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1. Introduction. In this paper we are going to give a classification
of denumerable order types, namely we are going to prove that every
order type of a denumerable set which does not contain a dense subset
can be built up from the order types 0, 1 by a transfinite induction process
taking at every step the so-called o-sum and e*-sum of order types
previously defined. Thus every order type @ of such kind ecan have an
ordinal number o(®) less than w,, called the rank of @, associated with
it — and several properties of denumerable order types can be verified
by carrying out a transfinite induction on o(@) (1).

As an application of the above-mentioned result a problem in the
partition caleulus for sets will be solved. Finally we are going to state
some unsolved problems concerning non denumerable types (2).

2. Notations. Definitions. We are going to use the usual no-
tations of set theory and we list only those where there is a danger of
misunderstanding.

Capital Roman letters denote sets, x,y,...,a, b, ... denote elements
of sets, a,p,y,0,r,.. denote ordinal numbers, @, ¢, P denote order
types, n, k, 1l denote non-negative integers. No distinction will be made
between finite cardinal numbers and ordinal numbers.

7 will denote the type of rational numbers ordered according to
magnitude.

X, 7 denote the cardinal number of X and ¢ respectively.

It § is a set ordered by a relation R, then for an arbitrary pair
r,yefN “x is less than ¥ will be denoted by » < y(R) and the order
type of X will be denoted by X(R). If there is no danger of misunder-
standing (R) will be omitted.

(*) This elassification seems to be so simple and natural that probably it is already
described somewhere in the literature; however, the authors have been nnable to find it.
Therefore it seems worthwhile to give the proofs in detail.

(*) For another application of the classification see [1].
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If an ordered set of type @, contains a subset of type ©, we briefly
write 6, < 0.
If 8 is a set ordered by the relation R and 4, BC 8 then A < B(R)

denotes that
a < b(R) for every pair aeA, beB.

DerINITION 2.1. Let Z be a set Z = ¢(T) and let 6, be defined

for every xeZ. We define © — Y 6, as usual in the following way.
reZ

Let S, be a system of disjoint sets ordered by the relations R, such that

S, = 6,(R,) for every reZ. Then O is the type of the set § = S,
xeZ

ordered by the following relation R.

Let a,beS, aeS,, beS,, a<b(R) if and only if either x < y(T)
or & =y and a < b(R;).

It is well known that @ depends only on the ordered set Z and on
the function @,.

@ will be briefly termed a sum of type ¢ of the O.'s.

If 9 = w or ¢ = o* we may denote the ©,'s by 6, and we can speak
of the w-sum or e*-sum of the sequence (@), ., which will be denoted by

Op+ e +6y — e, . +O0,—... -0y, respectively .

Remarks. 1. If 6, =y for every rewm, then @ depends only on ¢
and y and will be denoted by y-¢, as usual.

2. Note that some of the 6,'s may be equal to 0, and thus, e.g.
o= 60;+..4+60;+... does not follow from Definition 2.1.

Now we are going to redefine the partition symbol defined in [2]
in the special cases needed for our purpose.

Let [X]" denote the set {¥: Y C X and Y = m}

DEFINITION 2.2. O, +(6,, 0,)* indicates that the following statement
is true.

Whenever S is an ordered set, S = @, and [S]? = I, u I, is a partition
of the set [S]?, then either there exists a set 8'C 8, 8’ = O, such that
[8'F C I, or there exists an 8 C &8, 8" = @, such that [8"]} C I,.

6, =~ (60,, 6y)* denotes the negation of the above statement.

If ey, sy, my are cardinal numbers, then the symbol m, —(m,, my)?
has a similar self-explanatory meaning.

However, in this paper we are going to deal with the case when
types and cardinals may appear in the same symbol.

DEeFINITION 2.3. Let 0, 6, be types and let m be a cardinal number.

0 —>(0;, m)* indicates the following statement. Whenever § is an
ordered set, S = @ and [S8]? = I, u I, is an arbitrary partition of [S]?,
then either there exists an 8'C 8, S8’ = @, such that [S'FC I, or there
exists an 8" C 8, 8" = m such that [8"]} C I,.
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6 —— (0,, m)* indicates the negation of this statement.
The symbol just defined has the following obvious monotonicity
properties

@ —(6,m)> implies O —(0,,m)* for every O < 0",
O—(6,,m)* implies 6O-=(0;,m’)* for every O <6, m' < m.

3. Classification of the denumerable order types. Let S
be an ordered set ordered by the relation R, and let a << b(R) be two
arbitrary elements of 8. (a,b)(R) denotes, as usual, the interval
{: reSand a < x < b(R)}. The ordered set S is said to be dense if (a, b) #= 0
for every pair a < b ¢ 8. The order type O is said to be a discrete type if
S = @ and S does not contain a dense subset.

Let A denote the set of all denumerable order types and let Adp be
the set of all discrete denumerable order types and put dg = A—Ap.

Considering that every denumerable dense set is of type #, 1+,
1-+1, or 1451, the following statements are immediate consequences
of the above definitions.

3.1. If @ e A then @ e Ay if and only if n L O and O e Ag if and only
if 5= 0.

Now we are going to define a class O of denumerable order types.

DerFiniTION 3.2. We define the classes 0, for every o << w, by trans-
finite induction on o as follows. O, consists of 0 and 1. Suppose that O,

is defined for every o' < o for a ¢ < w,. Put G, = [ Oy. Let O, consist
o'<e
of the w-sums and of the w*-sums of the sequences 6, ..., &,, ... satis-

fying the condition O, e G, for every »n < w.
It is obvious that 0, C..C0O,C .. for p< . Put O=_] O,.

Then there exists a least o < w;, corresponding to every @ e (}iﬁ:uch
that @ € 0,. Put ¢ = p(@) for this o. p(6) will be called the rank of 6.

The main aim of this section is to prove the following

THEOREM 1. The discrete denumerable order lypes coincide with the
elements of O and the non-discrete ones are sums of type n, 1+, n—1, or
14 #%-+1 of non-vanishing discrete ones.

To prove Theorem 1 we have to verify the following statements.

3.3. 0 = Ap. '

34. If @ Ag then there erists a function O, defined on a set Z of
type n (or 1+u, or n+1, or 1+x5-+1) salisfying the conditions 0, = 0,
O, €0 for every e Z and 6 = E ..

zeZ
Before proving these we need some further preliminaries.
3.5. Kvery order type O e O of rank p(@) = 0 is either the o-sum or
the w*-sum of order types Op e O of rank less than o(0O).
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In fact, O €O, implies (@) < g’, hence the statement follows
from 3.2.

Considering that 0 and 1 are discrete types and that the o-sum as
well as the w*-sum of discrete types is again discrete, it follows from 3.5
by transfinite induction on ¢ (@) that the elements of O are diserete types,
i.e. we have

3.6. O0C 4p.

To prove the inverse inclusion we need another classification of the
elements of Ap.

Let S be a set ordered by a relation R.

DerFINITION 3.7. The collection S* of subsets of § is briefly said
to be a splitting of § if it satisfies the following conditions:

UX=4,
Xeg*
and either X < Y(R) or ¥ < X(R) for every pair X = ¥ ¢ 8%

Then 8* may be considered as a set ordered by the relation R*

defined by the stipulation

X < Y(R*) if and only if X < Y(R).

Let S*(x) denote for every x ¢S the uniquely determined element
of 8* for which x e 8*(z).

Let S¥, S¥ be two splittings of 8. Sf is said to be a refinement
of 8% if 8f(x) C S¥(x) for every » e S. Sf is a proper refinement of 8% if
there is an @ e S such that SF(x) C S¥(x)%

DEerFINITION 3.8. Let (S§)s<. be a sequence of splittings of 8 such
that 83 is a refinement Sp, for every f < g’ < a. Put S;(x) = U Si(z).

f=a
Then the set 8%, which consists of all different S:(x)’s, is a splitting of §
called the sum of S3’s and every S} is a refinement of it.
Proof. It S¥(x) = Si(y) for a 8 < a then Sf(x) = Si{y) for every
B < p' < a, hence Sia) = Si(y). If Six) =* Si(y) for every f < a and,
for instance, # < y(R), then by 3.7,

Si(z) < S3(y) for every f<a
Si(z) < Si(y) (R)

DEFINITION 3.9. Let § be an ordered set.

Put N(z) = {y: (y <o and |(y2)| <%,) or (x<y and [(xy)| < Ko)}.

It is easy to verify from 3.7 and 3.9 that the set 8, which consists
of all different N (z)’s, is a splitting of § which satisfies §'(z) = N(x)
for every z e S, and it is easy to see that

3.10. S'(2)(R) = N (x)(R) 18 », w*, w*+w, or finite for every xe8.

and thus
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DEFINITION 3.11. Suppose now that S is a set ordered by R and
that 8* iz a splitting of it. Consider the set S§* ordered by R*. Apply to
it the operation defined in 3.9. Then we get a splitting S* of it. Define
the splitting 8" of § induced by S§* by the stipulation

S@= U 8.

S*1e N(S*(x))

It is obvious that 8" is a splitting of § and 8* is a refinement of it.

On the other hand, it follows immediately from the definitions 2.1,
3.10 and 3.11 that

3.12. Under the notations of 3.11, 8" (x)(R) is an w-sum, an w*-sum,
an w*-+-w-sum or a finite sum of the order types S*(y)(R) for S*(y)
e N (S*(z))

DerFINITION 3.13. Let § be a denumerable set ordered by the ve-
lation B, S = 6 (R).

We are going to define a sequence Sj of splittings of 8 for every
a < w; by transfinite induction on a as follows.

Define 87 by the stipulation S§(z) = {#} for every z e S. Suppose
that 0 < « < w, and that S is defined for every f < a in such a way
that 87 is a refinement of S} for every ' < g < «. Distinguish two cases

(i) a=y+1 for a y < «q,

(ii) @ is of the second kind.

In case (i) let SI be the splitting 8 of § induced by 8} (defined
in 3.11). '

In case (ii) let S be the sum of the splittings 8% (§ < «) (defined
in 3.8).

It follows from 3.8 and 3.11 that S} is a refinement of S, for every
B < a in both cases, and thus S} is defined for every « < w,.

Put ¢(0, a) = Sk (RF) for every a < ,.

In the rest of this section 8 denotes a fixed, non-empty denumerable
ordered set, S — @ (R). We need the following lemmas.

3.14. Ij 8F =8}, for a y < w, then either ¢(@,y) =1 or ¢(O, )
=mn (or L+9, or n+1, or 1 +5+1).

Proof. By 3.13, 87, is the splitting 8 of § induced by S defined
in 3.11. But then by 3.11

i U S¥(y) for every weS.
S ()e N(S, (=)

This means by 3.9 that in the ordered set S}(RY), N (X) = {X} for every
X 87 . But then again by 3.9 either 87 contains exactly one element or,
for every pair X <Y eS8}, [(X.Y) (R})| =x,. But this means that 8% is
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either of type 1 or dense, and—being denumerable—it is of type % (or
149, or p+1, or 1+n+1).

Now we prove that

3.15. There exists an ordinal number y, < o, such that 8§ = S} ...

Proof. By the definitions 3.7 and 3.11 corresponding to every
element = of 8, 83(x) is a non decreasing sequence of subsets of §, and
thus—&S being denumerable—there exists a y(x) < o, such that S}, = S}
for every y = y(z). Using again the fact that 8 <&, we infer that there
exists a y, < w, such that y, = y(z) for every « € 8 and consequently S5, (x)
= 8% .1(@) for every xe S, whence 8, = 85 1:.

DerFiNiTION 3.16. By 3.15 we can make the following definition.
Let y(@) =~ be the least ordinal number y < o, for which 87 = 87,,.
»(@) will be called the order of 6.

Remark, It is obvious from the above considerations that S} is
a proper refinement of S for every f < « < y(0) and that S5, = 87
for every y = v(0). It follows that the sequence ¢(@, y) i3 non-increasing
(p(@, y) =@, y') for v = ') but it is not strictly decreasing even if @
is an ordinal number. For example, put @ = v, § = W(w®). Then
vl = o, glo®, ) =1 but ¢(w?, n) = 0 for every integer n.

By 3.14 we have ¢(@,y(0)) =1, 3, 1+, -1 or 1+5-+1. Con-
sidering that S3H(z) # 0 for every ze &, y < o, ¢(6,y(0)) = 1 implies
i = 6. It follows from 3.1 that

3.17. I @ eAp then ¢(0, y(0)) = 1.

Now we need preliminaries concerning the class O.

3.18. Suppose that Z = ¢, ¢ €O, and O, ¢ O for every weZ. Then

(] 0, €0.

=2
zeZ
Proof: By induction on g(¢). The statement is obvious for p(¢) = 0.
Suppose that it is true for every type ¢" with e(¢) < g for a 0 < ¢ < ;.

Then, by 3.5, Z is either the w-sum or the w*-sum of the sets Z,
of type ¢ of rank less than g.

The types @, — Y 6, then belong to O by the induction hypothesis

reZy
and @ is either the w-sum or the o*-sum of them, whence @ € O.

3.19. a, a* € O for every a < w,.

Proof. By symmetry it is enough to prove this for a. We use in-
duction on a. 0 € O and if « > 0 then either a = f+1 or a is of the second
kind and consequently is cofinal with . Hence in both cases it is the
w-sum of ordinals less than e which belong to O by the induction hypo-
thesis.

Now we are going to prove that
3.20. 45 C 0, ¢(O, 7(0)) =1 implies O € O for every O e A.
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Proof. If 6 e 4p then, by 3.17, ¢(@, y(@)) = 1. We are going to
prove by induction on y(6) that ¢ (0, y(0)) = 1 implies @ € 0. If y(O) = 0
then, by 3.13, S(R) = S§(RS) = 1, whence O =1, 6 0. _

Suppose that y(@) =y >0, y < @, and that @ €0 for every @
provided »(@') <y and ¢(0’, y(6') = 1.

We distinguish two cases: (i) y = f+1, (ii) y is of the second kind.

Ad (i). 8} =1(R}). Hence Sj(x)= S8 for every zeS. By 3.13,
Sy is the splitting 8” of § induced by the splitting 8% (defined in 3.11)
and thus

8 = 8j(x) = U Si(y)
Splu)e N(s3))

It is obvious that the order of the sets Sj(y) ordered by R is < < v,
and thus L§§(§) (R) belongs to O by the induetion hypothesis. Considering
that by 3.12 @ is the w-sum, the o*-sum, the w* -+ w-sum, or a finite sum
of them, @ belongs to O.
Ad (ii). S* =1 (R}), whence by 3.8 and 3.13 S = 85(z,) =,,U S3(w,)
<y

for an arbitrary fixed z, ¢ 8. Considering that the order of every S3(x)

is < f < a, we infer from the induction hypothesis that S3{x,) (R) belongs
to O for every g < a. Put

Ay ={x: v e 8 and @ < 2, (R) and x e S§(x,)— U Si(xy)}
p<p

By ={x: xe8 and ¢ > x, and x ¢ S;(.rn)—ﬁ‘Lé'ﬂS;(.ru}} :

Considering that every section of an element of O belongs to 0, we
get A4(R), By(R)€ 0. y,7* €0 by 3.19, hence the sum of type y or y*
of the sets By, A; as well as their sum @ belongs to O by 3.18.

3.6 and 3.20 prove O = Ap, hence 3.3, which is the first part of
Theorem 1, is proved. If we replace in Definition 3.2 the w-sums and
w*-sums by o*+ w-sums, then it. is easy to verify that o(@)= y(0)
for every @ € O = Ap, but we do not need this and so we omit the proof.

Now we are going to prove 3.4. Suppose that O e Adg, y(O) = ;.
Then 5 < @ by 3.1. By 3.20, ¢(@, y(0)) = 1 implies © € O = A, whence
we have ¢(0@,7) =%, 14+, +1 or 14+5-+1. Thus S}(R}) =, 149,
-1 or 1+ 75+ 1. By the definition 3.7, 8§ consists of the different S¥(x)’s
for # ¢ § and thus by the definitions 2.1, 3.7, @ the type of S(R) is an
ny 142, 41 or 14541 sum of their types. Thus to prove 3.4 it is suf-
ficient to see that S¥(x) (R) e O for every zeS. Put 0, = Si(z) (R). It
is obvious that y(0;) <y and ¢(6,,y) =1, whence ¢(6,.,y(0,)) = 1
and consequently @.e 0 by 3.20.

Thus the proof of Theorem 1 is finished.
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It is obvious that the above constructions can be generalized to
non-denumerable ordered sets. If in the definition 3.2 we replace the w-
and o*-sums by o, and w,-sums we get a class 0O(x,) of order types of
power aft most x, (0 = O(%,)). One can associate with every @ e O(s,)
a rank g(0) < w1 and one can prove in the same way as in case a=0
that O(x.) consists of all discrete types of power at most x, and further

that every type @ < 5, is a sum D, @, of discrete types where the ordered

TeZ

set Z is dense.

However, here the dense sets cannot be characterized so simply
as in the case of denumerable sets and therefore we do not give the detailed
proof of this result.

4. Results concerning the partition symbol. As a con-
sequence of the well-known theorem of Ramsay we have x,—(,, 8)?
and this clearly implies w—(w, %) and w*—=(o*, 8;)% On the other hand,
it is proved in (2] that 5 —(#, 8,)* holds. Considering that @ < 5 for every
denumerable type, it follows that

0 ->(0, x,)* holds for every O e Ag.

The following problem arises now: are there any other denumerable
order types O satisfying O —(0, x,)* ? We are going to prove that the
answer is negative.

THEOREM 2. If @ e A then O —(0, 5 holds if and only if 6 =
or O = w* or 5 <06,

We have to prove that if @ € Ap and @ # o or O # *, then O—>= (0, §,)?
holds.

Instead of this we are going to prove the following

THEOREM 3. Suppose © ¢ Ap. Then there exists a partition [S]2 = I, v
w I, of [ST satisfying the following conditions:

(o) Whenever 8', 8" C 8, 8 < §”, S = 8" = xq, then

[S", 8"} _Q_L I, where [8',8"]} = {{.ry}: zeS and y' e8”).

(o) Whenever 8' C 8, 8" = 8y, then

[SRLI,.

First we prove that Theorem 3 implies Theorem 2. The implication
is obvious if ©edp is such that w-2 < 0, 0*2< 0, 0*+w <06 or
w+o* < 6. But it is easy to see that if none of these conditions hold,
then either @ = w-+n or @ = n-+ w* and a trivial construction shows
that o+ n—=(w+n, 8)?, 1+ w*=>=(n+o*, 8;)%

Proof of Theorem 3: By Theorem 1. O = 4p, hence we may
prove our theorem by induction on ¢(@)=p. For g =0, & =0 or
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© = 1 and the statement is trivial. Suppose that g = g(@) > 0 and that
the statement is true for every order type @' ¢ Ap of rank less than p.

By 3.5 there exists a sequence @, e A of types of rank less than ¢
such that @ is either the w-sum or the o*-sum of the sequence (@), .
By symmetry, we may suppose that

(1) O =06)+..+60,+.
Then there exists a sequence (Si).-. of subsets of § satisfying the
following conditions:

2) US=8, 8&<8 and 8,=6,, provided n<n <o.

By the induction hypothesis, for every n < o there exists a partition
[8:]F = I + 15 of the set [8,]® satisfying the following conditions:

(3) Whenever 8',8" C 8n, 8' < 8", 8'=8"=1x,, then [§',8' ¢ 7.
(4)  Whenever 8' C 8y, 5§ = Ry, then [S']P i I

The sets S, are denumerable, whence there exists a 6, << @ such that

(5) 8w = {Zn, k<o, (if S, is empty 6 = 0),
Tppe # Tppr fTor k#FEk <én.
Define the partition [S]? = I, v I, of [S] as follows.
(6) Let {w,y)e[SP be arbitrary. Then x = Z,x, Y = Lwy Jor some
k< 6ny B < 0.
Distinguish two cases: (i) n = »', (ii) n #* n'.
In case (i) put {@,z, x».x} € I; if and only if
@p iy ) e lf for §=1,2.
In case (ii) we may suppose n < n’ and put
{Tnpy Xnrge} €I, if and only if &k <k,
{@Xnpy Twrpo}el, if and only if k>Fk".

Suppose now that §’, 8" CS, "< 87, S = §” = x,. Then by (2)
there exist n, < ny such that 8.8, Sp, =8 and 87 -8y, S,,r = N,-

If no = ng then [8', 8" ¢ I, by (3) and (6). It n, < nj, then there
is a k; such that @, eS8, and considering that 8"-8,, = 8, there is
a k, > k¢ such that a, s, eS whence {@,x,, u/k:} € I; by (6), and con-
sequently [S', S”]*Ef: I, also in this case. This proves that («) holds.

Suppose now that 8'C S, § =%, and [S'PC I,. Then S-Sy < &,

for every n < @ by (4) and (6} Hence there exists an increasing sequence
{n;}i<, of integers such that {@,ks,};<., C 8'. But then [8] C I, would
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imply by (6) that ku, > ku, for every j<j' < w, but this is a contra-
diction, whence (xx) holds. Q.e.d.
We obtain from Theorem 3, the following

COROLLARY 1. O (0', 8,)? for every OeAp provided @' s w-+n or

# N+ o*.

’

Thus to complete our results it would be necessary to decide under
what conditions for @ we have @—(w-+n,8)? or @—(n+ o*,N,)? for
1 <n < w. Here we have the following

THROREM 4. (a) @ —=(w L+ n, 582 if and only if o -w* < 0.
(b) @—=(n+w*,8) if and only if o*-0 =0 for every 1 <n <
and for every denumerable type €.

Proof (in outline). By symmetry it is sufficient to prove part (a)
of our theorem. First we prove the negative part of it.

(1) 0 —=(w+1,8,) provided w-o*L 0.

By w-0*£60, 0 is discrete and by Theorem 1 it has a rank g(@). It is
easy to verify, for example by induction on ¢(0), that @ is of the form

D' f%, where a and f§, (v < a) are ordinal numbers.
pla

Suppose S = O (R). Then there exists a sequence {S,},-, of subsets
of § satisfying the following conditions.

(2) 8=US8,, S =p8(R), S, <8 (R) forevery r<i <a.
vl
Let W(a) = {v)n<» be a well-ordering of type o of the denumerable
set Wia).
Define the partition I, v I, of [S] as follows. Let {x,y} ¢[S]* be
arbitrary. Suppose z€S,,, yeS,;,

(3) Put {z,y}el, if v, = vpr. It yu # vy and, for instance, n < »’, put
{Jf’ _i'{} € Il if Py < Pty and put {3}', y} 51—2 if Vg = Vpt.

Suppose 8'C S, [SBCI, 8 = w+1(R). Then considering that

S, = Bi (R) for every n < o we have S'-8,, < o for every n < . Thus

we may suppose 8 -8, = 1 for every n < w and then, by (3), §' < o (R),
which contradicts our assumptions. Hence we have

(4) S’CS8, [SPCI, implies that S #o-+1.

On the other hand, suppose that §'C 8, [§'FC1,. Then f?’zﬁﬁ =1 for
every n < o by (3).
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Then 8§ = 8, would imply by (3) the existence of a decreasing in-
finite sequence of ordinal numbers, which would be a contradiction;
thus we find that

(5) §CS, [SBECI implies 8 <s,.

(4) and (5) prove (1).

To prove the positive part of part (a) of Theorem 4 it is sufficient
to prove
(6) w-w*—(w-+n,8) for every < w.

For » = 0 this follows from Theorem 2. We prove it by induction
on n for every n < w. Suppose that the theorem is true for an n < o
and let 8 be an ordered set S = w-w* (R).
Put
Tyx)={y: ye8, y<x(R) and {wyjel,},
Tolw) = {y: ye S, y <@ (R) and {zy} e I}

for an arbitrary zeS. It is obvious that either Ty(x) = w-w* (R) or
T,(x) = @-w* (R) for an arbitrary « e S. Suppose that 7,(z) = o w* for
an z € S. Then by the induction hypothesis there exists a subset 8’ C T'(z),
S’ = w+n (R) such that [8'] C I,, and then 8" = 8"+ {«} satisfies the
condition

(7) 8”C8, [8"pCI,, R =awntn+l(R).

Thus we may suppose that T,(z) (R) < w-w* for every x e S.

We define a sequence {2;}y-, by induction on k. z, is an ar-
bitrary element of §. Suppose that @, ..., #; are already defined; then
Ty(zy) © ... v Ty(xz) (R) < w-w*, whence there exists an @, € § such that
2ppr € Tola;) for every i < k+1. The set 8" = {®;}r<, then satisfies the
condition
(8) §C8, §=x, [SPCL.

(7) and (8) prove (6) and thus Theorem 4 is proved.

As to the case of non-denumerable types, the problems are more
difficult. Generally one can ask the following question: which are the
order types @, @ — p satisfying the condition @ (@, m)*? It is obvious
that if we have p = (p,m)?, then there are no such order types. Thus the
genuine cases are when the corresponding partition symbol for cardinals
is true.

For the results concerning this symbol see [2] (a complete discussion
of it will be given in a forthcoming paper by P. Erdés, A. Hajnal and
R. Rado).

If m > x,, then we have m - (m,m)?, at least if m is not strongly
inaccessible, and it is not known whether m — (m, m)? holds for any m > x,.
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Thus a direct generalization of the question treated in Theorem 2 cannot
be asked.

However, using the generalized continuum hypothesis, one can
prove that

Nog1—>(Rat1, Na)? 28 true provided x, is regular (%),
and this implies that
0 —(0, r,)? holds provided O = w4, 0 @ = wii: .

P. Erdos and R. Rado have proved (}) that the same is true for
O = %44, provided ®, is regular and the generalized continuum hypothesis
holds where 7,.; is the normal type of power 2% given by Hausdorff (¥).

It is not known whether there are other types 7.+ £ @ of power
Bas1 (= 2% for which @—(0, &,)? holds.

Thus the simplest unsolved problem is

ProBLEM 1. Suppose that (2% =1x,), O =x,. It is true that
© (0, xy)* holds if and only if @ = w, or O = ], or » < 01

Remark. Using the methods of this paper it is easy to prove that
under the condition of Problem 1 @+ (@, x,)* holds for every discrete
type 6.

We would like to mention a few further results without proof.
w,0* —>(w, +a, 8,)? for every a < @,, but o w*/5 (w2, %)% in faet the
same holds if w,w* is replaced by any discrete type.

We further have w,of—>(w,+n,,)? for every # < @ provided the
generalized continuum hypothesis holds. We can not decide whether
wew} —>(wy+ @, 8;)? is true or not. Clearly many more problems could
be stated, but we do not discuss them here.

The investigation of the statement @ —(0',n)* for n < w leads to
more ramified problems, even in cases where © is a denumerable ordinal
number or order type. For a recapitulation of problems and results of
this kind see a forthcoming paper of E. C. Milner and R. Rado and [4].

Here we mention only one problem of this kind. Let A denote the
order type of the continuum. It is easy to see that for every @ < 4, D > 8,
we have @~ (@, 3)? provided 2% = x,. It would be interesting to charac-
terize those non-denumerable order types for which A—(®, 3)* holds.
Although we have x;-(%,, 3)2, we do not even know whether such @’s
exist.

(%) For singular R,’s this is false.
{(*) See a forthcoming paper of P. Erdés and R. Rado.
(°) See [3], § 8, Normaltypen.
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