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Let -1

	

x, < x2 < • • • < xn

	

1 be n arbitrary points in the interva l
n

(—1, + 1) . wn(x) = JJ(x — xi), lk (x)=wn(x)/wy(xk)(x—xk ) . It is well known
i= 1

n

that the sum

	

1 Ik (x) plays a decisive role in the convergence and diverg -
k=1

ence properties of the Lagrange interpolation polynomials . FABER [1] proved
n

that max 1' llk(x)l tends to infinity with n, in fact he proved that
l~x~l k=1

(1)
n

max 2' ! lk (x)
-l=xlk=1

> —log n .2

Later FEJÉR [2] obtained a very simple proof for (1) . The problem of de-
n

termining the n points for which max

	

I lk (x) l is minimal is unsolved u p
-]=x1 k=1

to the present . BERNSTEIN [3] asserts that for every >0, if n > no ,

n

max 2 l k(x) > (1—e) — log n .
-1 =x=1 k=1

BERNSTEIN in his important paper proved (2) in full detail for trigonometri c
interpolation. He states that (2) for interpolation in (—1, -{-1) is a simpl e
consequence of this result . I was not able to reconstruct the proof . However,
we proved with TURÁN [4] that (2) is true, even if the right side is replace d

by - log n—c log log n ; here and throughout this paper c, c,, c2i . . . will denote

positive absolute constants .
The main task of the present paper is the proof of the following

THEOREM 1 . Let -1

	

X, < X2 < • • • < X,,

	

I . Then

max

	

lk(x)>
2 logn —c, .

-l= .rl k= l

(2)
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This result can not be improved very much, since it is known that fo r
the roots of the n" Chebyshev polynomial T,,(x )

max . Ilk (x) I < ? log n -{- c 2 .
-1=x1 k= 1

In fact, it is known and can be shown by a simple calculation that i f

Y1 < Y2 < . • • < yn are the roots of T,z (x), then

2
logn—c2 < max 11lk(x)I <? logn+c2 .

a-

	

yi x K:y,+1 k=1

	

1I

(1 1

Let

		

(2 ) (2) be a triangular matrix called point group in the theory o f
x1 x2

interpolation, -1

	

< xZ" ~ < • • • < x (n") 1 . BERNSTEIN [3] proved that there
exists an x0 (—1 < xo < 1) so that

n

inn ,l 111,0(0)1 = CYO .

k= 1

More precisely, he proved that for every fixed -1

	

a < b

	

1

(3)

	

max 1 I Ik(x) > (__)log n
a<-x<b k=1

	

4

for n > n0 (8, a, b). I think that in (3)
4

can be replaced by g- , but I hav e

not been able to prove this .
In my paper [5] 1 stated that I can prove that there exists an xo s o

that for infinitely many n

21, l,:(xo)>? logn —c .
k=1

	

a

(4) is quite possibly true, but unfortunately I am very far from bein g
able to prove it.

To prove our Theorem we first need some lemmas .

LEMMA I . Let cos 6i = yi (1

	

n) be the roots of the n° Chebyshe v
polynomial T, t (x) . Then for every -1 x 1 and t > c 3

n

(4)

> - logn — c,logt ,
n

where li denotes that the summation is extended only over those yi 's for which
6 — 6i l > t;s/n, cos 0 = x .
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The proof of Lemma 1 is by simple computation and is left to the reader .
cos ~o = xo will denote the point in (—1, +1) where iw,2 (x) assumes

its absolute maximum . h will denote the intersection with (0, ;T) of an interva l

of length txc/n, one endpoint of which is ,9. 0 , It will be the interval i n

(—1, + 1) obtained from It by the mapping cos 9 = x . There are two inter-

vals h, one to the right, the other to the left of 'co .

LEMMA 2 . Assume that there exists a t > c3 so that for every t' t every

interval h, contains more than 41—	
(log t')') x

i 's . Then

1

	

1—xi

	

>? logn —c,logt.
n ,, xo — x,

	

5c

The term (1—xi) ' is really understood to mean max (, )
,

to save space 1 will always replace this by (1—xz)-' I .

Let y, be such that there are k y's in the interval (xo, y,), and let x, ,

be such that there are k x's in (xo, xi). Clearly B, — eo —
k

+0(1) and by
our condition on the x's

ksT + c,; k .T + LT < k,T + c 7 LT
(5)

	

n

	

n (log k) = -I- n

	

n (log k) 2

for k f' . From (5) we obtain by a simple trigonometrical calculation fo r
k>t2

(6) >
(1—xti) -
xo—xi

c8
k(log k) 2

Lemma 2 immediately follows from (6) and Lemma 1 .

LEMMA 3 . Assume that the xi ' s and xo have the same properties as in
Lemma 2 and the further property that for some t' > t there is an L . which
contains more than t'3 xi's . Then if t > c 3 ,

	

(1—x, )
>2

	

2
>	 log n .

	

xo—x i

	

z

Let t' be the greatest t' for which an interval h. contains t`3 x's . Write

11 =1'+It.

	

where in 2' X9.0—',l

	

t nz and in 2,'t .

	

9-,—9.0 1 >	 to	
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As in the proof of Lemma 2 we can show that

(7)

	

>? logn—c9 logt` .

A simple trigonometrical computation shows that for the x i 's i n

(here I ,/ i —

	

t n and by our remark (1—x2) 2

	

n )

1
n

cio

Thus, since there are at least t;3 summands in Z, we have

(8)

	

> ct' .

(7) and (8) imply Lemma 3 for sufficiently large t > c3 .

LEMMA 4 . Let cos 29 = xo be any point in (—1, + 1) . There exists a
polynomial F,.(x) of degree r for which Fr.(zo) = 1 and

Fr [cos (4, +
s n )l

<
s I

if 20 +	 n is in (0, ,z) .

Lemma 4 is well known [6] .

LEMMA 5. Let g,,,(x) be any polynomial of degree m, assume that it
assumes its absolute maximum in (—1, + 1) at cos 7 9 — z9 . Then if cos 4= z i
is any root of g,,, (x), we have

ko-2i1
j 2m ,

equality only holds if gm (x) = T,,, (x) .

This is a theorem of M. RIESZ [7] .

LEMMA 6. Assume that the xi 's are such that there is a t > c,2 so that

	

1
at least one of the intervals h contains fewer than t (1— 	

(log t)2) x
ii 's, and

that for t' t the intervals h, contain not more than t' 3 xi ' s . Then

max max Ilk (x)> t
xkC_It

	

in Jt

where by Jt (Jt c It) we denote the interva l

it = cos ( o
± n (Iog

t)31' cos (9'0 I to

	

n (log t)3 )
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Lemma 6 is very far from being best-possible, the conditions could b e
weakened and the conclusions strengthened, but it will suffice for our pur-
pose in its present form . The proof of Lemma 6 is the most difficult part
of the paper [8] .

Let g(x) be a polynomial whose roots in L coincide with those o f
n

(Mx) =jj(x—xi) and outside of Jt they coincide with the roots of th e
i= 1

m th Chebyshev polynomial T,„(x), m = [n (1—	 	 By our assumption s
``

	

(log t)
	 )1 .

the degree of g(x) is less tha n

t— (log t)2
-F- m — t

11— (log t) :3) < m

for t > c, 2 (i . e. the degree of gm (x) equals the number of xi in It plus m

minus the number of roots of T,n (x) in it ) .

From Lemma 5 and (9) it follows that g(x) must assume its absolut e
maximum for (—1, + 1) in Jt at the point cos2 0 =z0 , say .

Denote by lii) (I—1, 2, . . .) the intersection with (—l, +1) of the
intervals

(10) cos (,9.0+	
2t lt

7u
)

	

(

	

2 t tTC)
	 n	 ,cos 90

	

n

and

1 cos

(

,9-0 —	 (21—1)	 ), cos ( 9,o_ (21_1_ 1 ) ti

``

	

n

	

n

	

J

We now apply Lemma 4 with r =
n (1 gt)4]

Since cos 2 = z 0 is in

Jt and the distance of the endpoints of ft from the endpoints of It (in 9-) is

t .7-r
n(log t)3'

we obtain from Lemma 4 by a simple computation that for th e

x's in It t)

(11) 1Fy(x)l

	

2t

for sufficiently large t (i . e. the s in Lemma 4 is for 1=1 not less than log t

[z0 is in Jt] and for l > 1 it is not less than 2 1-1 log t).

Consider now

(12) G(x) = Ag(x) (Fr(x)J[tl (IUg t)' 1

(9)
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where A is chosen so that G(zo) =1 . The degree of G(x) is not greater than

(=[n(1_ (logt)4 IJI
n	 t	 n (log t)"

n—	 	 <n.
(log t) + (log t)8

	

t

Thus by the Lagrange interpolation formula (taken on x 1 , x2f . . ., xi ) we
have by (12 )

(13)

	

1 = G (zo) =

	

G (x i ) l i (zo).
i= 1

For the xi's in L G(xi ) = 0 . Thus we can write (13) a s

1=1r G (xi) l i (
r— i

where in 2<') the summation . is extended over the xi 's in I . The summa-

tion in (14) clearly has to be extended only over a finite number of l's .

(14) o)

Since lg(zo)

	

lg(x)
(11) and (12) that

for -1

	

x 1 and F,.(zo) = 1, we obtain fro m

)[t l'log O s ]

(15) G (xi) 1 < (y

	

for the x i 's in I{') .

Assume now that our Lemma is false . Then for all i t h

(16) li (zo) j

	

t.

Further by the assumptions of our Lemma the number of the x i 's in

Ii ') is not greater than 2 3'+1 t3 (since It') is contained in the union of the two

intervals Iy t ) . Thus, finally, we obtain from (14), (15) and (16) tha t

a

	

/ 1 1 [t(log t) A]

(17) 1 < tl

	

231+1

	

I
I—1

	

:—2,

The terms of the series (17) drop faster than a geometric series of

quotient 2 , thus (17) implies

( -

which

	

[tl(log
t)"1

1 <32

tisclearly false for t c12 . This contradiction proves the Lemma .

Now we are ready to prove our Theorem . In fact, we shall show that

if xo is the place in (—1, + 1) where (Mx) assumes its absolute maximum ,

then
2

1' I lk (xo) ~ log n — c~(18)
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for sufficiently large e l . We can clearly assume w,, (xo) =1 (replacing wn(x)
by cw„(x)), and thus by the classical theorem of Bernstein

(19)

	

jw;,(xk )

	

min (n 2,	 n	 1 .

j1—x2 1 2

Thus from (19)

, ,
tk (xo)

n k= 1k=l
(20)

Let the constant c 12 be sufficiently large . If for every t > c12 every h

	

contains more than 41—	
(log t)2)

x's, then our Theorem follows from (20)

and Lemma 2. Assume next that there exists a t > c I2 for which h contains

not more than

	

41—
(lo g
	 0,-) x's, and let to be the largest such t . Assum e

first that there exists a t' ~ to for which h, contains more than t' 3 x's, then
our Theorem follows from (20) and Lemma 3. If no such t' exists, consider

the largest interval Ito which contains not more than to ( 1— (log 4 2) x,;'s . By

Lemma 6 there is an xi not in Ito so that for a certain z0 in Jt„

j ti(z o) j > to .

	

Now since zo is in

	

Jo (cos,tu = zo, cos 9-	 xo, cos	 	 x;, xi c4 It o) ,

9w- .9 0

	

(log to) 3 j 9' ; -2o I .

Thus from (22) by a simple computatio n

1xá—xoj < (log toy s xi —zo

From (23), (21) and j w„ (xo) j

	

I cún (zo) j we hav e

(21 )

(22)

(23)

(24)

	

j h (xo)

From Lemma 2 we have

to

> (log to )

(25)

	

1

	

' (1—xh)
>

2
log n —C 13 log h ,

n

	

xo —xk

where the dash indicates that k= i is omitted . (25) holds, since a simpl e
computation shows from Lemma 5 that

(1—x)~
<cI4n .

xo—x;

16 Acta Mathematica X111—2
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Thus, finally, from (20), (24) and (25) we have

n

(26)
Ik (Xo)

k—1 n k= l
+

2

	

to

	

2
+ li(xo) > log n — ci3 log to+

(log for > -
log n

if t is sufficiently large (t > c, 3 , say). Thus the proof of Theorem 1 is complete .
It would have been possible to organize the proof differently, since i t

can be shown that h can never contain more than t3 xi 's . In fact, we hav e
the following

n

THEOREM 2 . Let wn(x) =]J(x—xi) (we do not assume that the xi 's are
i= 1

in (—1, + 1)) . Assume that m n(x) assumes its absolute maximum in (—1, + 1 )
at cos 9Lo=xo . Then every interval h contains at most c 14 t of the xi 's .

We do not give the proof of Theorem 2 . The best value of c14 is not
known. Perhaps c14 = 2.

The problem of determining the points -1 x 1 < • • • < x,, 1 for which

+1
n

lk(x) dx
k— 1

- 1

is a minimum is unsolved, and so far as I know has not yet been considered .
I believe that to every e > 0 there exists an no so that for n > n o

+ 1

lk(x) dx > (1_)J ILk (x) dx
k— 1

where L k(x)=	 Tn(x)	 are the fundamental functions of the Lagrange
Tn(Yk) ( X — Yk )

interpolation taken at the roots y1 , y 2 , . . ., yn of the n`° Chebyshev polynomial .
I have not been able to prove (27), but 1 can prove the following weaker

THEOREM 3 . There exists a constant c75 so that for every -l, x,
KX2 K . . . Kx, 1 we have

+ 1

(28)

	

f

	

Ilk (x) dx > c 15 log n .
k= l

+ 1

(27) f1
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In fact, to every s there exists a d so that the number of indices 1 k n,
for which

dlog
Ik(x)

	

n
~ dx<	 ,

n

n
than c1`

log n

We do not give the proof of Theorem 3, it can be obtained by usin g
the methods of my paper [5] .

As far as 1 know the problem of determining the sequence -1 x i <
< x2 g . . . xi, 1 for which

+ 1

f !k (x) dx

- 1

is minimal has not been considered . It is possible that the integral (30) i s
minimal if the xi 's are the roots of the integral of the Legendre polynomial .
FE]ÉR [9] proved that these are the only points for which

11;(x)1 for -1 x1 .
k— 1

THEOREM 4 . To every E there exists an no so that for every n > no th e
integral (30) is greater than 2—8 .

We only outline the idea of the proof. If the projections of the point s
x 1 , x2 , . . ., xn on the unit circle are not asymptotically uniformly distributed ,
then there exists a k so that [10]

(31)

	

max I lk (x) > (1 +d) n ,

and from (31) by Markov's theore m

+ 1

fe(x) dx > (1	 6) 26
8 n 2 >

2
_ 1

for n > no . Thus we can assume that the projections of the x k 's on the uni t
circle are asymptotically uniformly distributed . In this case we obtain ou r
Theorem by showing tha t

+1

	

+ 1
fl

	

n

Jl(x) dx > (1— 8)

	

Lk (x) dx

f(29)

+ 1

is less than en, and the number of k's, for which f

	

l dx > c16 is less
n

(30)
k—1

(32)

16*
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P,,(x)
where Lk (x)=	 (Pfl(x)=t/(x_zk)) is the n H Legendre poly-

nomial . The proof of (32) follows easily from the fact tha t

+1

	

+ r

(L (x) d x

	

f f2,,_„ r (x) dx

where f,_r(x) is any polynomial of degree

	

n—1 for which fi _ l (z,,)= I ,

and by a simple computation . We suppress the details .

(Received 7 July 1960)
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