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A set of points some of which are connected by an edge will be called a
graph G. Two vertices are connected by at most one edge, and loops (i .e .,
edges whose endpoints coincide) will be excluded . Vertices will be denoted
by a, 0, - • • , edges will be denoted by e l , e 2 , . . . or by (a, /3) where the edge
(a, ,0) connects the vertices a and 0.
G - e 1 - • • • - eti. will denote the graph from which the edges eI , el,

have been omitted, and G - a1 - - a /. denotes the graph from which the
vertices al , a t, and all the edges emanating from them have been omitted ;
similarly G -1- eI + • • • -i - ez will denote the graph to which the edges el , ex
have been added (without generating a new vertex) .

The valency v(a) of a vertex will denote the number of edges emanating
from it . G ;,' ) will denote a graph having v vertices and u edges. The graph
G ~( ) (i .e ., the graph of k vertices any two of which are connected by an edge)
will be called the complete k-gon .

A graph is called even if every circuit of it has an even number of edges .
Tusán' proved that every

V = - k-9 {n'-r2)+ (2)2(k - 1)

for n = (h - 1)t + r, 0 < r G k: - 1, contains a complete k-gon, and he
determined the structure of the Gv' )'s which do not contain a complete k-gon .
Thus if tine put f (2m) = n12, f(2m -i- I ) = m (m + I ), a special case of Turán's
theorem states that every Gf(„) + 1 contains a triangle .

In 1941 Rademacher proved that for even n every Gf n l+ , contains at least
[n ;/2] triangles and that [n/2] is best possible . Rademacher's proof was not
published . Later on e I simplified Rademacher's proof and proved more
generally that for t <_ 3, n > 2t, every Gf'(n)+t contains at leastt[n/2] triangles .
F urther I conjectured that for t < [n j2] every Gf n +t contains at least t[n/2]
triangles. It is easy to see that for n = 2m, 2m. > 4, the conjecture is false

r(2m1
for t = n,/2 . To see this, consider a graph G, n 2 +. whose vertices are
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a, , • • •, a2m and whose edges are

(a i , a;),

	

1 < i <_ nt -f- I < j 5 2-n2.,
and the in + 1 further edges

(a ; , ai+i), 1 <_- i _<_ an, and (a, , a.+,).

It is easy to see that this graph contains an t - I triangles (for 2m = 4 an
unwanted triangle (a, , a 2 , aa) enters and ruins the counting, and in fact it is
easy to see that for 2m = 4 the conjecture holds for t = an = 2) . For odd
n = 2m + I perhaps every Gf(2+1)+t , t <= 2m - 2, contains at least tm.
triangles . But here is a Gf (z+I)+2m-, , 2m + 1 9, which contains fewer
than na(21n - 1) triangles . The vertices of our graph are a, , a2m+I ,
the edges are

(ai,aj),

	

1 < i <='m +2 < j < 2m+ 1,

and the following 2m + 1 edges :

(al , az),

	

(a2 , az),

	

(a3, a4),

	

(a.3, a5),

	

(aa , as),

3 <= k <_ m + 2 .

It is easy to see that this graph contains 2m2 - na - 1 < m(2in - 1) triangles .
For 2w + 1 = 5 we must have t < 4, and it is easy to see that the conjecture
holds for all these t . For 2m. + 1 = 7, t < 9, and by a little longer argument
one can easily convince oneself that the conjecture holds for all these t .

In the present paper we are going to prove the following

THEOREM . There exists a constant c, > 0 so that for t < c, n/2 every Gf ', Z ) + t

contains at least t[ni2] triangles .

First we need three lemmas .

LEMMA 1 . Every Cl-f( (n_„+2 which is not even contains a triangle .

Lemma 1 was found jointly by Gallai and myself . (The lemma was also
found by Mr . Andrásfai independently .)

Let G be a graph with n vertices which is not even and contains no triangle .
Let a, , • • • , a,z+, be the vertices of the odd circuit of our graph having the
least number of vertices . "e can assume 3 < 2k + 1 < n . The subgraph
of G spanned by a, , • • • , a2z+l can have no other edges ; otherwise our graph
would contain an odd circuit having fewer than 2k + l edges . Let 3, , • • • ,

/3r_2,á_, be the other vertices of G . Any of the (3's can be connected with at
most two of the a's, for otherwise G contains an odd circuit of fewer than
2k + 1 edges . Finally by Turán's theorem the subgraph of G spanned by
01 , • • • , 0-2x._, can have at most. f (n - 2k - 1) edges . Thus the number
of edges of G is at most

2k +1 +2 (n-2k-1)+f (n-2k-I) <f(n-1)+1
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by a simple calculation (equality only for 2k + 1 = 5) . This completes the
proof of our lemma .

Our proof in fact gives that a, graph G of n vertices whose smallest odd
circuit has 2k + 1 vertices, k > 1, has at most 2n - 2k - 1 + f(n - 2k - 1)
edges, and the following simple example shows that this result is best possible .
Let the vertices of G be

The edges of G are (a , ~,), (y1 , a r), (ys , a ,), 1 <_ i < v, (y2 , ,t3 ;), (y4 , Ni),
1 <= i < u, further the edges (y i , -y j+1 ), 1 5 i <= 2k, (y1 , 'Y24-+I)

LEMMA 2 . There exists a constant e2 > 0 so that every Gf(`n) +1 contains at
least [c2 n] triangles having a common edge (a, , a2) (i .e ., all the edges (a, , '3 i),
(a2 , M, (al , a2), 1

	

i - [C2 n], are in Gf(a)+1) •

Let (ai , Oi , y ;), 1 < i < r, be a maximal system of disjoint triangles of our
graph Gf'(n)+, . In other words if we omit the vertices a, , 0 i , -y;, 1 <_ i =< r,
the subgraph of Gf (n)+, spanned by the remaining n - 3r vertices contains no
triangle and has therefore at most f(n - 3r) edges (by Turán's theorem) .
Denote by G(n, i) the graph Gf~n)+1 - ~;- i (ai + (3, + y,), and let

vW (at), vW A), vU) (y,) be the valencies of a„ O i , yg in G(n, i) . Now we
show that for some i, I <= i =< r, we must have

(1)

~1, . . . ,~u,

	

y1,

	

. . ,y2k.+1,

[n-2k-1]
C
n-2k-1~

v =	
2

	

u = n -	9	

v (i) (ae) + v ( "(aj) + v ( ' ) (y -=) > n(1 + 9c2) - 3i .

For if (1) would not hold for any i, 1 <= i <= r, then the number of edges of
Gf(n)+, would be not greater than

(2)

	

Y- i=1 (n (1 + 9C2) - 3i) + f(n - 3r) < f(n)

by a simple calculation for sufficiently small c 2 . But (2) is an evident Con-
tradiction since Gf(n)+, has by definition f(n) + 1 edges .

Thus (1) holds for say i = io • Then a simple computation shows that
there are at least 3[c2 n] vertices of G(n, io) which are connected with more
than one of the vertices a p , /fro , y,o . Therefore there are at least [c 2 n] of
them which are connected with the same pair, i .e ., G(n,io), and therefore

I)
Gs(,~)+1c(,~)+1 , contains the configuration required by Lemma 2, which completes
the proof of the lemma .

By more careful considerations we can prove that every- Gf'(n)+, contains
n/6 + 0 (1) triangles (a1 , a2, 0,), 1 <_ i =< n/6 + 0 (1), and that this result
is best possible .

LEMMA 3 . Let S > 0 be a fixed number . Consider any graph

G,,' ) ,

	

u. > f(n) - (n/2) (1 - S), n > n o(3),
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which contains a triangle . Then G (,,' ) contains an edge (a,, a2 ) and [c3 n.] + 1, c3 =
c 3 (b), vertices (31 , • • • , fa r , r = [c 3 n.] -}- 1, so that all the triangles (a 1 , a2 , l3 ;),
1 <_ i < r, are in G., .

By assumption G;,` contains a triangle (ai , a2, a,;) . Assume first that

(3)

	

v(ai) + v(a2) -i- v(a 3 ) > n(1 + 9c3 ) -l- 9 .

Then as in the proof of Lemma 2 we can show that Gu ' contains the required
configuration .

If (3) is not satisfied, then G(,,
n) - a, - a 2 - a 3 has n - 3 vertices and at

least u - n(1 -}- 9c3) - 9 edges . But if c 3 < S/18, then for n > n o

u- n(1 á-9c3 ) -9

> An) - (n/2) (I - a) - n(1 + 9c3) - 9 > f(n. - 3) .

Thus by Lemma 2, G7,'' - a, - a2 - a3, and therefore G ", contains the
configuration required by Lemma 3, which completes the proof of Lemma 3 .

Now we can prove our Theorem . Let there be given a Gf(n)+E , t < cl n/2 .
Assume first that after the omission of any r = [cl n/2c3], c3 = ca 1 ) ( ó = 4 in
Lemma 3), edges the graph will still contain a triangle . For sufficiently small
cl , c,/2c3 < 1 ; thus it will be permissible to apply Lemma . 3 during the omis-
sion of these edges .
By Lemma 3 (or Lemma 2) there exists an edge e, which is contained in at

least [c3 n] + 1 triangles of Gf O)+, ; again by Lemma 3 in Gf(n)+, - el there
exists an edge e2 which is contained in [c3 n] + I triangles of Gf(n)+, - e1
Suppose we have already chosen the edges e l , , er each of which is con-
tained in at least [c 3 n] + 1 triangles. BY our assumption G( ' ~s ( ,, ) +, -e,- . . .-er
contains at least one triangle ; thus by Lemma. 3 there is an edge e z+ , in
Gf(`n ) + t - e 1 - - er which is contained in at least [c3 n] + 1 triangles in
this graph . These triangles incident on the edges el , er+, are evidently
distinct; thus Gf(.n )+t contains at least (r + 1)([c3 n] + 1) > c 1 n2 /2 > to/2
triangles, which proves our Theorem in this case .

Therefore we can assume that there are l <= r < n,/4 edges el , • e z so
that G = Gf (' n ) +, - e, - - et contains no triangle, and we can assume that
l is the smallest integer with this property . By l <= r < n/4, G has

f(n) + t - l > ,f(n) - n,/4 > f(n - 1) + 1

edges . Thus by Lemma 1, G is even .
By Turán's theorem, t >= t . Assume first l = t (it is not necessary to treat

the cases l = t and l > t separately, but perhaps it will be easier for the
reader to do so) . Then G has f(n) edges, and by Turán's theorem G is
of the following form : The vertices of G are ai , • • • , a(„ /21 , (1 , • • 0,z_[,ai2] ,

and the edges are (a i , Oj ), 1 =< i <_ [n/2], 1 < j < n - [n/2] . A simple
argument shows that the addition of every further edge introduces at least
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[n//2] triangles and that these triangles are distinct. Thus Gf (`n.)+t contains
at least t[n/ 2] triangles, and our Theorem is proved in this case too .

Assume finally l = t + w, 0 < w < n/4 (since l < n/4) . It will be more
convenient to assume first that n is even . Put n = 2m . Since G is even, it
is contained in a graph G(E, u) whose vertices are a, , • • • , a,,,_, , Rj , • • • , O3 ,+u
and whose edges are (a; , a,), 1 <_ m - 2t, 1 5 j < na + a (since G has
more than f(2m - in/2 = ')n2 - áa2./2 edges, we have 0 <= u G

Clearly every one of the edges el , • • , ez connect two a's or two O's . For
if say ei would connect an a with a a, then

n)Gf(n)+t - e, -

P. ERDŐS

•

	

- e,-, -ei+i- . . . -ez

would be even, and hence would contain no triangle, which contradicts the
minimum property of t .
By our assumption G is a subgraph of G(E, u) . Assume that G is obtained

from G(E, u) by the omission of x edges . Then we evidently have

l=x+u2+t (or w=x+u2),

and Gf [xn)+t is obtained from G by adding l edges e, , - et which are all of
the form (ai, , a,2) or (ai, , O j,) . Put e, _ (Oil , 0,2 ), and let us estimate
the number of triangles (0i, , Oi, , a ;) in G(E, u) + e, . Clearly at most x of
the edges (,Q,, , a,), (J3„ , a ;) are not in G(E, u) ; thus G(E, u) + e ; contains
at least

triangles (if e., connects two a's, then G(E, u) + ei contains at least m + u - x
triangles) . For different e,'s these triangles are clearly different ; thus

~)n) +r = G + e, + . . .+ e zrf'~-
contains at least

(4) (m-u-Al= (m - u - x) (x + 'u.2 + t) ? tm = t(n/2)

triangles. (4) follows by simple computation from l = .U2 + x + t < m,/2 .
(4) completes the proof of our Theorem for n . = 2m . For n = 22n + 1 the
proof is almost identical and can be omitted . Thus the proof of our Theorem
is complete .

It seems possible that a slight improvement of this proof will give the con-
jecture that every G( f ().)+t , t < [n./2] contains at least t[n/2] triangles, but I
have not been successful in doing this .

I have not succeeded in formulating a reasonable conjecture about the
minimum number of trianglesa Gf (''n)+t must containif [n/2] <= t <_ (2) - f(n) .
It is easy to see that if t is close to (2') - f(n), then Gf gin)+t contains more
than t[n,/2] triangles, and it would be easy to obtain a best possible result in
this case . But I have not investigated the range of t for which this is possible .
I just remark that G(n)_z , 1 _<- 2, contains at least (3 ) - t(n - 2) triangles
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and that G~'n))-3 contains at least (á ; - 3(n - 2) + 1 triangles, and that
these results are best possible . The simple proofs are left to the reader .

Turán's theorem implies that every G3n2+1 contains a complete 4-gon . As
an analogue of the theorem of Rademacher I can prove by very much more
complicated arguments that it contains at least n2 complete 4-gons ; this
result is easily seen to be best possible .

BUDAPEST, HUNGARY
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