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Introduction(')
Many problems in set theory and related domains are known which
have the following features in common . Each of them can be formu-
lated as the problem of determining all the infinite cardinals which
have a given property P. It is known that the property P applies to all
infinite cardinals which are not (strongly) inaccessible while it does
not apply to the smallest inaccessible cardinal, N 0 . On the other hand,
the problem remains open whether P applies to all inaccessible car-
dinals greater than N O , and in some cases it is not even known whether
P applies to any such cardinal . (The meaning of most terms used in
this introduction will be explained below .)

In the present paper we shall be concerned with four problems of
the kind described ; the corresponding properties will be denoted by
Pl, P2, P 3 , and P4 . A cardinal 2 is said to have the property P 1 if there
is a set A with power A which is simply ordered by a relation 5 in such
a way that no subset of A with power A is well ordered by the same
relation S or by the converse relation 2! . The property P 2 applies
by definition to a cardinal 2 if there is a complete graph on a set of
power 2 that can be divided in two subgraphs neither of which inclu-
des a complete subgraph on a set of power A. P3 applies to 2 if in the
set algebra of all subsets of a set of power A every A-complete prime
ideal is principal. Finally, P4 applies to 2 if there is a A-complete and
2-distributive Boolean algebra $ which is not isomorphic to any 1-
complete set algebra. We do not attempt here to solve fully any of
these problems, but we establish some implications among them ; in
fact, our main result is that, for every infinite cardinal A, each property
P,,, with m = 1, 2,3 implies Pm+1 . The problem remains open whether
any of these implications holds in the opposite direction as well .
Various equivalent formulations of the properties P3 and P4 are known ;
some relevant equivalences will be explicitly formulated and established .

(1) This paper was prepared for publication during the period when Tarski was
working on a research project in the foundations of mathematics supported by the
U.S. National Science Foundation (grants G-6693 and G-14006) .
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In the last section of the paper we consider a further property of
cardinals, the property Q . This property applies to a cardinal A if there
is a ramification system 91 formed by a set A and a partial ordering
relation 5 which satisfies the following conditions : (i) 91 is of order
A; (ü) for every ~ < A, the set of all elements of A of order has
power < A ; (iii) every subset of A which is well ordered by < has
power <A. It seems likely that Q will eventually prove to be an inter-
mediate property between P Z and P3, i .e ., to be implied by PZ and
to imply P3 for every infinite íl . Actually we establish the second of
these implications in its whole generality, while the first implication
is shown to hold for all inaccessible A's. In opposition to what is known
about PI - P4 , the problem whether Q holds for all accessible cardi-
nals has not yet been completely solved . In the domain of inaccessible
cardinals Q turns out to be closely related to P4, and in fact to be equi-
valent to a property R which is a specialized form of P 4 i R is obtained
from P 4 by imposing on the algebra 0 involved the additional condition
that B is .i-generated by .i elements . We show that R implies Q for all
inaccessible cardinals. The implication in the opposite direction is one
of the results of the note [14], which also contains . the discussion
of another, quite different, property of cardinals that proves to be
equivalent to Q . (The numbers in square brackets refer to the References
at the end of the paper .)(2 )

The present paper is to a large extent self-contained . For the con-
venience of the reader we outline the proofs of several results which
can be found in the literature ; we have here in mind the results which
show that the properties P I - P, hold for all accessible cardinals .
On the other hand, we only mention the well known results to the
effect that none of these properties applies to the cardinal N 0, as well
as the recent results of one of the authors by which the properties P 3i
P4, Q, and R apply to a very comprehensive class of inaccessible car-
dinals > N o. At the end of the paper the reader will find bibliographi-
cal references to various problems, in several domains of mathematics,
which are closely related to the problems discussed in this paper .

The material presented in this paper was reported on in the seminar
in the foundations of set theory conducted by Andrzej Mostowski and
Alfred Tarski at the University of California, Berkeley, during the
academic year 1958-59 . Certain proofs offered below appear in the
(2) The main results of this paper were stated without proof in Erdös-Tarski [3],
pp. 326 ff. (see in particular p . 328, footnote 4) . All the results which are not provided
here with references to earlier publications should be regarded as joint results of
both authors .
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form in which they were reconstructed by some members of the semi-
nar, Andrzej Ehrenfeucht, James D . Halpern, and Donald Monk, and
may differ from those originally found by the authors . The authors
wish to express their most sincere appreciation to Donald Monk for
his great help in preparing this paper for publication . Some related re-
sults obtained by Monk during his work on the paper are included
in [14] .

Terminology and notation
We employ the usual set-theoretical terminology and symbolism .
Thus, for example, c,e, 0, v, and U denote respectively the rela-
tions of inclusion and proper inclusion, the empty set, and the ope-
rations of forming unions of two sets and of arbitrarily many sets .
A ~ B is the set-theoretic difference of A and B (which, in case B S A,
is also referred to as the complement of B with respect to A). 5(A)
is the set of all subsets of A . A symbolic expression of the form {x 10}
where 0 is to be replaced by any formula containing x (as a free vari-
able) denotes the set of all those x which satisfy this formula. {x} is
the set whose only element is x, {x, y} is the unordered pair with the
elements x and y, and <x, y> is the ordered pair with x as the first
term and y as the second term. If f is a function and x is an element
of the domain D of f, then the value of f at x is denoted by f(x) or
sometimes-by fx; thus f is the set of all ordered couples <x,f(x)> where
x e D . By AB we denote the set of all functions on B to A, i .e., of
all functions with domain B and with range included in A. Given a
function F on a set I assuming sets Fi as values, we denote by PIE,Fi the
Cartesian product of all sets F i with i e I, i.e ., the set of all functions
f on I such that f,i e Fi for every i e f.

By a graph we understand any set of unordered pairs {x, y} with
x 96 y. Given any set A, the set of all unordered pairs Jx,y} such that
x y and x, y e A is referred to as the complete graph on A and will
be denoted by G(A) .

We assume that ordinals have been introduced in such a way that
every ordinal coincides with the set of all smaller ordinals. In con-
sequence, the intersection n,EA ~ of all members of a non-empty set
A of ordinals is again an ordinal, and in fact the smallest ordinal be-
longing to A . We put

µ(A) = I I~EA~

for every non-empty set of ordinals A, and in addition

p(0) = 0.
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A function on an ordinal a is sometimes referred to as a sequence of
type a or an a-termed sequence.

Cardinals are identified with those ordinals which are not of the same
power as some smaller ordinal ; in particular, the cardinal N o is iden-
tified with the ordinal co . We shall use small Greek letters a, ~,	
C' . . . to represent arbitrary ordinals, and specifically the letters K. A,
v, 7r ' . . . to represent arbitrary cardinals . The power, or the cardinal,
of a set A is denoted by K(A) . The order relation between ordinals
and the operations of addition and multiplication on cardinals are
denoted in the usual manner . For each cardinal A the symbol A+ denotes
the least cardinal greater than .l . K and A being any cardinals, . - is
the cardinal power with base A and exponent x ; thus the cardinal
2 -K is the power of the set AK . An infinite cardinal A is called regular
if it cannot be represented as a sum of less than A cardinals each of
which is less than ). or, what amounts to the same, if E41Kv4 < A
whenever Ic < .i, and vg < A for every ~ < K; otherwise it is called sin-
gular. An infinite cardinal .Z is said to be strongly inaccessible or simply
inaccessible if it is regular and if Ic < 2 always implies 2 •K < A ; other-
wise 2 is said to be accessible . Several equivalent formulations of
the definition of inaccessibility are known. For instance, each of the
following conditions (i)-(iii) is necessary and sufficient for an infinite
cardinal ). to be inaccessible : (i) 11 ~ Kv4 < A whenever x < A, and
v4 < A for every ~ < K ; (ü) 2'K < A _ K for every cardinal K such

that 0 < K < A ; (iii) A _ á, •2 ''r for every K < AR) The smallest inacces-
sible cardinal is obviously w. It is well known that the existence of
inaccessible cardinals > w cannot be established on the basis of
familiar axiomatic systems of set theory such as the systems of Zermelo-
Fraenkel or Bernays .

The notion of a Boolean algebra and those of an atom, an ideal,
a principal ideal, a prime ideal, and a subalgebra of a Boolean algebra
are assumed to be familiar to the reader ; the same applies to the notion
of a quotient algebra WII (where W is a Boolean algebra and I one
of its ideals) . We use the symbols +, -, and - to denote the fundamental
Boolean-algebraic operations of addition (join), multiplication (meet)
and complementation, respectively ; 5 denotes the Boolean-algebraic
inclusion, while E and fl denote the usual infinite generalizations

(3) For various equivalent definitions of inaccessible cardinals see [301 where, in
particular, conditions (i) and (ü) are discussed . The fact that (iii) is a necessary and
sufficient condition for A to be inaccessible was stated in [22], p . 231 .
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of + and - . Whenever a Boolean algebra is represented by a capital
German letter, say, 11, we stipulate that the set of all its elements is
denoted by the corresponding capital italic letter, A ; thus W is a
system (ordered quadruple) formed by the set A and the fundamental
operations +, -, and - .
An ideal I in a Boolean algebra W is called A-complete if Exexx

exists and is in I whenever X g I and K(X) < A; hence every ideal is
w-complete. In case I = A, the Boolean algebra itself is called A-com-
plete. The algebra W, or an ideal I in W, is called absolutely complete
or (simply) complete if it is A-complete for every cardinal A. A A-com-
plete Boolean algebra is said to be .i-generated by a set X 9 A if A
does not include properly any set B which is closed under the fundamental
operations of W and under the addition E restricted to sets Y S B
with power < A.
A Boolean algebra W is said to be .1-distributive if it is .i-complete

and satisfies the following condition . Let I be any set with x(I) < A,
J be any function which assigns a set J i with K(Ji) < A to every element
i e l, and K be the Cartesian product Pi E IJi ; let x be a function which
assigns an element x,,j to every ordered couple <i,j> with i e I and
j e J i ; under these assumptions Y_ f c K n i E I x i , f(,) exists and equals
11, c I Y_ ; E Ixi , . (In the present paper we do not extend the notion
of A-distributivity to Boolean algebras which are not .i-complete-
although such an extension often proves useful .) A Boolean algebra
is called completely distributive if it is .l-distributive for every cardinal A .

A set algebra is a Boolean algebra W in which A is a family of sub-
sets of certain set U (called the unit set of the algebra), and the funda-
mental operations +, -, and - coincide with the set-theoretic operations
v, n, and complementation with respect to U . A set algebra :'i is re-
ferred to as a .1-complete set algebra if W is .l-complete as a Boolean
algebra and if the Boolean-algebraic SUM X e FX coincides with
the set-theoretic union U X E FX for every family F S A with K(F) < .i.
Notice that a set algebra may be A-complete as a Boolean algebra
without being a .i-complete set algebra in our sense . W is an (absolu-
tely) complete set algebra if it is a A-complete set algebra for every car-
dinal .i ; thus, e.g., the set algebra 21 in which A consists of all subsets
of the unit set U is a complete set algebra .

By a measure on a set A we understand a function m on S(A) to
the set of non-negative real numbers such that m (X U Y) = m (X) + m (Y)
for any two disjoint subsets X, Y of A and in addition m(A) = 1 . The
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measure m is said to be trivia l if m ({x}) 96 0 for some x e A, and other-
wise it is called non-trivial . It is called A-additive if for every family
G s S(A) of mutually exclusive sets with x(G) < A, the family H
{X I X e G and m (X) # 0) is at most denumerable, and we have

m(UXeGX) - Y_ Yell M(Y) -

The measure m is said to be two-valued if its range contains only the
numbers 0 and 1 .

A 'function F on S(A) to any family of sets is called respectively
a A-additive, or A-multiplicative, set function on A if

F(UxccX)=UxcGF(X), or F(I X,GX) = I X .GF(X),

for every family G s S(A) such that 0 < x(G) < A . F is called com-
pletely additive, or completely multiplicative, if it is A-additive, or
A-multiplicative, for every cardinal .i.
We assume to be known under what conditions a set A is said to

be partially ordered, simply ordered, or well ordered by a binary re-
lation (i .e ., a set of ordered couples) G. A ramification system is
an ordered pair <A, G> such that the set A is partially ordered by
and, for every x e A, the set P (x) _ {y I y e A, y -,< x, and y 0 x} is
well ordered by -,< ; the type of the well-ordering of P(x) is called the
order of x, and the least ordinal greater than the orders of all elements
of A is called the order of the whole ramification system .

1. Properties PI and P Z
A cardinal A is said to have the property P t if there is a relation G
which simply orders A in such a way that every subset of A which is
well ordered by < or by the converse relation r has power < A. We
obviously obtain an equivalent formulation of this property if, instead
of simple orderings on A., we consider simple orderings on any given
set of power A. An analogous remark applies to several other formulations
in this paper.

It is easy to see that w does not have the property P I . On the other
hand we have
THEOREM 1 .1 . Every accessible cardinal A has the property PI . (4)

PROOF . We distinguish two cases .

(4) Theorem 1.1 is essentially due to Hausdorff ; he does not state this theorem
explicitly, but the theorem can easily be deduced from his results in [6l, pp. 477 f.
In the proof of Theorem 1 .1 given below we follow, in part (i), the argument of Sier- pinski in [191 (the proof of Lemma M .
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Case (i) : A is regular . Then, by the definition of accessible car-
dinals, there is a cardinal v such that

(1)

Then

v < ~ :!_ 2 •° .

Consequently there is a set A s 2° with power A and, instead of simple
orderings on ~, we can consider simple orderings on A .

We obtain a relation which simply orders the set 2v, and hence
also the set A, by stipultating that, for any f, g e 2°, f g if and only
if either f4 = gg for every ordinal ~ < v, or else there is an ordinal
a < v such that fa < ga while f~ = gg for every ~ < a . (The resulting
simple ordering of 2° is the so-called lexicographic ordering .) Con-
sider any subset B of 2" which is well ordered either by or by > ;
since the argument in both cases is essentially the same, we assume
that B is well ordered by G. We wish to show that K(B) <_ v and hence
a fortiori K(B) <A .

Suppose, on the contrary, that K (B) > v . Then B contains a subset
C with the order type v+ . For each fe C let 0(f) be the smallest or-
dinal a < v such that, for some g e C, we have fa < g a , and fc = g~
for every ~ < a; for each a < v let

Da ={flfcC and ¢(f)= a} .

C= Ua<vDa ;

since, in addition, any two sets Da, Da with a P are disjoint, we con-
clude that

(2)

	

K(C) = V + _ 1a <v K(D.) .

We shall show that

(3)

	

K(Dj _< v for every a < v .

This is obvious in case Da = 0 . Otherwise, let fe Da . By (1) and the
definition of .0 we see that there exists an element g e C such that

(4)

	

fa < ga, and f~ = g. for every ~ < a .
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Consider now an arbitrary element h e D, Since

0(f)=0(h)=a,

we must have f4 = hg for every ~ < a whence, by (4),

(5)

	

h4 = g, for every ~ < ce .

Moreover, we see (as before, in the case of f) that

(6)

	

h,, < ka

for some k e C. Remembering that f, g, h, k, e 2 we conclude from
(4) and (6) :

and hence

(7 )

f,,=h,,=0, g,,=ka =1,

h,, < ga .

By (5) and (7) we have h g (in the lexicographic order established
by on 2v) . Thus we have proved that there exists an element g e C
such that h < g for every h e D,, ; since the order type of C is v+, this
immediately implies (3).

From (2) and (3) we obtain at once a contradiction :

v+ <<v . v=v .

Consequently, every subset of A which is well ordered by has power
< A .
Case (ű) : .i is singular . This means that A can be represented as

a sum of less than A cardinals each of which is < .i . Consequently, there
is an infinite cardinal v and a sequence E satisfying the conditions :

(8)

	

v < 2, E e [S (A)]", K(E~) < 2 for every ~ < v ;

(9)

	

A = U~ < v E4 , and E, n E,, = 0 for any ~, rl < v with ~ n .

We define a binary relation

	

between ordinals < 2 by stipulating as
follows
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(10) a < P if and only if either a, P e E4 for some ~ < v and a <_ ~,
or else a e E 4 and P e En for some ~ and n such that n < ~ < v.

From (9) and (10) we easily see that A is simply ordered by < . In
view of (9) we have for every subset B of A

(11)

	

B = U4<,,(B nQ.

Consider a set B S A which is well ordered by -,< . If the set

(12)

	

C={ilk<v and BnE,001

were infinite, we could choose an infinite sequence y e CW such that
y,, < y,,+I for every q < co ; by (9), (10), and (12) we would then have

µ(B n Ey„+I) -<µ(B n Ey,,) [i.e ., µ(B n Ey,,+I) µ(B n Ey,,)

and µ(B nEy,,+I) 96 µ(B nEy,)]

as well as
p(B nEy,,)eB

for every n < co. This clearly contradicts the assumption that B is well
ordered by -,< . Therefore the set C is finite . Since, by (11) and (12),

B=U4ec (BnEC)

and since the sum of finitely many cardinals < A is always < A, we
conclude by (8) that K(B) < A .

Now consider a set B .i which is well ordered by ~ . If, for some
< v, the set B n E4 were infinite, we could choose a sequence

fi e (B n Eg)' such that & < P,, + I and hence, by (10), I for every
rl < co. This is again a contradiction . Hence K(B n E~) < co for every
< v. Consequently, by (8) and (11), K(B) <_ v - w = v < A, and the

proof is complete .

A cardinal A has the property P 2 if and only if the complete graph
G(A) can be divided into two graphs GI and G2 neither of which in-
cludes the complete graph on a set of power A . We have

THEOREM 1 .2 . If an infinite cardinal A has the property P I , then it
also has the property P2 .
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PROOF . By hypothesis, there is a relation which simply orders
A in such a way that every subset of .i which is well ordered by -< or
by has power < A . Let

(1) GI = {x I for some ~ and ~, x = {~, C} and either ~ < C < A

and ~ C, or else C < l < A and

(2) G 2 = {x I for some and C, x = {~, C} and either ~ < C <

and

	

, or else < < A and

	

C1} .

Obviously,
GI UG2 = G(A) .

Let A be any subset of .i. If G(A) c G I , then, by (1), A is well ordered
by m< ; if G(A) 9 G2 , then, by (2), A is well ordered by >, . In either
case x(A) < A. Thus neither G, nor G 2 includes the complete graph on
a set of power A, and this completes the proof .

A result known as Ramsey's theorem (see [16j, Theorem A) shows
that w fails to have the property P 2 . On the other hand, from Theo-
rems 1.1 and 1 .2 we derive at once

THEOREM 1 .3 . Every accessible cardinal A has the property P2 .( 5 )

The problem is open whether all, or at least some, inaccessible car-
dinals greater than w have the property P, or P 2 .

2 . Property P 3
In this and the following sections we shall make use of some elementary
facts concerning principal and prime ideals in Boolean algebras . It is
obvious, e.g ., that in a A-complete Boolean algebra (where A is an ar-
bitrary cardinal) every principal ideal is A-complete ; in a complete
Boolean algebra principal ideals coincide with complete ideals . A prime
ideal 1 in an arbitrary Boolean algebra is principal if and only if there
is an atom of the algebra which does not belong to I . If I is an ideal
in a A-complete algebra W (A >_ w) and 196 A, then I is both prime and
A-complete if and only if it satisfies the following condition : X n 196 0
whenever X s A, 0 < x(X) < A, and 1- E x y e I .

(5) This result is due to Erdös ; its original proof was independent of Theorem 1 .2 .
See [1].
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A cardinal A is said to have the property P 3 if every A-complete prime
ideal in the set algebra formed by all the subsets of A is principal . The
main result of this section is :

THEOREM 2.1 . Every infinite cardinal A which has the property P 2
also has the property P 3 .

PROOF. Since A has the property P2 , the complete graph on A can
be divided into two sets, G I and G2 , such that neither Gl nor G2 includes
a complete graph on a set of power A. Let I be any A-complete prime
ideal in the set algebra of all subsets of A . We wish to show that I is
principal .

We define two functions F I,F 2 e [S(A)]-l by letting

(1) F;(a) _ {/3 I # < A and {a,/i} e G;} for i = 1, 2 and for every a < A .

Suppose there is a set X with the following property :

(2) X e S(A) - I, and for every Y e S(X) - I there is an a e Y such

that Yn F I(a) ~ I .

By means of double recursion we define two sequences H e [S(A,)]'
and 0 e A' satisfying the conditions :

(3) Ho = X, H,+I = HQ n FI(o,) for every a < 2, HQ = n,<,Hg for
every limit ordinal a < 2 ;

(4)

	

0, = p({~I ~ e H, and, H, n F I(~) 0I) .

We show that for every a < A the following formulas hold :

(5)

	

H, c n ,< aH4, H a e S(X) - I,

(6)

	

0, e H„ H, n F I(0j 0 I.

These formulas are obtained by transfinite induction based upon (3)
and (4) : we make essential use of (2) and of the fact that I is a A-complete
prime ideal .



Consider any two different ordinals a,# < ~ . If a < /i, we have,
hy (3), (5), and (6),

op e Hp S H,,+i S FI (0j
whence by (1)

jop , 0.1 E GI .

By symmetry, we obtain the same conclusion if fl < a. Thus
whenever a fl ; therefore the range of 0, i.e., the set
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A = {0~ 1 ~ < .Z},

is of power A, and G I includes G(A) . This contradicts, however, our
original assumption . Hence no set X satisfies (2); in other words,

(7) for every X e S( .l) -I there is a Ye S(X) -1 such that Y n FI (a) e 1
for all a = Y.

By an entirely symmetric argument we obtain :

(8) for every Ye S(A) - I there is a Z e S(Y) - I such that
Z n F2(a) e l for all a e Z.

In accordance with (7), we can find a set Ye S(A) -I such that
Yn F l( a) e I for all a e Y. Hence, by (8), we can choose a set Z e S(Y) - I
such that Z n F2(a) e I for all a e Z . Since Z 0 I, we have Z 0 0 . Let
a be any element of Z . Then Z n F Z (a) e I and also Y n F I (a) a I, whence
Z nFI (a) a I . Since, by (1),

Z = [Z nFl (a)] v [7, n FZ(a)] V {a} 0 I,

we infer that the set {a} (which is an atom of our set algebra) does not
belong to I and that consequently the prime ideal I is principal . Thus
A has the property P 3 , and the proof is complete .

It is known that w does not have the property P 3 ; this is a particular
case of a general result established in [31], p. 49. On the other hand,
as an immediate consequence of Theorems 1 .3 and 2 .1 we obtain

THEOREM 2.2 . Every accessible cardinal A has the property P3.
(6)

(6) This is essentially Theorem 3 .9 in [26], part 1, p . 58 ; the proof given there is
independent of Theorem 2 .1 .
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Theorem 2.2 has thus been established in a round-about way, using
the property P Z and hence also, implicitly, the property P 1 . It may
be interesting to notice that direct proofs of this result are also known .
Such a proof can be based, for instance, upon the following

LEMMA 2.3. In the set algebra of all subsets of any given set A every
A+-complete prime ideal I (where A is any infinite cardinal) is also
(2 -A)+-complete .(')

PROOF. Let G be any family 9 I with power 2'. By a familiar
method, applying the well-ordering principle, we construct a family H
with the following properties :

(1)

	

H is a family of pairwise disjoint sets ;

(2) every set of H is included in some set of G, and hence H F I ;

(3)

	

UXéHX UXéG;;

(4)

	

K(H) <_ 2' .

In view of (4) there is a family K s S(R) and a function F mapping K
onto H in a one-one way. We extend this function to the whole family
S(R) by putting F(X) = 0 far X e S(A) - K. By (1) and (2) we have :

(5)

	

if X, Y e S(A) and X # Y, then F(X) n F(Y) = 0;

(6)

	

F(X) e I for every X e S(A) .

Let

(7)

	

L.,,, = U a éx c IF(X) and L., 1 = Ua 0 x c ,F(X),

whence

(8 )

	

La.o U L..1= Ux é HX

for every a < A. Suppose

(9)

	

UxéHX0 1 .

(7) This result, in a more general form, is stated in [29], p . 162, Theorem 3.19 .
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From (8) and (9) we conclude that La , o 0 1 or La , I 0I . We define a
function 0 e 2' by putting 0(a) = 0 if La , I e I and ¢(a) = 1 otherwise ;
clearly,

(10)

	

La, m(a) 1 for every a < .l.

Since I is a A+-complete prime ideal, (10) implies

( 11 )

	

~ a < zLa.¢la) ~ I .

On the other hand, letting

(12) Ma = { Xl either a e X s .i and ¢(a)=0, or a O X s A and 0(a)= 1)'

we obtain from (7)

I la<

	

= I la«UXc .J(X).

Hence, in view of (5),

(13)

	

n a« La, ~(a> = U X E N F(X), where N= na«M. .

From (12) we see that n,, .,:, Ma consists of just one set, namely, the set

X o = {ala < A and 0(a) = 0? .

Consequently, by (13) and (6),

(14)

	

n a< t La,~(a) = F(Xo) e 1 .

Formulas (11) and (14) contradict each other. We must therefore reject
supposition (9). Thus, by (3), we have

UXcGXCI.

Since this conclusion applies to every family G s 1, the ideal I is (2'x)+-
complete, and this is what was to be proved .

To derive Theorem 2 .2 from our lemma, consider an accessible
cardinal d and a .i-complete prime ideal I in the algebra of all subsets
of .1 . If A is singular, then I is clearly .i+-complete (since in this case
every .i-complete ideal is .i+-complete) ; hence it is (2")+-complete by
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Lemma 2.3, therefore (absolutely) complete and principal . (The appli-
cation of Lemma 2.3 at this point is not essential .) If A is accessible
and regular, then there is a cardinal v such that v+ _<_ .i <__ 2* Since 1
is A-complete, it is a fortiori v+-complete, hence (2'°)+-complete by
Lemma 2.3, therefore A+-complete, and, as before, it is principal .

Lemma 2.3 will find an important application it the next section (in
the proof of Theorem 3.1) .

Many interesting and important equivalent formulations of the pro-
perty P 3 are known. We list a few of them, p

3
(l)_p

3
(3) . A cardinal A

has the property Pal) if every family F of sets which covers A (i .e ., for
which A Uxe c X) and is such that S(A) - F contains no two disjoint
sets includes a subfamily G with power < A which also covers A ; A has
the property p3(2) if every A-additive two-valued measure on A is trivial ;
it has the property P33) if every A-additive and A-multiplicative set
function on A is completely additive and completely multiplicative .

THEOREM 2.4 . For every infinite cardinal A the property P3 is
equivalent to each of the properties P3'), p3

(2) and p33) . (s)

PROOF . The arguments leading to these equivalences are not dif-
ficult . As a sample we outline the proof that the properties P 3 and P33)

are equivalent .
Let A be an infinite cardinal with the property P 3 , and F be a A-additive

and A-multiplicative set function on A . Thus

(1) F(UxcGX) = UxcGF(X) and F(nxc .X) _ nx .GF(X) for

every G s S(A) such that 0 < x(G) < 7. .

Hence we easily conclude that F is increasing and 3-multiplicative, i .e.

(2)

	

F (X) S F(Y) whenever X c Y c A ;

(3)

	

F(X r) Y) = F(X) n F(Y) for all X,Yc S(A) .

Suppose that F is not completely additive. Then, for some non-empty
family of sets H g S(A), we must have

F(UxEHX) # UxeHF(X).

(S) Mutual implications between the properties P3 , P3('), P30, and P3(3 ) were dis-
cussed on various occasions by Tarski. See, e .g., [25], pp. 152 f. ; [26], part 2, pp.
55 ff. ; [29], pp. 161 f.
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UxeHF(X) S F(UxeHX),

we conclude that there is an element y such that

(4)

	

ycF(UxeHX) and y0U xcHF(X) .
Let

(5) I = {XIX s A and y0F(X)} .

If y e F(0), then, by (2), y e F(X) for every X e H, in contradiction to
(4). Hence

(6)

	

y 0 F (0)

and therefore, by (5),

(7)

	

0 e 1 .

From (1), (5), and (7) we obtain :

(8)

	

if G 9 I and x(G) < íl, then

	

; G X E 1 ;

(2) and (5) imply :

(9) if X e I and Y X, then Y e L

By (7)-(9), I is a A-complete ideal in the set algebra formed by S(A) .
By (3) we have for every X s A

F (O) = F (X) n ^A - X)

65

whence, with the help of (5) and (6), we infer that either X e I or A - XeI .
Thus the ideal I is prime. We also notice that, by (4) and (5), U x e xX ~ I
while H 9 I. Therefore the A-complete prime ideal I is not complete
and hence not principal . Since this conclusion contradicts the assumption
that A has the property P 3 , we must assume that the function F is com-
pletely additive .

In an entirely analogous way we show that F is completely multi-
plicative. The proof that P3 implies P(33) has thus been completed .
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Assume now, conversely, that A has the property P33t . Consider any
A-complete prime ideal I in the set algebra formed by S(A) . Define a
function F on S(A) to 2 by letting

F(X) = 0 if X e I, and F(X) = 1 if X e S(A) - L

We easily show that F is a A-additive and A-multiplicative set function
on A. Hence, by P(33) , F is completely additive ; consequently, the ideal
I is complete and principal. Thus P(33) implies P 3 .

3. Property P4

We agree to say that the cardinal .i has the property P4 if there is
a A-distributive Boolean algebra which is not isomorphic to any A-
complete set algebra .

In discussing this property we shall apply various results concerning
A-complete and A-distributive Boolean algebras, their ideals and quotient
algebras, and their relation to A-complete set algebras ; they are partly
quite elementary, and most of them can be found in the literature . We
wish to state here these results explicitly .

Obviously, every A-complete set algebra is A-distributive . If a A-
distributive Boolean algebra has less than A elements, then it is com-
pletely distributive ; hence it is atomistic and isomorphic to a complete,
and a fortiori to a A-complete, set algebra (cf. [27], paper XI, pp .
337 ff.) . In general, however, as we shall see from Theorem 3 .1, a
A-distributive Boolean algebra is not nescessarily isomorphic to a A-
complete set algebra . It is always isomorphic to a quotient algebra
II/I where RI is a A-complete set algebra and I is a A-complete ideal
in A ; for a proof see [21] . For a A-complete Boolean algebra N to be
isomorphic to a A-complete set algebra it is necessary and sufficient
that every proper principal ideal in 2I can be extended to a A-complete
prime ideal . (The necessity of this condition is almost obvious ; the
proof of the sufficiency is entirely analogous to the proof of the repre-
sentation theorem for Boolean algebras given by Stone in [24], pp.
101-107.) Hence, in particular, 4I is not isomorphic to any A-complete
set algebra if it has at least two elements and no A-complete prime ideals.

If It is a A-complete Boolean algebra and I is a A-complete ideal in
RI, then the quotient lI/I is clearly A-complete . If A is A-distributive,
then, under each of the following three hypotheses, RI/I proves to be
A-distributive : (i) I is principal ; (ü) A is of the form A = v+ and I is
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(2-")+-complete ; (iii) .i is inaccessible and I is A-complete. (In cases (i)
and (ü) the proof is direct ; in case (iii) we first show, with the help of
(ü), that W/I is v+-distributive for every v < A, and hence we conclude
that 41/I is A-distributive .)

Given any Boolean algebra W and any ideal I in W, we can establish
a one-one correspondence between all the ideals in W/I and all those
ideals in W which include I . To this end we correlate, with any given
ideal J in W/l, the ideal H 2 I in W defined by the formula

H = {xlxcA and x/IeJ} .

As is well known, the algebras WIH and (WII)IJ are isomorphic ; if one
of the ideals J and H is prime, then the other is also prime ; if 1a, I,
and one of the ideals J and H are A-complete, then the other of these
two ideals is also A-complete .
Returning now to the property P 4 , we first notice that, by the well

known representation theorem for Boolean algebras established in (24],
the property P4 fails to apply to co. On the other hand, we have

THEOREM 3 .1 . Every accessible cardinal A has the property P4.(9)

PROOF. We distinguish two cases .
Case (i) : A is regular . Hence, by the definition of accessible cardinals,

there is a cardinal v such that v < A <_ 2 Let W be the set algebra
formed by all the subsets of S(S(,i)) and let I be the family of all subsets
of S(S(A)) with power <_ 2-z. Obviously, 31 is completely distributive
and I is a (2 -')+-complete ideal in W . Hence 4I/I is a A+-distributive
and a fortiori A-distributive Boolean algebra .

Suppose 2111 is isomorphic to a .i-complete set algebra . Consequently,
1!1/1 has some A-complete prime ideal . Hence % has a A-complete prime
ideal J which includes I and therefore contains all one-element sets,
i .e ., all atoms of $1 . From this we conclude that J is not principal . On
the other hand, however, since v < A 5 2 • the prime ideal J is vi'-comp-
lete, hence (2•°)+-complete by Lemma 2.3, and therefore A+-complete .
By applying Lemma 2 .3 again (three times in succession), we infer that J

is (2' 2 .2-1)+-complete ; since the algebra W has 2'2 .2 z
elements, the ideal

J is (absolutely) complete and hence is principal . Thus we have arrived
at a contradiction . Consequently, W/1 is an instance of a .i-distribu-
tive algebra which is not isomorphic to any A-complete set algebra .

(9) This result is due to Tarski and was first stated in [31, p . 328 .
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Case (ii) : .i is singular . Since Al- is regular and accessible, we can
apply the result obtained in part (i) of our proof. Thus there is a
.1+-distributive Boolean algebra W which is not isomorphic to any
A+-complete set algebra . Obviously, W is .1-distributive . Moreover,
since .l is singular, every A-complete set algebra is also A+-complete,
and hence 21 is not isomorphic to any ;-complete set algebra. The
proof has thus been completed .

THEOREM 3.2 . Every infinite cardinal .l which has the property P 3
also has the property P4 .

PROOF . In view of Theorem 3.1 we can restrict ourselves to the case
when A is inaccessible. Since A is assumed to have the property P3 ,
every 2-complete prime ideal in the set algebra 21 formed by all the
subsets of A is principal . Let I be the family of all subsets of A with power
< A. I is obviously a A-complete ideal in the .l-complete set algebra W
and it contains all atoms of W . Hence I cannot be extended to any
.l-complete prime ideal in W, since every such prime ideal would be non-
principal. Therefore the quotient algebra 21/I has no .1-complete prime
ideals and, in consequence, is not isomorphic to any .1-complete set
algebra. On the other hand, from the facts that A is inaccessible, 21 is
a .1-distributive Boolean algebra, and I is a .1-complete ideal in W, we
conclude that 21/1 is .l-distributive. Thus A has the property P 4 .

To conclude this section, we list several properties which will be
shown (in the next theorem) to be equivalent to the property P 4 . The
cardinal A has the property P4I) if (and only if) there is a A-distributive
Boolean algebra, with more than one element, which has no .1-complete
prime ideals ; it has the property p4(2) if there is a .1-distributive Boolean
algebra, with at least .1 elements, in which every A-complete prime ideal
is principal; it has the property p4(3) if there is a A-distributive Boolean
algebra 21 and a proper A-complete ideal I in 21 such that I cannot be
extended to any .1-complete prime ideal in W ; finally, A has the pro-
perty p4(4) if there is a A-complete set algebra 21 and a A-complete ideal
I in 21 such that the quotient algebra 21/I is not isomorphic to any A-
complete set algebra .

THEOREM 3.3 For every infinite cardinal A the property P4 is equi-
valent to each of the properties P4I)-Pá4>

PROOF . (i) P4 implies P4I). In fact, by P4, there is a A-distributive
Boolean algebra W which is not isomorphic to any .1-complete set al-
gebra. As we know, this implies that some proper principal ideal I in
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21 cannot be extended to any A-complete prime ideal . Consequently,
21/I is an example of a A-distributive Boolean algebra with more than
one element and with no A-complete prime ideals .

(ü) PM implies p4
(2) * By K) there is a A-distributive Boolean al-

gebra 21, with more than one element, which has no 2-complete prime
ideals ; a fortiori we can say that every A-complete prime ideal in 21 is
principal. If 21 had less than 2 elements, it would be completely distri-
butive and therefore atomistic ; hence it would have at least one .-
complete (and actually principal) prime ideal. Thus 21 has at least A
elements, and d has the property P42) .

(iii) P42) implies p(3) . ). It is obvious that K) implies p4(3)
. Hence, by

part (i) of our proof, P4 implies p4
(3)

. Therefore, by virtue of Theorem
3.1, p43) certainly holds for every accessible A, and we can restrict
ourselves to the case when A is inaccessible . In accordance with P4z~,

let 21 be a A-distributive Boolean algebra, with at least A elements, in
which every 2-complete prime ideal is principal . Let I be the set of all
elements x e A which can be represented as Burrs cf less than 2 atoms
of 21 . Clearly, 1 is a A-complete ideal in 21. Moreover, I is a proper
ideal, i .e ., 1 0 A . This is obvious in case W has at least A atoms, for 1
cannot then belong to I . However, this is also clear in case 21 has less
than A, say v, atoms ; for, A being inaccessible, we have then

h(I) = 2 < A 5 K(A) .

Finally, I cannot be extended to any A-complete prime ideal J in 21,
since J would contain all atoms of 21 and hence could not be principal .
This shows that A has the property P43'

(ív) P43) implies P44) . In fact, consider a A-distributive Boolean
algebra 21 and a proper A-complete ideal I in 21 which cannot be ex-
tended to any A-complete prime ideal. By a known result mentioned at
the beginning of this section, 21 is isomorphic to a quotient algebra
$/H where $ is a A-complete set algebra and H is a íl-complete ideal
in $. Hence we conclude that there is a proper A-complete ideal J in $/H
which cannot be extended to any J-complete prime ideal . Consequently,
(B/H)IJ is an algebra with more than one element and with no A-com-
plete prime ideals . As is well known, we can construct a A-complete ideal
K in $ such that 23/K is isomorphic to (23/H)/.1. Thus $/K is a Boolean
algebra which has more than one element and no A-complete prime
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ideals, and which therefore is not isomorphic to any .i-complete set
algebra. Consequently, A has the property Pást

(v) P(4 ) implies Ps . In view of Theorem 3 .1 we can again restrict
ourselves to the case when A is inaccessible . By A') there is a .i-complete
set algebra It and a A-complete ideal I in 21 such that 911 is not iso-
morphic to any .i-complete set algebra . K is of course A-distributive
and therefore, A being inaccessible, 11iI is A-distributive as well . Hence
A has the property P4 .
By (i)-(v) the proof is complete .

4. Properties Q and R
The property Q applies by definition to a cardinal A if there is a
ramification system <A, ::<) of order A such that (i) the set of all ele-
ments x e A of order ~ has power < A for every ~ < A, and (ü) every
subset of A well ordered by has power < A . Under these assumptions
A is clearly a union of A mutually exclusive sets each of which has
power < A. Hence, in case A is infinite, A is of power A, and we obtain
an equivalent formulation of the property Q if we replace A by A. The
discussion of the property Q is the main topic of the present section . It
will be seen that the results of this discussion are less complete than
those obtained in the preceding sections for the properties PI-P4 .

In the first two theorems we shall establish certain implications be-
tween the property Q and the properties previously discussed .

THEOREM 4 .1 . If A is an inaccessible cardinal which has the pro-
perty P2 , then A also has the property Q .

PROOF. By the hypothesis and the definition of the property P 2 ,
there are two sets G I and G 2 satisfying the conditions :

(1)

	

G I U G2 = G(A) and GI r) GZ = 0 ;

(2)

	

if A s A and G(A) E- G I or G(A) s G2 , then x(A) < A .

We define two functions Fl , F2 e [S(A)] s( l) by putting for ,every set
A g A

(3)

	

F;(A) _ { I ~ e A and {µ(A), gj a Gi }, i = 1, 2 .

(1) and (3) imply at once :

(4) if A S A and A # 0, then A = {p(A)} L)F I (A) U F2 (A), where

µ(A) FI (A) U F2 (A) and Fl (A) r) F2 (A) = 0 ;
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(5) if A s .1, Bs: F; (A) (i =1 or i =2), and B # 0, then µ(A) < µ(B)
and {µ(A), µ(B)} e G, .

By transfinite recursion, we correlate with every ordinal ~ a family of
sets K4 determined by the following formulas :

(6)

	

Ko = {A) ;

(7) K4+1 = {Y I for some X, X E K, and Y = Fi (X) 0 0 or
Y = FZ (X) 0} ;

(8) K4 _ {Y I for some H, H e Pr <{K, and Y = n{ ,,,H, o 0}
in case ~ is a limit ordinal .

From (4) and (6)-{8) we conclude by transfinite induction that, for
arbitrary ordinals ~ and C,

(9) K, is a family of mutually exclusive non-empty subsets of .i ;

(10) if ~ < C and Z e Kc , then there is just one set X e K4 such
that Z e X and there is no set X' e K4 such that X' s Z (so
thak, in particular, Z 0 K4) .

Hence, with the help of (5) and (7),

(11) if X e K4 , Z e K,, and Z c X, then Z S; Fi (X) and {µ(X),
µ(Z)} a Gi or else X s FZ (Z) and {µ(X), µ(Z)} a Gz , and in
either case µ(X) < µ(Z) .

Furthermore, (10) implies

(12) if X e K,, Y e K., Z e Kc , Z s X, and Z s Y, then either

XsY andri__~<_Corelse YgX and ~ :~ yq :5~,

From (10) and (11) we see that

(13) <U~,AK4, ? > is ramification system and, for every ~ < A,
K, is the set of all elements of this system with order ~ .

We wish to show that the system <u 4, AK4, 2> satisfies all the con-
ditions listed in the formulation of the property Q .

By (6)-(8) we have :
K(K,) = 1 < A ; K(K4+i) S K(K 4) • 2 for every ordinal ;

K (K,) <_ rj ~ < gK (K 4) for every limit ordinal g .

Hence, making essential use of the fact that A is inaccessible, we derive
by induction :

(14)

	

K(K4) < A for every < A .
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From (10) we obtain

UXcK X ? UXeK,X, whenever ~ < C ;

moreover, (6) and (8) imply :

UXeKOX = A I

UX<K,X = 1 , UXcK,X for every limit ordinal .

Hence we conclude :

(15) ~ - U XcK 4X = U; < f,(U XcKSX - U XeKC+ I X) for every ordi-
nal g .

From (4) and (7) we see that

UXeK,X - U XcKS+1X = {p(X)IX EK~ },

and therefore, by (14),

(16)

	

K(UXeK4X - U XeK~+ IX) < A for every C < A .

Since the cardinal .i is inaccessible and hence a fortiori regular, the
formulas (15) and (l6) imply :

K('~ - U XeK~X) < .1 for every ~ < .i.

From this we conclude at once that K g 0 for every < A and con-
sequently, by (13),

(17)

	

the ramification system ( U 4<AK 4, ?> is of order R .

Consider now any family of sets L which is included in U 4« K4
and is well ordered by the relation 2 . By (l0), L has at most one set
in common with each of the families K, for ~ < A. Hence we infer that
there is an ordinal v < .1, a sequence H E L and a sequence a e nv
which satisfy the following conditions :

(18)

	

L = {H~ I ~ < v}, H, e Ko, for every ~ < v ;

(19)

	

if ~ < C < v, then H, ::, H;andv, «• .
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Li = {H41 ~ + 1 < v and H~, I s F;(H~} for i = 1, 2 .

(21) L = L, U L Z V {Hv _ I} if v has an immediate predecessor,

and L = L I U LZ otherwise .

If ~ < C and H4,H~ e Li ( i = 1,2), we conclude by (11) and (18)-(20) :

µ(HQ) < µ(H,) and {µ(H4), µ(H)} e G i.

Hence, by putting

Mi _ {µ(H,) I ~ < v and H4 e L;}, i = 1, 2,

we derive the conclusions :

K(L) = K(M) and G(M) s G; ;

and, by applying (2), we arrive at the formula

K(L) < A for i = 1, 2 .

By (21), this implies that x(L) < A . Thus we have established :

(22) every family of sets L s U ~,,K4 which is well ordered by 2
has power < A.

By (13), (14), (17), and (22), the system <U 4«K~, 2 > satisfies all the
conditions listed in Q . Hence the cardinal A has the property Q, and the
proof is complete .

THEOREM 4.2 . Every infinite cardinal A which has the property Q
also has the property P 3 .

PROOF . By hypothesis, there is a ramification system <A, -,<> with the
following properties :

(1) for every ~<A, the set R~ of all elements of A of order ~ has power
< A ;

(2) every subset A of .i well ordered by

	

has power < .i .
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We want to show that A has the property P 3 . Suppose, on the contrary,
that there is a .l-complete prime ideal I in the set algebra of all subsets
of A which is not a principal ideal . As a non-principal prime ideal, 1
must contain all one-element subsets of A ; since, in addition, I is .-
complete, it must also contain all subsets of .1 with power < .l . Hence,
by (1),

(3)

	

Ro e I for every ~ < A .

Let

(4)

	

F(~)

	

< A,

	

~, and ~ 96 C} for every < 1.,

and

(5)

	

J = {~ I ~ < .i and F(~) e I} .

Notice the following formula which easily follows from (4) and the
definition of a ramification system :

(6)

	

U g :5 tRs = R4 U U nc,,F(q) for every ~ < .i.

whence, in particular, for ~ _ 0

(7 ) A = RO U UgeR . F(n) .

We now define by transfinite recursion a sequence Te [S(.i)] z satisfying
the formulas

(8)

	

To = Ro J,

(9) T4 _ [R, n n,,F(µ(T;))] - J for every ~ such that 0 < < .i.

We shall prove by transfinite induction that

(10)

	

T4 0 0 for every ~ < .i .

Consider first the case of To. By (3), Ro a I. If R o s J, then, by (5),
F(~) e I for every ~ e Ro . Since, by (1), x(RO ) < .i and the ideal I is .-
complete, this implies

UneRF(q) e 1 .
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Hence, by (7), A E I, which obviously contradicts the assumption that
I is a prime ideal. Thus R o - J :A 0, i.e., by (8),

(11)

	

To 0 .

Assume now that

(12)

	

0 < B < A, and T 4 :00 for every ~ < B.

Then µ(T4) a T, whence, by (7) and (5), u(7' 4 ) 0 J and F (µ(T c)) 0 I,
for every ~ < 0. Since I is a A-complete prime ideal, we conclude that

(13)

	

n,< eF(u(Tg)) 0 I .

Furthermore we have

(14) n~<eF(N(T4)) ReVU,, EBF(q), whereB=Re n n4<e F(u(T4)).

In fact, if

(15)

	

ce n,<.F(µ(T4)),

then, by (4), µ(T g ) C and µ(T4) # C for every g < 0. Since, by (9),
p(T c ) a T 4 g R,, we infer that C 0 R 4 for any ~ < 0 and hence a Ro
for some a >_ 0. Therefore, by (6), either C e Re or else there is an n e R e
such that C e F(q) ; in the latter case we easily infer from (4), (15) and
the definition of a ramification system that

n e n c<0F(µ(T4)).

The inclusion (14) has thus been established . If now

B = R en n c<eF(µ(T4)) g J,

we obtain, by (5), F(n) e I for every n e B . Since, by (1), K(B) < A and
1 is A-complete, we conclude that

Hence, by (3) and (14),

U a E BF(n) e 7.

n e<9F(N(T4)) c- I,
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in contradiction to (13). Therefore B - J 0, i .e ., by (9),

(16)

	

TB

	

0.

Thus, (11) holds, and (12) always implies (16) . Consequently, con-
dition (10) has been shown to hold .

By (10) we have µ(TS) e T, for every ~ < ~ . Hence, by (9) and (4),
µ(7g) e F(µ(T,)), i .e., µ(T,) µ(T,) and µ(T,) u(T,) for all ~ and ~ such
that ~ < ~ < R . In consequence, the set

A= {y(7g) I~<~J
is well ordered by the relation and has power R . Since this contradicts
(2), we have to reject our initial supposition and assume that A has the
Property P 3 , and this is what was to be proved .

As was mentioned in §2, the property P 3 fails for the cardinal = co .
Hence, by Theorem 4 .2, the property Q fails for A = w as well . This
can easily be proved directly ; the result is known as König's theorem
(or as the theorem on the passage from finiteness to infinity) ; see [8] .

Except for the case A = co, the results obtained so far in this paper
do not help us in answering the question whether the property Q ap-
plies to a given (so to speak, "constructively" defined) cardinal A .
In particular, we do not know whether Theorem 4.1 can be extended to
accessible cardinals, nor do we know whether the converse of The-
orem 4.2 holds ; hence we cannot use Theorem 1.3 or Theorem 2.2
in order to show that every accessible cardinal has the property Q .
Thus, the problem whether Q applies to accessible cardinals must be
attacked by direct methods . It was shown a long time ago by Aron-
szajn that Q holds for A = co{ (i .e ., A = co,); for the proof see [9] .
Recently it has turned out that, under the assumption of the gene-
ralized continuum hypothesis (K+ = 2*' for every infinite cardinal
K), this result can be extended to all cardinals A of the form A = v+
where v is a regular cardinal . The proof of this result is given by Spe-
cker in [23] ; it is rather involved and will not be repeated here.(10)
On the other hand, it can easily be shown that Q applies to all sin-
gular cardinals ; see [14] . Thus, assuming again the generalized con-

(lo) Donald Monk has pointed out to us that, by analysing the argument in [231,
one obtains the following result independently of the general continuum hypothesis :
Q applies to all cardinals A of the form d = v + provided v = vn for every 7r such
that 0 < :r < v (and hence, in particular, it applies to all cardinals d = v+ where v
is inaccessible) .
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tinuum hypothesis, Q proves to hold for all accessible cardinals .i ex-
cept those of the form .i = v+ with a singular v . It is still an open prob-
lem (even under the assumption of the generalized continuum hypo-
thesis) whether Q applies to those exceptional cardinals as well .(11)
Since we do not know whether the property P2 applies to any in-

accessible cardinal A > w, Theorem 4 .1 is of no help in discussing
the problem whether the property Q applies to any such cardinal .
We shall return to this problem in a later part of the present section .

We agree to say that a cardinal A has the property R if there is a
A-distributive Boolean algebra which is A-generated by a set of power
A and which is not isomorphic to any R-complete set algebra. As is
easily seen, in case A is inaccessible, every A-distributive and, more
generally, every A-complete Boolean algebra which is A-generated
by a set of power A is itself of power A (and conversely) ; under the
generalized continuum hypothesis, this remark extends to all regular
cardinals A .

THEOREM 4.3 . Every inaccessible cardinal A which has the pro-
perty R also has the property Q .

PROOF . By hypothesis, there is a A-distributive Boolean algebra
2I of power .i which is not isomorphic to any A-complete set algebra .
Hence some proper principal ideal of W cannot be extended to any
A-complete prime ideal ; in other words, there is an element a e A such
that a 0 1 and a 01 for every A-complete prime ideal I of W. Let f be a
function which maps A onto A in a one-one way and for which f(0) = a .

We put
(1) G = {g I there is a < A such that g e A~, g (0) = a, in case 0 < ,

g (1) =f(t;) or g(ü) _ - f (~) for every C < ~, and Y_á, ~g (C) 01} .

As is easily seen, <G, ~> is a ramification system (functions being
considered as sets of ordered couples) . If g e G, then, by (1), there is
a uniquely determined ordinal ~ < A such that g eA4 ; clearly is the
order of g . For every ~ < A there are elements g e G of order g . This
is obvious in case ~ = 0. If ~ > 0, define h e A4+2 by putting h(0,0) _
h (0,1) _ - a, and h (C, 0) = f(C), h (C,1) _ -f(C) for 0 < C < ~ . Then

fl,~ En<2h (C, q) _ - a 0 0 .

(11) In 13), p. 328, it was -erroneously stated that, with the help of the generalized
continuum hypothesis, the property Q was shown to hold for all accessible cardinals
A; the result was ascribed to Aronszajn, who actually obtained it only for A - co
(without the help of the continuum hypothesis) .
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Hence, by A-distributivity, there is a k e V such that

f1c <fh ((, k (C)) 0, i .e ., L < f - h (C, k(C)) # 1 .

We now define a function g cA4 by letting

g(C) _ - h (C, k(C)) for every C < ~,

and using (1) we easily check that g is an element of G with order t .
Thus our ramification system <G, S> is of order .i . For each ~ < R
the set of all elements g e G of order ~ has power <--_ 2 -k«á and hence
< .i (since .i is inaccessible) .

Suppose now that G has a subset H of power A which is well ordered
by s . Let

(2) 1 = {x I for some g and ~, g e H, ~ < .i, g e Ar, and

x <

	

< gg (c)) .

Clearly, I is an ideal in II . By (1) and (2) we have a e I and 1 ~ I . Let
x be any element of A. Since f maps A onto A, there is a ~ < A for
which f(~) = x . Since H has power A, H must contain an element g
of some order 0 > ~ . By (1), g (~) = x or g (~) _ -x whence

x < L <gg (C) or - x <_ YC <eg (~)

Therefore, by (2), x e I or - x e I . Consequently, I is a prime ideal .
Finally, from the facts that A is inaccessible and hence regular, and
K(H) _ A, we conclude that for every set K s H with K(K) < A there
is an h eH such that

U,ERg s;; h .

This clearly implies by (2) that the ideal I is .i-complete . Thus our
supposition leads to a contradiction, for the element a does not be-
long to any .i-complete prime ideal .

Consequently, the ramification system <G, s;> has all the properties
listed for Q, and the proof is complete .

It is shown in [14] that the converse of Theorem 4 .3 also holds .
Thus, the properties Q and R turn out to be equivalent for every in-
accessible cardinal A.
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As an immediate corollary of Theorems 2 .2, 4.2, and 4.3 we
obtain

THEOREM 4.4. Every infinite cardinal ) . which has the property
R also has the property P3 .

We turn to the problem of determining those individual cardinals
and classes of cardinals to which the property R applies . The results
obtained so far in this direction have a rather scattered character .

First, it is well known that R fails for A = of ; this result is a special
case of Stone's representation theorem . Secondly, we have the following

THEOREM 4.5 . If 2 is a singular cardinal satisfying the formula
2 - v < A for every cardinal v < .i, then A does not have the property R .

PROOF. Let W be a A-distributive Boolean algebra which is A-ge-
nerated by a set G g A of power .i . Hence i is R-complete and there-
fore, .i being singular, W is A+-complete. Making now use of the fact
that 2 •° < .i for every v < A, we easily conclude that 9 is .+-distri-
butive. From this we infer that W is atomistic ; in fact the set

{y 1 for some f, fe Pxéc{x, -x} and y = jj,, Ecf(x) 0}

is the set of all atoms of W . Thus the Boolean algebra W is .i-complete
and atomistic ; hence, as is well known, it is isomorphic to a .-com-
plete set algebra . Since this applies to every A-distributive Boolean
algebra which is R-generated by íl elements, the property R does not
hold for .1 . (For an elaboration of some details in this proof compare
[22], pp. 239-240.)

Many cardinals can be constructed which satisfy the hypothesis
of Theorem 4.5; the smallest of them is the cardinal 2 determined by
the formula

where v o = w, and vg, 1 = 2* vg for every ~ < co .

The generalized continuum hypothesis obviously implies that every
singular cardinal satisfies the hypothesis of Theorem 4 .5. Hence we
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see that, under the assumption of the generalized continuum hypo-
thesis, no singular cardinal íl has the property R .

As was mentioned before, Q holds for all singular A's . Thus, in
general, the properties Q and R are not equivalent; at any rate, the
equivalence does not hold for singular A's . By comparing Theorem 4 .5
with Theorems 1 .1, 1 .3, 2.2, and 3 .1, we see that R is not equivalent
for singular 2's to any of the properties P,-P 4 .

On the other hand, we do not know whether R is equivalent to any
of the properties P I-P4 and Q for all regular A's . The problem whe-
ther R holds for all, or at least for some, regular accessible cardinals
is still fully open (even under the assumption of the generalized con-
tinuum hypothesis) .

In this situation the following fact appears to be especially interes-
ting: it has recently turned out that R applies to a very comprehensive
class of inaccessible cardinals A > w ; see [28] . By virtue of The-
orems 4 .3, 4.4, and 3 .2, this result automatically extends to proper-
ties Q. P 3 and P4 . At present we cannot define "constructively" a
single inaccessible cardinal A > w of which we could not show that
it possesses all these properties . Nevertheless we are still unable to prove
that properties P 3 , P4 i Q, and R apply to all inaccessible cardinals
> w without exception ; and from the remark which concludes §t
it is seen that the new results have not yet been extended to the pro-
perties P, and PZ .

Concluding remarks
In addition to the problems treated in this paper, numerous out-
standing problems in several branches of abstract mathematics which
involve in some way the notion of an inaccessible number have been
discussed in the literature ; many of them exhibit exactly the pattern
described at the beginning of this paper . For further problems in the
general theory of sets see [4], [6], [12], [2] (graphs) ; and [25], [26],
[29] (covering theorems and ideals in set algebras) . Various related
problems in the theory of Boolean algebras are studied in [22], sec-
tion 3. For problems in the theory of Abelian groups see [10], [17],
and [33]. Some problems in abstract analysis are discussed in [11]
and [32] (the measure problem) ; problems in topology are discussed
in [13] and [20] (compactness of Cartesian products) . Finally, we
refer to [5], [7], [15], and [18] for problems in metamathematics
(logics with infinitely long formulas, model theory) .
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