GRAPH THEORY AND PROBABILITY. 11
P. ERDOS

Define fik, {) as the least integer so that every graph having [(k, I) vertices
containg either a complete graph of order £ or a set of { independent vertices
{n complete graph of order & is & graph of &k vertices every two of which are
connected by an edge, a set of I vertices is called independent il no two are
connected by an edge).

Throughout this paper £, ¢s, . . . will denote positive absolute constants. It
is known (1, 2) that

& Mo <san < (CEY),

and in a previous paper {3) 1 stated that | can prove that for every « > 0
and { = I(e), f(3, 1) > I*= In the present paper I am going to prove that
gal”
2 3,1) >,
I: :] fl: v :I {].Clg E'}.

The proof of f(3,1) > " was by an explicit construction, | ean only
prove (2} by a probabilistic argument, and [ cannot explicitly construet a
graph which satisfes it. The method used in the proof of (2) will be a com-
bination of that used in (3) with that in my recent paper (4) with Rénvi, It
is possible that (2) can be strengthened to (3, I) = ¢f?, but it seems impossible
to improve (2) by the methods of this paper

TaeowrsM. Let A be a fixed, suficiently large wumber. Then for every n > nn
there &5 a graph O kaving n vertices, which coniains no triangle and which does
not contain a set of [And log 0] = x independent vertices.

Clearly our theorem implies (2).
To prove the theorem put ¥ = [#**/A4V"]. Denote by ™ the complete
graph of n vertices and by &% anyv of its complete subgraphs having x ver-

tices. Clearly we can choose 8% in (r) ways. Let

i
(3) @, 1<ag (2) =t

v

he an arbitrary subgraph of 6™ having v edges (we use the notations of
(3)). Now we need
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LeMMa 1. Admost all 8, have the property that for every 830 there 5 an
aidge €, o contained in both O, and B9, whach is not contained in any trigngle
awhese edpges are in O and whose thivd pertex iy wot fn 80,

“Almost all” here means for all but o(f) graphs G, We coulid prove
Lemma 1 even if we would omit the words “and whose third vertex is not
in &' but the proot would become very much more complicated, and
Lemmia 1 suffices [or the prood of our theorem,

The proal of Lemmia 1 will be difficult and we postpone it Assume that
the Lemma has alreidy been proved, then it is ensy to prrove our theorein.
Let (3. be one of the graphs which satislv Lemmma 1, We construet o suh-
graph 3. as follows: Let e/, e, .., e, be an arbitrary enunieration
of the edges of $,. We pur e C 6L and we have ¢ C 6,™ (1 < bk <)
if and only il &' daes not form o triangle with the edges e/, 1 = +< &
which we had already put in B, 3,2 has n vertices, contains no trisngle,
and does not contain g set of ¥ independent vertices, The first twa statenents
are obvious; now we prove the third one, It will suffice to show that for
every S S My . s not empty, Consider theedge ca, = &, (see Lemuna 1),
if it is contained in 8, our statement is proved, if not there must exist a
triangle ey, ey 6 (1 < 7. 7 < 1), whose edges are all in 8, But by Lemma |
the third vertex of this trimngle must be alse in 6839, thus g C G0, o O g
or ¢, and ¢, are both in G O G, This completes the prool of our third
statement, and thus il we put 5, = & the proof of our theoren is complete,

If we had proved Lemn 1 o the stronger [orm without the words el
whase thivd vertex is not in 890" we could have defined 8.9 as the union
of those edges of (8, which are not contiained in any triangle of 68,07,

To complete our prool we now have to prove Lemima Lo First we need
some lemmiag. Denote by F,0807) the number of edges in 85, eonnecting
the vertices in (3 with the vertices not in G,

LEMMA D, For afmast all (9,5 we fave
@) max E,(67) < [n

Y =m

. ; W : : i
where the maoxinun s taken over all the (1) Ppassible chotces ot (8§17,
We could easily prove the lemma with (1 4+ 010324 %, but (1) will suffice

for our purpose.
The number N (m) of a's for which (1) is not satisfed is not greater than

() ﬂ:(m}{(i)(""{”_‘“) (3)_’” c;(“)(”) (g) Sl

i N m
N — ¥—m

- ¥ i . .
T'o prove (5) observe that there are (J,,) choices for 8@, and the number

of edges in B eonnecting the vertices of 6% with those not in ®F s
aln — x). Thus (5 follows by o simple combinatorial argument,
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In estimating hinomial eoeficients we will make use of the following simple
inequalities

(6) (:) = :—| = (?)
Gz =,

andd
(u)
2 _
5 = i . = i for ned.

. 21 T3

From (3}, (G), {¥), and {8) we have (by substituting the values of x, ¥, and

i)
; ; o eme Y\ 3™ o 10xy\™
Mi{m) /1t < n (—m) (?13) < n ( ﬂm) = p(1},

which proves the lemima.

Lemyma 3. For almost all &, fhe degree of every vertex of "™ 15 less than

[0(z)] -+

By a theorem of Rénvi and mivsell (4) it (ollows that p can be replaced by

i
u-+nunu(f).

but the weaker result will suffice here.
The number of a's for which the condition of Lemima 3 15 not satished is,
by a simple combinatorial argument, less than

i (‘II) - ( u) N
n(ﬂ ) 2 P 4 n(n) 2 P '
2N\ y-»p PN y—-»
{since the number of 8. for which a given vertex has degree > pis

e

and there are n possible choices for this vertex). From (G}, (71, and (&), we

hawve
" f a N
n(")((h‘) - /r < u(ﬁlx) < u(f;") = o(1),
BNy 3 '

which proves the lemma.
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Put
m 5y = [2%0%9 |og n], § =0, Laas
and
w—[ e ] i'urﬂé:f{ilug,ﬂ
= | T 7 log
140, P+ 1) | i
lﬂ.r; = f:;:l i::rIIUg b

We shall sayv that 8. has property &, i there exists a 839 and an @ > 0 so
that there are at least w, vertices not contained in &', each of which is
connected o 8, with at least z, vertices of (8%,

Lemma 4. Ple nuncber af graphs 82" whick have properiy Py for some i
i all).

Since by Lemma 3 we can assume that the degree ol every vertex of 9,2
is less than g, we can assume that lor sufficiently large A

E ¥
: ot | i — B ; Tl
(11 20" logn < p [lﬂ(‘[)], or 20 < l!(rgn

Thus there are less than log # choices of ¢, and it will suffice to show that
for every ¢ satisfving (11) the number of o's for which 3. satishes £ is
alt/log ). Denote by W, the number of o's for which 8, satisfies P, A
simple combinatorial argument shows that

B O i

— Ty
To see (12) observe that there are (::) ways ol choosing (% (ﬁ;x) WaNE
& i
of choosing the @, vertices not in &%, which are connected with at least =z,
vertices of GV5 (f )m1 ways of choosing the vertices in 8% with which the

w; vertices not in ™% are connected in (3,". For the remaining v — w3

[
g ] T WE

¥ —

edpes of B, there are clearly

choices; thus (12) is proved. From (12} (6), (7)., and (8) we have, by
Xy = .Il #* log n,

IT’ ()(J)C) (’_f) —we /, { ﬂm(qz?)»,-:.- }

(13) ¥ — wiE

, l.J,,,,,(IL'I.-I!‘ logr ﬂ)”""
| e "
&
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Now 27 = osince 3 2 [AY log u]. Thus 29 > q¥: hence from (13), by
substituting g, = [2°4%% log u], we have [or sufficiently large 4

. ” :;m__lig Wik o 1 mizi
(1) T‘”(W) <w{zh)™

Assume first 0 < § < Y logw. Then from () and (10} we have
{15] Wy 2",—&%? > ni.
From (14) and (15) we have (exp u = ¢}

{16) 9—} <u Exp(—ﬂilug o = a(%) :

Assume next ¢ > Hlog e, From (9, (10), and (11} we have, by { < logn
for sufficiently large _[,

A i
{17} Wy = '__;?%;.ﬂ'—?i > A log .

Thus from (14) and {17), by 25 Zogliih

93 4 g
(18) ;E—‘ < #®exp(—4" 0} log n)* /10) = a(,—})
for sufficiently large o1, Equations {160 and (18} complete the prool of
Lemma 4.

Lesevea 5. cllmest all 8.5 have the properiy thal for every B0 there are move

X ; ; ; ; ;
than .‘5(0) eilges of BV qwhich do nel occur {noany triongle, the other fwo sides

)

af whick are dn O, wid whose thivd vertex is not in 990,

We could prove Lemma 5 even il we omit the words “ind whose third
vertex is not i 69" hot the proof would be more complicated and Lemma 5
in its present form suffices for our purpose.

Denote byvoae™, male?, L o wer® the number of edges in 63, which con-
nect the n — a0 vertices of G pot in &% with the vertices of 3, The
number of edges of B9 which are contained in triangles the other two sides
of which are in &, and whose third vertex is not in 8% gs elearly ot most

s (1)
d=1 2 '

Thus to prove Lemma 5 it will suffice to show that for almost ull e we have
for every choice of &

n-g (%)
) £67<0-
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By Lemma 4 we can assume that 8,™ does not satisfy Py for all £ > 0. But
then the number of indices j for which %, = z; is not greater than =, for
all 4 = 0, or by {9 and {(10) and w, = n

=g ”’E\‘t]) (;HI) ?‘Ezﬂldﬂs“ﬂg ?3]!
(20 JE=! = Zl Wy < - L (i + 1]1_ -+
22 4 og n)*
g 4% !

where in E,ﬂﬁ’;i{ilogn: and in E.%logn <1< logn
1 g

by (11}, Thus, finally, from (20},

n—r {e) ?
” : ¢ o3
JZ—I (2’ ) < '1:)_'*-*1"' nilogn)® + 44 (logn)* < 2 (2)

for sufficiently large A, and this proves the lemma.

Now we can prove Lemma 1. It suffices to consider those 8,0 which
gatisfly Lemmas 2 and 5 {since the number of the other graphs is o)), Let
% be a fixed graph having & vertices, We are going to estimate the number
of graphs &, which satisfy Lemmas 2 and 4 and which fail to satisfy Lemma |
with respect to (3 (that is which do not contain an edge e, - G ) 3,00,
whete €. ;15 not contained in any triangle whose other two sides are in &,
and whose third wvertex is not in 3, Let us assume that we have already
chosen the n edges e, ea™, . . .| &, {u = u;) which connect (in &,"™) the
vertices of 8 with the vertices not in 8%, Since Lemma 2 holds we have
i<l wt% The nomber of the @™ for which g%, es®, 000 gt are all the
adges which connect the vertices of 68 with those not in 3 clearly equals

() —
@ 2/ TEVETE) = e, oL 6,

¥ — U

: . n
since we have at our disposal 9

. x .
v — u of them. But by Lemma & there are at least .J_,(D) edges of B% which

) — x{# — x) edees and have to choose

do not form a triangle with any two of the ¢'s 1 < 7 < «, and il we put
amy of these edges in 8, Lemma 1 will be satisfied. Hence the number
Wies . ..o 6™ of graphs, which do not satisfy Lemma 1 with respect to
## and for which the edges connecting the vertices of %% with those not
in @ are g, .., e, satisfies (< ' < /2 for n > me(d))

" 1 fx
(22) Ll (Y T T (2) = Big)=p (2) '
j.f —
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Thus from {21), (22), and {7}, we have

n ; INEARY
*R'(e‘i"’.-u.ei”]}{ (2)"“”"‘}‘2(2)

T, o oo s ) (,1)
ay — x{n — x)

2wl : |
x x }1)
<11 = — ]
( Eni) = E"F( in
Since (23) holds for all choices of ', .., , &' which satisfy Lemmas 2

and 4, we obtain that the number of &, which satisfly Lemmas 2 and 4
but do not satisfy Lemma | with respect to 8% is less than

(24) ¢ &xp( = ;Tf’) .

Sinece these are (2) choices [or 3% we obtain from (24} and Lemmas 2

(23}

and 4 that the number of graphs 8, which do not satisfyv Lemma 1 is less

(S

i y
!(:) exp(—ﬁ) + oft) < texplx log n) Exp(—:—.’ﬂ) + oft)

= texp{(1 + o(1))4n}(log n)*) exp[— (1 + o(1))4"*n (log #)* /4] + o(t)
= ﬁ'{“l

which completes the proof of Lemima L. Thus our theorem is proved.

The difficulty of trving to lmprove our theorem by the methods used in
this paper is due to my beliel that there exists a constant ¢; = e3{d) so
that almost all graphs . eontain an independent set of [eam® log n| ver-
tices. | am unable at present to prove or disprove this conjecture,
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