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1. Definition of a random graph

Let E,, »~ denote the set of all graphs having n given labelled vertices Vi, Va,--,
Va, and N edges. The graphs considered are supposed to be not oriented, without
parallel edges and without slings (such graphs are sometimes called linear graphs).
Thus a graph belonging to the set E,.,» is obtained by choosing N out of the

possible (%) edges between the points Vi, Va, -+, Vi, and therefore the number of

elements of E,, ~ is equal to ((%J) A random graph I'n,» can be defined as an
element of E,, » chosen at random, so that each of the elements of F,, » have the
same probability to be chosen, namely 1/([%)) There is however an other slightly
different point of view, which has some advantages. We may consider the forma-
tion of a random graph as a stochastic process defined as follows: At time ¢=1
we choose one out of the (%) possible edges connecting the points Vi, Vi, Vy,
each of these edges having the same probability to be chosen; let this edge be denoted
by e;. At time t=2 we choose one of the possible (%) —1 edges, different from ey,
all these being equiprobable. Continuing this process at time f=k+1 we choose
one of the (%) —k possible edges different from the edges e, ez, -+, ex already
chosen, each of the remaining edges being equiprobable, i.e. having the probability
1/[(’5]——!8]. We denote by ['n, » the graph consisting of the vertices Vi, Vi, -,

Vy and the edges ei, ez, -, en.

1) Other not equivalent but closely connected notions of random graphs are as follows:
1} We may define a random graph /™, y by dropping the restriction that there should
be no parallel edges; thus we may suppose that e,+1 may be equal with probability
1 /(%) with each of the (%) edges, independently of whether they are contained in the
sequence of edges e, e, -, ex or not. These random graphs are considered in the paper
[3]. 20 We may decide with respect to each of the (g) edges, whether they should form
part of the random graph considered or not, the probability of including a given edge
being p= ;‘\"/(’z")for each edge and the decisions concerning different edges being in-
dependent. We denote the random graph thus obtained by /%%, These random graphs
have been considered in the paper [4].
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The two definitions are clearly equivalent”. According to the second definition
the number of edges of a random graph is interpreted as time, and according to
this interpretation we may investigate the evolution of a random graph, i.e. the
step-by-step unravelling of the structure of I's, v when N increases.

The evolution of random graphs may be considered as a (rather simplified)
model of the evolution of certain real communication-nets, e.g. the railway-,
road- or electric network system of a country or some other unit, or of the growth
of structures of anorganic or organic matter, or even of the development of social
relations. Of course, if one aims at describing such a real situation, our model of
a random graph should be replaced by a more complicated but more realistic model.
The following possible lines of generalization of the considered stochastic process
of the formation of a random graph should be mentioned here:

a) One may distinguish different sorts of vertices, and/or edges—hy a usual
terminology one may consider coloured vertices resp. edges,

b} One may attribute different probabilities to the different edges; this can be
dome e.g. by attributing a weight, W. =0 to each of the (%) possible edges ¢ so

thatZWe——'l and to suppose that e; is equal to the edge ¢ with probability W, and

that after e, ez, ---, ex have been chosen, e is equal to any edge ¢ not occurring
among the edges e, e, -+, ex with probability — where Si= E W, . An
&

eFe; (j=1,2, - k)
other alternative is to admit that the probability of choosing an edge e=(Vi, V)
after & other edges have already been chosen, should depend on the number of
edges starting from the points Vi resp. V; which have already been chosen.

In what fellows we consider only the simple random graph-formation process,
described above, i.e. we consider only the random graphs 17, v,

Qur main aim is to show through this special case that the evolution of a
random graph shows very clear-cut features. The theorems we have proved belong
to two classes. The theorems of the first class deal with the appearance of certain
subgraphs (e.g. trees, cycles of a given order etc.) or components, or other local
structural properties, and show that for many types of local structural properties A

a definite “‘threshold’” A(n) can be given, so that if %E%—»O for n—+oco then
the probability that the random graph I'n, vy has the structural property A tends
An)
has the structural property A tends to 1 for n —+4oc0, [n many cases still more
can be said: there exists a ‘“threshold function” for the property A, i.e¢. a proba-
bility distribution function F4(x) so that if lim oy
n—teo A(n)

has the property A tends to 4 (x) for n—+oco,

The theorems of the second class are of similar type, only the properties A
considered are not of a local character, but global properties of the graph [, v
{(e. g. connectivity, total number of components, etc.).

In the next § we briefly describe the process of evolution of the random graph
I'y, ». The proofs,. which are completely elementary, and are based on the asymptotic
evaluation of combinatorial formulae and on some well-known general methods of
probability theory, are published in the papers [1] and [2].

to 0 for n —-+co, while for —+oo for n—+co the probability that £y, xem

=ux the probability that Iy, ¥cn
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2. The evolution of 'y,

If nis a fixed large positive integer and N is increasing from 1 to(}), the evolu-
tion of ['n, v passes through five clearly distinguishable phases. These phases

correspond to ranges of growth of the number N of edges, these ranges being
defined in terms of the number n of vertices.

Phase 1. corresponds to the range N(n) = o(n). For this phase it is charac-
teristic that s, s consists almost surely (i.e. with probability tending to 1 for
n —+oo) exclusively of components which are trf,e«, Trees of order k appear ll‘l])

when N(n) reaches the order of magnitude 11* 1 (=3, 4, If ’\r(?’l)ﬁ‘p?t‘ i
with p>0, then the probability distribution of the number of compuncms of I, vow
which are trees of order % tends for n—+4 oo to the Poisson distribution with mean
(ZpfFlhr?t N (n) s G
value A=— 2o . L If k(_g) —+oo then the distribution of the number of
k! nk-1
components which are trees of order % is approximately normal with mean
kk 2 (2 \r(n) )k L o xk\.{n)
&

M,=n— and with variance also equal to M.. This result

holds also in the next two ranges, in fact it holds under the single condition that
My—+ oo for n—+o0,

Phase 2. corresponds to the range N(n)~cn with 0<e<1/2.
In this case I's, v already contains cycles of any fixed order with probability
tending to a positive limit: the distribution of the numher of cycles of order k in

. ) : ; e A : (2¢ 3
Iy, v 18 approximately a Poisson-distribution with mean value —zg- . In this

range almost surely all components of [, now are either trees or components
consisting of an equal number of edges and vertices, i.e. components containing
exactly one cycle. The distribution of the number of components consisting of &
vertices and # edges tends for n—+oo to the Poisson distribution with mean value

{Zea™f ( k2 kk-8 ) ; ) . N
il 14k+- i &3] In this phase though not all, but still almost

all (i.e. n—o(n)) vertices belong to components which are trees. The mean number
of components is n—=N{n)+0O (1), i.e. in this range by adding a new edge the
number of components decreases by 1, except for a finite number of steps.

Phase 3. corresponds to the range N (n)~cn with ¢ =2 1/2. When N (n) passes
the threshold n/2, the structure of I'a, e changes abruptly. As a matter of fact
this sudden change of the structure of Iy, vy is the most surprising fact discovered
by the investigation of the evolution of random graphs. While for N{n)~cn with
c<1/2 the greatest component of ['n, yoo is a tree and has (with probability

. . 1 5 ;
tending to 1 for n—+o0) approximately —({ log n——-loglog n) vertices, where
o

a=2c—1—log2¢, for N(n)~nf2 the greatest component has (with probability
tending to 1 for n—+co) approximately 723 vertices and has a rather complex
structure. Moreover for N(n) ~ ¢n with ¢ > 1/2 the greatest component of s, xm)
has (with probability tending to 1 for n—+00) approximately G(c)n vertices, where
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—+ e

. 1 Jp k=1 ) o k

@ G@=1~5 VS (20%)
k=1

(clearly G (1/2)=0 and lim G {c)=1).
c—+00

3

Except this ““ glant’* component, the other components are all relatively small,
most of them being trees, the total number of vertices belonging to components,
which are trees being almost surely n{1—G (c))+o(n) for ¢ = 1/2.

As regards the mean number of components®, this is for N(n) ~ cn with

¢>1/2 asymptotically equal to %(X(c‘)—@) , where
“+ oo
p-t k
@ X©=) S (2ce) =2c(1—G(c})

k=1
The evolution of Iy, v in Phase 3. may be characterized by that the small
components (most of which are trees) melt, each after another, into the giant
component, the smaller components having the larger chance of “survival'; the
survival time of a tree of order 2 which is present in Iy, oy with N{n)~ cn,
¢>1/2 is approximately exponentially distributed with mean value n/2k.
Phase 4. corresponds to the range N(n)~c nlogn with ¢ £ 1/2. In this phase
the graph almost surely becomes connected. If
k-1
2k
then there are with probability tending to 1 for n—+oc only trees of order =k

outside the giant component, the distribution of the number of trees of order £
S 5 ; A = . e~y
having in the limit again a Poisson distribution with mean value y oo

Thus for k=1, i.e. for

(3 N(n):% log n+ n log log n+yn+o(n)

(4) N(n):% log n4+yn-+o(n)

I, ey consists, with probability tending to 1 for n—>-+oo, only of a connected
component containing n—0(1) points and a few isolated points, the distribution of
the number of these being approximately a Poisson distribution with mean value
e"®. Thus in case (4) the probability that the whole graph Iy, x is connected
tends to e=¢7*¥ for n— <-co and thus this probability approaches 1 as ¥y increases.

This last result has been obtained by us already in 1958 (see [2]). The proba-
bility of 1'% being connected has been investigated by E. N. Gilbert (see [4]).

It should be mentioned that the investigation of "% can be reduced to that of
I, as follows®: I'F¥ can be obtained by first choosing the value % of a random

variable $ having the binomial distribution P(@:k):((i))p*(lap)(gj_k where

2) The mean number of components of /%, ¥ has been investigated in [3]. Our results for
I"n, 5 are however more far reaching.

3) This idea has been used by J. Hgajek [3] in the theory of sampling from a finite population
who has shown in this way that the Lindeberg-type conditions given by us [6] for the
validity of the central limit theorem for samples from a finite population are not only
sufficient but also necessary.
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Pp=N/(!) and then choosing {n,x. In this way one can show that the threshold and
the threshold function for connectivity of 7% are the same as that of /M.x. It
should bec mentioned that this docs not follow from the inequalities given by
Gilbert [4].

Phase 5. consists of the range Ni{n)~(nlogn) w(n) where winj—-+oco, In
this range the whole graph is not only almost surely connected, but the orders of
all points are almost surely asympiodcally equal. Thus the graph becomes in this
phase “asymptotically regular™.
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RESUME

Soit £, v l'ensemble de tous les graphes possédants » sommets donnés et ayant
N ares. Nous considérons seulement des graphes non-orientés et sans boucles. Un
graph aléatoir /', v est défini comme un élément de lensemble E, v choisi au hasard
tel que tous les éléments de E.x ont la méme probabilité d’étre choisis.

Les auteurs considerent les propriétés probables de /', » quand n et N tends
vers 'infini d'un tel fagon que N=N{(n) est une fonction donnée de n.



