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1. Definition of a random graph 

Let E,, .V denote the set of all graphs having n given labelled vertices VI, L’s;,., 

Vn and N edges. The graphs considered are supposed to be not oriented, without 
parallel edges and without slings (such graphs are sometimes called linear graphs). 

Thus a graph belonging to the set En, N is obtained by choosing N out of the 

possible (5) edges between the points VI, VZ, ..., Vn, and therefore the number of 
n 

elements of En, ?V is equal to 2 
(’ ‘> 

. 
AT 

A random graph r,, N can be defined as an 

element of En, N chosen at random, so that each of the elements of E,, N have the 

same probability to be chosen, namely 1 
/( > 

‘I;l . There is however an other slightly 

different point of view, which has some advantages. We may conszder the forma- 
tion of u random graph as a stochastic process defined as follows : At time t=l 

we choose one out of the (;) p ossible edges connecting the points VI, VZ,..., V,, 

each of these edges having the same probability to be chosen ; let this edge be denoted 

by el. At time t=2 we choose one of the possible (z) -1 edges, different from er, 

all these being equiprobable. Continuing this process at time t=k+l we choose 

one of the (a) 4 p ossible edges different from the edges er, ez, ..., ek already 

chosen, each of the remaining edges being equiprobable, i.e. having the probability 

1 /I(;)-k). We d enote by r,, .V the graph consisting of the vertices VI, Vt, .. ., 

LTfi and the edges el, e2, ‘.., eN. 

11 Other not equivalent but closely connected notions of random graphs are as follows: 
1) \Ve may define a random graph i’z, G by dropping the restriction that there should 
be no parallel edges; thus we may suppose that e,+t may be equal with probability 

1 /(z) with each of the [z) edg es, independently of whether they are contained in the 

sequence of edges e,, e?, .‘., e,t or not. These randum graphs are considered in the paper 

131. 2) T%‘e may decide with respect to each of the (?J) edges, whether they should form 

part of the random graph considered or not, the probability of including a given edge 

being p= lV/:( i) for each edge and the decisions concerning different edges being in- 

dependent. We denote the random graph thus obtained by rzf,%,. These random graphs 
have been considered in the paper [4J 
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The two definitions are clearIy equivalent”. According to the second definition 
the number of edges of a random graph is interpreted as time, and according to 
this interpretation we may investigate the evolution of a random graph, i.e. the 
step-by-step unravelling of the structure of r,, 1~ when N increases. 

The evolution of random graphs may be considered as a (rather simplified) 

model of the evolution of certain real communication-nets, e. g. the railway-, 
road- or electric network system of a country or some other unit, or of the growth 

of structures of anorganic or organic matter, or even of the development of social 
relations. Of course, if one aims at describing such a real situation, our model of 
a random graph should be replaced by a more complicated but more realistic model. 

The following possible lines of generalization of the considered stochastic process 
of the formation of a random graph should be mentioned here : 

a) One may distinguish different sorts of vertices, and !or edges-by a usual 
terminology one may consider coloured vertices resp. edges. 

b) One may attribute different probabilities to the different edges; this can be 

done e.g. by attributing a weight, W, 2 0 to each of the !y) possib!e edges e so 

that W=l and to suppose that ei is equal to the edge e with probability W, and 
c 

that after Ed; ez, ..., ek have been chosen, ek+l is equal to any edge e not occurring 

among the edges el,e~, ..., ek with probability F where &= 
c 

W, An 
k 

eFeJ (j=l,2;-,k) 

other alternative is to admit that the probability of choosing an edge e=(Vt, V,) 
after k other edges have already been chosen, should depend on the number of 

edges starting from the points Vt resp. V, which have already been chosen. 
In what follows we consider only the simple random graph-formation process, 

described above, i.e. we consider only the random graphs I‘,,,N. 

Our main aim is to show through this special case that the evolution of a 
random graph shows very clear-cut features. The theorems we have proved belong 
to two classes. The theorems of the first class deal with the appearance of certain 

subgraphs (e.g. trees, cycles of a given order etc.) or components, or other local 
structural properties, and show that for many types of local structural properties fl 

N(n) 
a definite “ threshold ” A(n) can be given, so that if - 

A(n) 
40 for n++m then 

the probability that the random graph r,, N~Q has the structural property A tends 
-v(n) 

to 0 for n--r-+00, while for - 
A(n) 

-t+ 00 for n-t+m the probability that r,,, WC%) 

has the structural property A tends to 1 for n ++m. In many cases still more 

can be said : there exists a “threshold function ” for the property A, i.e. a probn- 

bility distribution function FA (x) so that if lim N(n) 
n++m A(n) 

-=x the probability that I’,, ,vtn) 

has the property A tends to FA (x) for n-++m. 

The theorems of the second class are of similar type, only the properties 4 
considered are not of a local character, but global properties of the graph rn, N 

(e. g. connectivity, total number of components, etc.). 
In the next 5 we briefly describe the process of evolution of the random graph 

r n, N, The proofs,. which are completely elementary, and are based on the asymptotic 
evaluation of combinatorial formulae and on some well-known general methods of 

probability theory, are published in the papers [l] and [Z]. 
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2. The evolution of r,, N 

If n is a fixed large positive integer and N is increasing from 1 to [y), the evolu- 

tion of r,, ,LV passes through five clearly distinguishable phases. These phases 
correspond to ranges of growth of the number N of edges, these ranges being 

defined in terms of the number n of vertices. 

P/KLSC 1. corresponds to the range N(n,) = o (s), For this phase it is charac- 

teristic that r,, Ecn) consists almost surely Ci. e. with probability tending to 1 for 

n --+a) exclusively of components which are trees. Trees of order k appear only 
a-s e-2 

when N(n) reaches the order of magnitude nk-1 (k=3, 4, .‘.j. If N(n)-pn k-1 

with p>O, then the probability distribution of the number of components of I’,,, ~(~1 
which are trees of order k tends for n--t+a to the Poisson distribution with mean 

“alue l=(2P)“-’ k k-2 
k! ’ 

If AT(n) 
w-,--++oo then the distribution of the number of 

yp-i 

components which are trees of order k is approximately normal with mean 

and with variance also equal to 154,. This result 

holds also in the next two ranges, in fact it holds under the single condition that 

M,‘i + c-2 for n-t+w. 

Phase 2. corresponds to the range N(n)-cn with O<c<1/2. 
In this case r,, xcn) already contains cycles of any fixed order with probability 

tending to a positive limit: the distribution of the number of cycles of order k in 
12 c)” 

r,, TV is approximately a Poisson-distribution with mean value %k-. In this 

range almost surely all components of 1 7a, Ncn) are either trees or components 
consisting of an equal number of edges and vertices, i. e. components containing 

exactly one cycle. The distribution of the number of components consisting of k 
vertices and h edges tends for n ++bo to the Poisson distribution with mean value 

In this phase though not all, but still almost 

all (i. e. n--o in)) vertices belong to components which are trees. The mean number 
of components is n-N(n)+O(l), i. e. in this range by adding a new edge the 

number of components decreases by 1, except for a finite number of steps. 

Phase 3. corresponds to the range N(n)-cn with c B lja. When N(n) passes 
the threshold n/2, the structure of r,, N(~) changes abruptly. As a matter of fact 

this sudden change of the structure of rn, NC%) is the most surprising fact discovered 
by the investigation of the evolution of random graphs. While for N(n)-cz with 
c<lk the greatest component of f,, NM is a tree and has (with probability 

tending to 1 for n-++m) approximately $ 
( 

log n- 2 --%og log n 
! 

vertices, where 

a=2c-1-log2c, for N(n) - n/2, the greatest component has (with probability 

tending to 1 for n-++ m) approximately n ~3 vertices and has a rather complex 

structure. Moreover for N(n) - cn with c > l/2 the greatest component of rn, NC,,) 

has (u-ith probability tending to 1 for n--t+- m) approximately G(c)n vertices, where 
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(clearly G (l/2)=0 and lim G (c)=1). 
c-i-m 

Except this “ giant ” component, the other components are all relatively small, 
most of them being trees, the total number of vertices belonging to components, 

which are trees being almost surely n (l--G (c))+0 (n) for c 2 1,‘2. 
As regards the mean number of components2), this is for lY(n) - c n with 

c> l/Z asymptotically equal to $ 
x2 Cc) X(c)-2 

> 
, where 

X(c)= iJgy2 ce-qL2c(l-G(cj) 
R=l 

The evolution of r,, ,vcn) in Phase 3, may be characterized by that the small 
components (most of which are trees) melt, each after another, into the giant 
component, the smaller components having the larger chance of “survival “; the 
survival time of a tree of order k which is present in I’,, ,vcn) with -V(n) - cn, 

c>lj2 is approximately exponentially distributed with mean value n/Zk. 

P1lase 4. corresponds to the range N(n)-c n log n with c 5 l/2. In this phase 

the graph almost surely becomes connected. If 

(3) 
k-l 

A+)=~ log nf - 2k n log log n+yn+o(n) 

then there are with probability tending to 1 for n--t+m only trees of order 5 k 
outside the giant component, the distribution of the number of trees of order k 

e-W 
having in the limit again a Poisson distribution with mean value - 

k-k!’ 
Thus for k=I, i.e. for 

(4) N(n) = f log n+yn+o(n) 

rn,~~(,,) consists, with probability tending to 1 for n-++w, only of a connected 
component containing n-O(l) points and a few isolated points, the distribution of 

the number of these being approximately a Poisson distribution with mean value 
e-*Y. Thus in case (4) the probability that the whole graph r,, .Q cn) is connected 
tends to e-cm211 for ti+ +a and thus this probability approaches 1 as y increases. 

This last result has been obtained by us already in 1958 (see [Z]). The proba- 

bility of rz$ being connected has been investigated by E. N. Gilbert (see 141). 
It should be mentioned that the investigation of r;f: can be reduced to that of 

rn,N as f0110d): r,:: can be obtained by first choosing the value k of a random 

variable 6 having the binomial distribution P(@ = k) = ((i))p” (l-~)(;)-~ where 

2) The mean number of components of ,‘F, .v has been investigated in [S]. Our results for 

Tn,.v are however more Ear reaching. 

3) This idea has been used by J. Hcijek (51 in the theory of sampling from a finite population 
who has shown in this way that the Lindeberg-type conditions given by us [6] for the 

validity of the central limit theorem for samples from a finite population are not only 

sufficient but also necessary. 
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p=!k’/(‘) and then choosing 1’~. In this way one can show that the threshold and 

the threshold function for connectivity of r$$ are the same as that of Pn,!v. It 
should bc mcntioncd that this dots not follow from the inequalities given by 
Gilbert [4]. 

PJrase 5. consists of the range lV(n)-(M. log n) W(n) where a(:!nj-+ 00. In 
this range the whole graph is not only almost surely connected, but the orders of 
all points are almost surely asymp:o:ically equal. Thus the graph becomes in this 

phase “asymptotically regular”. 
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Soit &,A l’ensemble de tous les graphes possedants IZ sommets dunnes et ayant 
A\- arcs. Nous considerons seulement des graphes non-orient& et bans boucles. Un 
graph aleatoir J’,,,., est defini comme un element de l’ensemble E,, 1 choisi au hasard 

tel que tous les elements de ET<,?; ont la m&me probabilite d’&re choisis. 
Les auteurs considerent les proprietes probables de P7i.~ quand II et N tends 

verj I’infini d’un tel faGon que E=lV(n) est une fonction don&e de 71. 


