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Let —1=x<x,<:--<x,=1 be n arbitrary points in the interval
(—1, +1). w.(x)= L] (x—x), l(x) = wa(x)/0r(xx) (x— x5). It is well known
=1

that the sum >, |lx(x)| plays a decisive role in the convergence and diverg-
: k=1

ence properties of the Lagrange interpolation polynomials. FABER [1] proved

that max 2|l;(x)| tends to infinity with n, in fact he proved that

—l1=x=l1 k=

(1) max lek(x)b logn

—l1=a=1 k=1
Later FEJER [2] obtained a very simple proof for (1). The problem of de-

termining the n points for which max |/(x)| is minimal is unsolved up

-1=2=l1k=1

to the present. BERNSTEIN [3] asserts that for every ¢ >0, if n > n,,

2) max Z | le(x)| > (1——8)—~10gn

-1=z=1

BERNSTEIN in his important paper proved (2) in full detail for trigonometric
interpolation. He states that (2) for interpolation in (—1, 4+ 1) is a simple
consequence of this result. I was not able to reconstruct the proof. However,
we proved with TURAN [4] that (2) is true, even if the right side is replaced

by % log n—c loglog n; here and throughout this paper ¢, ¢,, ¢,, ... will denote

positive absolute constants.
The main task of the present paper is the proof of the following

THEOREM 1. Let —1 =x; <X < - <Xy = 1. Then

max Z’\lk(x)|>—logn—c1

S1=r=1k=1
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This result can not be improved very much, since it is known that for
the roots of the n'* Chebyshev polynomial 7,(x)

max Z[lk(x)] <—logn—|—c2

—I=x=1 k=

In fact, it is known and can be shown by a simple calculation that if
N <Y< .-+ <y, are the roots of T,(x), then

ilogn—cz < max lek(x)l <—logn—|—c2

i < T <Y b=

n
Let x(zj)clx(-z) be a triangular matrix called point group in the theory of
1 2

interpolation, —1= x{” < x{” < ... <x” = 1. BERNSTEIN [3] proved that there
exists an x, (—1<x,< 1) so that

T ()| = .

More precisely, he proved that for every fixed —1 =a<b =1

3) ' max Z |b(x)] > (— —a) log n

a< x<_bk=1

for n > n,(s, a, b). 1 think that in (3) T can be replaced by %, but I have

not been able to prove this.
In my paper [5] I stated that I can prove that there exists an x, so
that for infinitely many n

4) 2| he(xo0)| >ilogn—c.
k=1 2

(4) is quite possibly true, but unfortunately I am very far from being
able to prove it.
To prove our Theorem we first need some lemmas.

LEMMA 1. Let cos@;=y; (1=i=n) be the roots of the n™ Chebyshev
polynomial T,(x). Then for every —1=x=1 and t>c,

1

2
>;logn—c4logt,

12¢

where 3, denotes that the summation is extended only over those y;’s for which
|6 — 6;| > tx/n, cosf=x.

(=
x—
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The proof of Lemma 1 is by simple computation and is left to the reader.

cos ¢, = x, will denote the point in (—1, 4+ 1) where |w.(x)| assumes
its absolute maximum. /; will denote the intersection with (0, -r) of an interval
of length fszt/n, one endpoint of which is &, I will be the interval in
(—1, +1) obtained from 7, by the mapping cos = x. There are two inter-
vals I, one to the right, the other to the left of x,.

LEMMA 2. Assume that there exists a t>c; so that for every t' =t every
interval Iy contains more than t’(l-——l,—g) x;’s. Then
(logt)

1

(1—x)*
Xo— Xi

n

1 2
T = >;logn~——c5,10gt.

1 1
The term |(1—x;)*| is really understood to mean max (|(1—x?)2], %),
1
to save space I will always replace this by |(1—x?)2|.
Let y; be such that there are & y’s in the interval (xo,y:), and let x;

be such that there are k¥ x’s in (xo, xi). Clearly 05—6(1:m+0(1)and by
our condition on the x’s

ko co kot te ko c; ko
() 9.:'—3O<T+ +T<—H—+H(Tgk)2

n(log k)*
for k> .. From (5) we obtain by a simple trigonometrical calculation for

k>¢F
1 1

(1—x)°|_|a—3)°

Cs
(6) Xo—X; Yo— i k(log k)"

Lemma 2 immediately follows from (6) and Lemma 1.

LEMMA 3. Assume that the x/’s and xo have the same properties as in
Lemma 2 and the further property that for some t' >t there is an I, which
contains more than t® x;/s. Then if t>cs,

1

1 Elp—B, 2
2—7; =t >Elog n.

Let #* be the greatest ¢ for which an interval /» contains #*3 x’s. Write

222’+20*

'z '

and in Zp | $i—| > -

where in >’ ‘190—191| =
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As in the proof of Lemma 2 we can show that

2
(7 > log n—c, log t*.

A simple trigonometrical computation shows that for the x/s in X’

1
(here |9 —%o|= |(1—x5)2] g%)
1
1O=x)* | e
ni| Xo—Xx: sl

Thus, since there are at least #*®* summands in 3’, we have
) ' >ct.
(7) and (8) imply Lemma 3 for sufficiently large ¢ > c;.

LEMMA 4. Let cosky=x, be any point in (—1, +1). There exists a
polynomial F,(x) of degree r for which F,(20)=1 and

F; lcos (2.0 -+ s%)] \ < ]

sl

if zO+ST” is in (0, 7).

Lemma 4 is well known [6].

LEMMA 5. Let g.(x) be any polynomial of degree m, assume that it
assumes its absolute maximum in (—1, + 1) at cos 4,=2,. Then if cosi;=z;
is any root of g (x), we have

Jr
|l<)—li| = om’

equality only holds if g.(x)= Tu(x).
This is a theorem of M. RIESz [7].
LEMMA 6. Assume that the x’s are such that there is a t > ¢, so that

at least one of the intervals I; contains fewer than t(l—le‘)g) x’s, and

that for t =t the intervals Iy contain not more than t* x/’s. Then

max max |L(x)| >t
axCIoL; « in J

where by J. (Jy< ;) we denote the interval

]t—zcos( o+ (o t)g), cos(&o—{—lr'li-n(lto—y;t)g)%,
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Lemma 6 is very far from being best-possible, the conditions could be
weakened and the conclusions strengthened, but it will suffice for our pur-
pose in its present form. The proof of Lemma 6 is the most difficult part
of the paper [8].

Let g(x) be a polynomial whose roots in /; coincide with those of

w.(x) =] [ (x—x;) and outside of J; they coincide with the roots of the
=1

m™ Chebyshev polynomial Tm(x),mz[n(l— )} By our assumptions

the degree of g(x) is less than

1
(log )’

2
© —ogrr (1= Gagy) <

for t>c¢;, (i.e. the degree of g.(x) equals the number of x; in /; plus m
minus the number of roots of 7,.(x) in J).

From Lemma 5 and (9) it follows that g(x) must assume its absolute
maximum for (—1, +1) in J; at the point cos 4,=2z,, say.

Denote by II” (I=1,2,...) the intersection with (—1, 4+1) of the
intervals

(10) ;cos (.90+ 21_;’”) (.9 +21ﬂ)$

and

cos (30_L—nl)t_n) , COS (90— QH—_M) g ;

n

We now apply Lemma 4 with r= . Since cosd,=2, is in

Ji and the distance of the endpoints of /; from the endpoints of I (in 9) is
it
n(log t)*’
¥'s in 1P

an F@)] <

we obtain from Lemma 4 by a simple computation that for the

for sufficiently large ¢ (i.e. the s in Lemma 4 is for /=1 not less than logt
[z is in Ji] and for / >1 it is not less than 2'-!log¢).
Consider now

(12) G(x) = Ag(x) (F,(x))tog ]
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where A is chosen so that G(z,) =1. The degree of G(x) is not greater than

(2= [~ gy

4
n n t n(logt)

~ (log t)3+ (logtf ¢
Thus by the Lagrange interpolation formula (taken on x;, x,, ..., X,) we
have by (12)

<n.

(13) 1=G(z) = =Zl G (x:) li(2,).
For the x/s in I; G(x;)=0. Thus we can write (13) as
(14) 1= 3G ) :(20)

=1

where in 3 the summation is extended over the x’s in /. The summa-
tion in (14) clearly has to be extended only over a finite number of /’s.

Since |g(2))| = |g(x)| for —1 =x=1 and F,(2)=1, we obtain from
(11) and (12) that

1 [t/{log t)%]
(15) |G(x)| < (7) for the x’s in /(.
Assume now that our Lemma is false. Then for all i /;
(16) [li(z0)| = 2.

Further by the assumptions of our Lemma the number of the x;’s in
I is not greater than 2"*'f* (since I{” is contained in the union of the two
intervals /,,). Thus, finally, we obtain from (14), (15) and (16) that

)[tw‘(log £)°]

(17 1< > gue %
=1
The terms of the series (17) drop faster than a geometric series of

quotient %, thus (17) implies
1 [t/(log t)¥]

7)
which is clearly false for #>c¢,. This contradiction proves the Lemma.

Now we are ready to prove our Theorem. In fact, we shall show that
if x, is the place in (—1, 4 1) where w,(x) assumes its absolute maximum,
then

n 2

(18) lek(xo)|>;10gn—c1

k=1

1<32t4(
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for sufficiently large ¢;. We can clearly assume w,(xo) =1 (replacing m,(x)
by cw.(x)), and thus by the classical theorem of Bernstein

(19) |w;(xk)7 émin(nz, & i)'
|[1—Z]®
Thus from (19)
1
n 1 n (l_xf):l
(20) ; |lk(x())’§ 7; 7x‘)_xk

Let the constant ¢, be sufficiently large. If for every ¢>c¢, every I

o t)Q) x’s, then our Theorem follows from (20)

and Lemma 2. Assume next that there exists a #> ¢, for which /; contains

contains more than t(l

1 ’
(l_oéT)i) X’s, and let # be the largest such {. Assume
first that there exists a t' = f, for which / contains more than #® x’s, then
our Theorem follows from (20) and Lemma 3. If no such ¢ exists, consider

not more than t(l—

the laygest interval /;, which contains not more than t"(l_(l—oglff) xi’s. By
Lemma 6 there is an x; not in /;, so that for a certain 2z, in J,
(21) |1:(z0)| > to.

Now since zy is in Jf;, (cosdo=zo, cos Fo =Xy, cos % =x;, X; & I)),
(22) [$i—Fo| = (log fo)? | Fi—2o).

Thus from (22) by a simple computation
(23) |xi —x0| < (log t0)® |x; — 2o].
From (23), (21) and [w.(x0)| = |®.(20)| we have
(24) 160> g
From Lemma 2 we have

1

(25) 111 AT (lx;—__x;L %logn—cm log

where the dash indicates that k=i is omitted. (25) holds, since a simple

computation shows from Lemma 5 that

1
2, 2

O™

Xo— X;

< CiqnN.

16 Acta Mathematica XII/1—2
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Thus, finally, from (20), (24) and (25) we have

1

(1—x)°

Xo— Xx

n

n 1 ,
Z|1k(x0)| = 72
k=1 k=1

+
(26)

2 2
+|li(x0)| > —log n — clglogto+( t)ﬁ > logn

if ¢ is sufficiently large (f > c;5, say). Thus the proof of Theorem 1 is complete.

It would have been possible to organize the proof differently, since it
can be shown that /; can never contain more than # x;’s. In fact, we have
the following

THEOREM 2. Let w.(x)=J][(x—x)) (we do not assume that the x.s are
=1

in (—1, +1)). Assume that w,(x) assumes its absolute maximum in (—1, + 1)
at cos $o=xo. Then every interval I, contains at most cist of the x;’s.

We do not give the proof of Theorem 2. The best value of ci4 is not
known. Perhaps cis=2.
The problem of determining the points —1=x;< -+ <x, =1 for which

fél |l (x)| dx

is a minimum is unsolved, and so far as I know has not yet been considered.
I believe that to every & >0 there exists an n, so that for n > n,

+1 +1
(27) k§|lk(x)1dx>(1—e) g|Lk(x)|dx
-] -1
T.(x)
where Lk(x)—Wy) are the fundamental functions of the Lagrange

interpolation taken at the roots yi, ys, ..., y. of the n™ Chebyshev polynomial.
I have not been able to prove (27), but I can prove the following weaker

THEOREM 3. There exists a constant ¢, so that for every —1,=x,<
<Xp<--<Xu=1 we hqve

+1
(28) JZ | ()| dx > ¢35 l0g n.
k=1
-1
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In fact, to every & there exists a 0 so that the number of indices 1=k=n,
for which
+1
(29) f[zk(x)| ax< 28R
+1

is less than en, and the number of k's, for which ﬁlk(x)|dx>ﬁ is less

than ¢y;7 ———.
log n
We do not give the proof of Theorem 3, it can be obtained by using
the methods of my paper [5].
As far as I know the problem of determining the sequence —1=x;<
<Xp <.+ <Xx,=1 for which
+1

(30) j kZ_l Ih(x) dx

is minimal has not been considered. It is possible that the integral (30) is
minimal if the x;’s are the roots of the integral of the Legendre polynomial.
FEJER [9] proved that these are the only points for which

Zl%(x) =1 for —1=x=1.
k=1
THEOREM 4. To every ¢ there exists an n, so that for every n> n, the

integral (30) is greater than 2—e.

We only outline the idea of the proof. If the projections of the points
X1, X2, ..., X, On the unit circle are not asymptotically uniformly distributed,
then there exists a k¥ so that [10]

31) max |L(x)| > (14 9)",
-l=z=1

and from (31) by Markov’s theorem
+1 %
fz( )dx>(1+d) > 2

-1
for n>n,. Thus we can assume that the projections of the x.’s-on the unit
circle are asymptotically uniformly distributed. In this case we obtain our
Theorem by showing that

+1

+1

(32) ;lf(x) dx > (1—s) ];1 L(x) dx

16*
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i G ( T th §
) (—20) P.(x) —kg(x zk)) is the n™ Legendre poly

nomial. The proof of (32) follows easily from the fact that

where L;(x) =

+1

| Liyax = f f2.(x) dx

where f,_1(x) is any polynomial of degree =n—1 for which f,_i(z:)=1,
and by a simple computation. We suppress the details.

(Received 7 July 1960)
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