 = r <k — 1, contains a complete k-gon, and he
determined the structure of the Gi*”’s which do not contain a complete k-gon.
Thusif we put f(2m) = m2, f(2m + 1) = m(m + 1), a special case of Turdn’s
theorem states that every G57) 41 contains a triangle.

In 1941 Rademacher proved that for even n every Gjia,41 contains at least
[n/2] triangles and that [n/2] is best possible. Rademacher’s proof was not
published. Later on® I simplified Rademacher’s proof and proved more
generally that for £ = 3, n > 2, every Giiay+: contains at least tfn/2] triangles.
Further I econjectured that for i < [#/2] every Gitay+: contains at least £[n/2]
triangles. It is easy to see that for n = 2m, 2m > 4, the conjecture is false
for ¢t = n/2. To see this, consider a graph Gy, whose vertices ave
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@, *, o2 and whose edges are
(e, a;), 12is=m+1<j=2m,
and the m -+ 1 further edges
(ai, o), 1 =7i=m, and (o1, amnp).

It is easy to see that this graph contains m® — 1 triangles (for 2m = 4 an
unwanted triangle (a; , @2, ;) enters and ruins the counting, and in fact it is
easy to see that for 2m = 4 the conjecture holds for i = m = 2). For odd
n = 2m -+ 1 perhaps every Gitomairse, ¢ < 2m — 2, contains at least tm
triangles. But here is a Gitomityrom , 2m + 1 = 9, which contains fewer
than m(2m — 1) triangles. The vertices of our graph are a;, -+, avmis ,

the edges are
(ai, a;), 1=si=sm+4+2<j=<2m-+1,
and the following 2m + 1 edges:

(a1, ), (o, 00), (a3,a), (a3,as), (e, as),
3=2hk=m+ 2.

It is easy to see that this graph contains 2m° — m — 1 < m(2m — 1) triangles.
For 2m + 1 = 5 we must have { < 4, and it is easy to see that the conjecture
holds for all these . For2m + 1 = 7,¢ = 9, and by a little longer argument
one can easily convinee oneself that the conjecture holds for all these ¢.

In the present paper we are going to prove the following

TuroreMm. There exisis a constant ¢ > 0 so that for ¢ < ¢y n/2 every G}?,BH,
contains at least ifn/2] triangles.

First we need three lemmas.
LemMA 1. Every Gii)-1y42 which is not even contains a triangle.

Lemma 1 was found jointly by Gallai and myself. (The lemma was also
found by Mr. Andrasfai independently.)

Let 7 be a graph with n vertices which is not even and contains no triangle.
Let a1, * ', ass1 be the vertices of the odd eircuit of our graph having the
least number of vertices. We can assume 3 < 2k + 1 < n.  The subgraph
of G spanned by a;, ++ , ax.s can have no other edges; otherwise our graph
would contain an odd circuit having fewer than 2k -+ 1 edges. Let 8, -+ -,
B.—2t—1 be the other vertices of . Any of the 3’s ean be connected with at
most two of the a’s, for otherwise ' contains an odd circuit of fewer than
2k + 1 edges. TFinally by Turdn’s theorem the subgraph of ¢ spanned by
81, Bu—si—1 can have at most f(n — 2k — 1) edges. Thus the number
of edges of (7 is at most

2k+14+2n—-—2k—1)+f(n—2—-1) 2 fln—1)4+1
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by a simple calculation (equality only for 2k + 1 = 5). This completes the
proof of our lemma.

Our proof in fact gives that a graph ¢ of n vertices whose smallest odd
circuit has 2k + 1 vertices, k. > 1, hasatmost 2n — 2k — 1 + f(n — 2k — 1)
edges, and the following simple example shows that this result is best possible.
Let the vertices of G be

[ I e ﬁlr"'nﬁu; Y1, 00 5 Va1,

vz[n—zk—l] — _[n—zk—l}
2 - 2 :

The edges of G are (a, 8;), (y1, @), (va, ), 1 27 = v, (v2,8), (vs, Bi),
1 = 7 = w, further the edges (v, via), 1 =2 = 2k, (y1, yora).

LemMa 2. There exists a constant ¢o > 0 so that every Gy contains af
least [es m] iriangles having a common edge (ay , an) (i.e., all the edges (ay, B)),
(aﬁ y Br')! (al 3 az)y 1 = z = [62 nls are in GJ('??33+1)'

Let (ei, 8i,v:), 1 £ 7 < 7, be a maximal system of disjoint triangles of our
graph G§{2y41 . In other words if we omit the vertices a;, 8;,v:, 1 < ¢ < r,
the subgraph of G}{,, 11 spanned by the remaining n — 3r vertices contains no
triangle and has therefore at most f(n — 3r) edges (by Turdn’s theorem).

Denote by G(n, i) the graph G{{2,;1 — 2 imi (a; + 8; + ), and let
2@ (a;), v (8:), v () be the valencies of ., B:, v: in G(n, ©). Now we
show that for some 7, 1 < 7 £ r, we must have

(1) () + 078 + 0P (ye) > n(1 + 9¢) — 37

For if (1) would not hold for any ¢, 1 = ¢ = r, then the number of edges of
Gty 41 would be not greater than

(2) S (n(1l + 9e) — 31) + f(n — 3r) < f(n)

by a simple calculation for sufficiently small ¢; . But (2) is an evident con-
tradiction since Giiy41 has by definition f(n) + 1 edges.

Thus (1) holds for say ¢ = 4. Then a simple computation shows that
there are at least 3[e;n] vertices of G(n,7) which are connected with more
than one of the vertices e, , 8, ¥io - TLTherefore there are at least [con] of
them which are connected with the same pair, i.e., G(n,7%), and therefore
G}i2y+1 , contains the configuration required by Lemma 2, which completes
the proof of the lemma.

By more careful considerations we can prove that every Gf(y41 contains
n/6 4+ O(1) triangles (e ,a:,8:), 1 £ 7 < n/6 + 0(1), and that this result
is best possible.

Lesma 3. Let 8 > 0 be a fized number. Consider any graph
GV, w > fn) — (n/2)(1 — 8), n > m(s),
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whicheontainsa triangle. Then G\ conlains an edge (i, as) and [csn] + 1,¢5 =
c;(8), vertices By, -+~ , B, r = [esm] -+ 1, so that all the triangles (ay , s, B:),
1 <4 Z r, are in G,

By assumption G." contains a triangle (e, a2, a3). Assume first that
(3) log) + vlew) + vlay) > nll + Y¢;) 4 9.

Then as in the proof of Lemma 2 we can show that %" contains the required
configuration.

If (3) is not satisfied, then GY" — a; — a» — a3 has n — 3 vertices and at
least © — n(1 4+ 9¢;) — 9edges. But if ¢; < §/18, then forn > ng

w—n(l4+9;) —9

> f(n) — (n/2)(1 — a«) —n(l + 9¢) — 9> f(n — 3).

Thus by Lemma 2, G\ — a; — as — a5, and therefore G4, contains the

configuration required by Lemma 3, which completes the proof of Lemma 3.

Now we can prove our Theorem. Let there be given a G}?law , < egn/2.
Assume first that after the omission of any » = [¢; 1/2¢3), ¢s = (%) (6 =1 in
Lemma 3 ), edges the graph will still contain a triangle. For sufficiently small
¢, ¢1/2c3 < 1; thus it will be permissible to apply Lemma 3 during the omis-
sion of these edges.

By Lemma 3 (or Lemma 2) there exists an edge ¢; which is contained in at
least [csn] + 1 triangles of Gffa) 4. ; again by Lemma 3 in G{{)+c — e, there
exists an edge e; which is contained in [e;n] + 1 triangles of Gf{ayy, — e
Suppose we have already chosen the edges e, -+ -, e, each of which is con-
tainedinatleast [c; 7] 4 1triangles. By our assumption G{, i — € — -+ —e¢,
contains at least one triangle; thus by Lemma 3 there is an edge e,4; in
Gyl)yse — @ — --+ — e, which is contained in at least [e;n] 4+ 1 triangles in
this graph. These triangles incident on the edges e, , - - - , .41 are evidently
distinet; thus G47'), 4. contains at least (» + 1)([esn] + 1) > ein’/2 > tn/2
triangles, which proves our Theorem in this case.

Therefore we can assume that there are { £ r < n/4 edges ¢, *++, ¢, 50
that G = Gifay4s — € — - -+ — e;contains no triangle, and we can assume that
[ is the smallest. integer with this property. Byl < r < n/4, G has

fn) +t—=1>fn) —n/4>f(n—1) + 1

edges. Thus by Lemma 1, G is even.

By Turdn’s theorem, [ = {. Assume first ! = ¢ (it is not necessary to treat
the cases I = ¢ and [ > { separately, but perhaps it will be easier for the
reader to do so). Then G has f(n) edges, and by Turdn’s theorem G is
of the following form: The vertices of G are ay, -« , @@, B, Boewia
and the edges are (a;, 8;), 1 £ = [n/2[,1 £j < n — [#/2]. A simple
argument, shows that the addition of every further edge introduces at least
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[n/2] triangles and that these triangles are distinct. Thus Gf{), 4, contains
at least {[n/2] triangles, and our Theorem is proved in this ease too.

Assume finally I =t + w, 0 < w < n/4 (since I < n/4). It will be more
convenient to assume first that n is even. Put n = 2m. Since  is even, it
is contained in a graph G( E, u) whose verticesare oy, - - , &m—u , 81, " "+, Bt
and whose edges are (a;,8;),1 S ¢ =m —u, 1 £ j = m + u (since G has
more than f(2m) — m/2 = m® — m/2 edges, we have 0 < u < (m/2)"%),

Clearly every one of the edges e, , -- -, ¢; connect two a’s or two 8’s. For
if say e, would connect an « with a 3, then

{n)
Gilwy+t — & — ==+ — @1 — € — =+ — @

would be even, and hence would contain no triangle, which contradicts the
minimum property of [.

By our assumption G is a subgraph of G(E, »). Assume that G is obtained
from G(E, u) by the omission of z edges. Then we evidently have

l=z+4+ 4+t (orw=z+ud),

and Gj{1y4: is obtained from G by adding [ edges e, , - - - , ¢; which are all of
the form (i, , @) or (B:,, Bi,). Pute; = (8, Bi,), and let us estimate
the number of triangles (8., , Bi, , «;) in G(E, u) + e;. Clearly at most z of
the edges (8, , «;), (B, «;) are not in G(E, w); thus G(E, u) + e; contains
at least

m—u — &

triangles (if e; connects two a's, then G(E, u) + e, contains at least m + y — 2
triangles). For different e;’s these triangles are clearly different ; thus

G}("})r.wz =G+ea+ -+ e
contains at least

(4) (m—u—2a) = (m—u—az)z+ i 8 = o= (02}

triangles.  (4) follows by simple computation from [ = * + 2 + ¢t < m/2.
(4) completes the proof of our Theorem for n = 2m. Forn = 2m + 1 the
proof is almost identical and can be omitted. Thus the proof of our Theorem
is complete.

It seems possible that a slicht improvement of this proof will give the con-
jeeture that every Giihar, t < [n/2] contains at least {[n/2] triangles, but I
have not been successful in doing this.

I have not succeeded in formulating a reasonable conjecture about the
minimum number of trianglesa Gy 1y 4 must containif [n/2) < t < (;) — f(n).
It is easy to see that if ¢ is close to (3) — f(n), then G}{s,, contains more
than #[n/2] triangles, and it would be easy to obtain a best possible result in
this case. But I have not investigated the range of ¢ for which this is possible.
I just remark that GE;}‘)’_; ;1 £ 2, contains at least (§) — I[(n — 2) triangles
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and that GEé‘,}_s contains at least () — 3(n — 2) + 1 triangles, and that
these results are best possible. The simple proofs are left to the reader.

Turén’s theorem implies that every Gini, contains a complete 4-gon. As
an analogue of the theorem of Rademacher I can prove by very much more
complicated arguments that it contains at least n® complete 4-gons; this
result is easily seen to be best possible.

BupsersT, HUNGARY
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