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To THE meEMorY oF 1. BcHUuR

1. Introduction

1, Let n = 3, and let Q. denote the class of polynomials f{(z) of degree n
satisfying the condition | f(z) | = 1in the interval —1 £ z = +1. Let @.(x)
denote the subelass of @, characterized by the further restriction f(x) = 0.

A well-known theorem of A, Markofi' states that |f'(z) | < »' for =1 3

z = +1 provided that f(z) e Q. ; here | f(z) | = n" holds if and only if z = =1
and fir) = =T,(z), where T.(x) denotes the n'* Tchebycheff polynomial. We
observe that 7'.(z) does not belong to the classes @.(=1).
- Bome years ago I. Schur' proved the following interesting theorem: Let
—1 = m = +1, and let fz) belong to Q.(z). Then |f'(z) | < 3n’. Moreover
he showed: Let m, be the least positive constant (depending only on n) such that
[flxe) | = ma-n® for all fz) e Qulzs), and 2o in —1 = 2 = +1. If u =
hm SUPs—w Min , then

{1.1) 0217 -+ = p = 0465 -+,
Obviously

(1.2) MW =  max max | f(z0) |.
—igzes+1 F(2) ¢ Uning)

The main purpose of the present note is to determine the constant g and the
polynomial f(z) for which the extremum (1.2) is attained. In terms of the con-
stant m. , we obtain & bound for the derivative f*(z) of a polynomial f(z) which
satisfies the condition that |f'(z) | has a relative maximum at the point z
gonsidered.

-2, Let u,(x) be the polynomial of the class Q.(+1) for which u, (1) i5 @ mazimum.
This polynomial w.(x) = u.(x; 4.) can be determined from the transcendental
equations (2.5), (2.6) and (2.17) of §2 (see below). It is a special case of a
remarkable cluss of polynomials wu.(r; 4) considered first by G. Zolotareff

VA Markoff, On a certain problem of D). I. Mendeleioff (in Russian), Zapiski Imperatorskei
Akpdemii Nauk, vol. 62 (1880), pp. 1-24.

1 Behur, Oher dos Marimum des absoluten Betrages eines Polynoms in einem gegebenen
Intervall, Mathematische Zeitschrift, vol. 4 (1819), pp. 271-287,

33 Zolotareft, (a) On @ question concerning a minimum value (in Russian), Dissartation
0 venia legendi,'” published in lithographed form, 1868, Oeuvres, vol, 2 (1602}, pp. 180-
ib) Application of elliptic functions do questions concerning funclions which deviate the
from zero (in Russian), Zapiski Imperatorskoi Akademii Nauk, vol. 30 (1877), Oeuvres,
2 pp. 1-59; (&) Sur Fapplication des fonclions elliptigues guz questions de mazime ef
it; Bulletin de 1'Académie des Beiences de St.-Pétersboure, series 3, vol, 24 (1878),
pp. 305-310, Mélanges, 5, pp. 418426, Ocuvres, vol. 1 (1931), pp. 360-374.
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playing also a role in the important investigations of W. Markoff.* Rme‘nﬂ,w
N. Achyeser” used polynomials of the Zolotareff type in his investigations ma
polynomials of least deviation in two disjoint intervals. With the previous
notation, our main result is:

TaeorREM 1. The extremum m, -0 in (1.2) is attained for zo = +1 and for the
Zolotareff polynomials u.(x) [or for o = —1 and for u.(—z)|, provided n i
sufficiently large. Furthermore

(1.3) lim my, = p

exiafs and

(1.4) p=k"1— EB/K) =03124---,
where k" is the only root of the transcendental equation

(1.5) (K=E+ (1 —FKF)K-(01+KE=0

satisfying the condition 0 < k' < 1. Here K and E are the complete elliptic
tntegrals associated with the modulus k.

A further analysis and discussion of a few special cases furnishes the more
informative

Turonem 2. If n > 3 the extremum ma-n' in (1.2) is aftained in the cases
memiﬂnad in Theorem 1, and only in these cases. If n = 3, il is allained for

= 0 and for the Tchebycheff polynominls £Tyx), and anly then. |

In §§2 and 3 of the present paper we first study as a preparation the general
polynomials w.(z; A) of Zolotareff and the special case uu(z) = wualz; A,) men-
tioned above. The proof of Theorem 1 is then given in §84 and 5, and that of
Theorem 2in §§6 and 7. In §8 we consider two problems of Zolotareff in which
the polynomials w,(x; A) were first used; §0 contains snother application.

The polynomisls of Zolotareff oceur in numercus other related extremum
problems, They satisfy a simple differential equation by means of which they
can be hrought in relationship with the multiplication problem of elliptic
mtegr&l& In what fn]]nws we have tried to reduce the use of clliptic functions
to a minimum."

W, Markoff, Uber Polynome, die in einem gegebenen Intervalle moglichs! wenig von Null
abuweichen, Mathematische Annalen, vol. 77 (1816), pp. 213-258. The Russian original
appeared 1892,

PN, Achyeser, (a) Uber etnige Funkiionen, welche in swed gegebenen Intervallen am wenig-
sten von Null abwweichen, Bulletin de 1" Académie des SBoiences de ' URSS, Classe des seieness
mathématiques et naturelles, seriea 7, 1932, pp, 1163-1202; (b) Ulber einige Funktionen, dic in
gegebenen Tntervallen am wenigslen von Null abweichen, Bulletin de la Socidté Physico-
Mathématigque de Kazan, seriea 3, vol, 3 (1928}, pp. 1-69,

¢ Zolotareff and Achyeser make extengive use of the theory of elliptie funetions; however,
W. Markoff does not,
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2. On the polynomials of Zolotareff

1. It is a classical fact that there is a unique polynomial T.(z} of degree n
(the n'* polynomial of Tchebycheff) having the following property: The curve
y = T.(z), =1 = £ £ +1, consists of n monotonic ares varving between +1
tand —1; T.(1) = 1, and Tu(—1) = (=1)". This polynomial satisfiesthe
differential equation

21 (1 =) = (1 =Ny
from which follows

(22) v = m{n- [[a-erta.

- 2. Weshow that there are infinitely many polynomials y of degree n possessing
(the following property: The eurvey, —1 = & = -1, consists of 8 — 1 monotonic
ares varying between +land —1,y = lforz = 1,and y = (—1)""forz = —1.
Buch a curve necessarily has n — 1 roots in —1 = x = +1 and consequently
pme more outside this interval. If this additional root is >1, y satisfies n
\differential equation of the form

. oy o e (B N C =)
(2.3) il —y) =(1—2 TTA—zF

wherey' = 0forz =4,y =1lforza =B, y= —lforz=C,andl < 4 <
B < (. A similar differential equation holds if the additional root of ¥ men-
tioned above is < —1. (The second case ean be obtained from the firat one hy
‘replacing « by —z.)

Solving the differential equation (2.3), we obtain

(2.4) T {n L (A — (B — 7O — i — d.!}.
From the properties of y mentioned above we find

@5) [:‘ (4 — (B = O07%C = 071 — B dt = (n — D/,
{2.6) f : (A=—0B -0 -0 -1 'at =0,

©n [ U= AVt — BYYC — 7HE — 1)Vt = w/m.

By a well-known application of Cauchy's theorem we see that the sum of the
integrals (2.5) and (2.7) is v, so that (2.7) is a consequence of (2.5).
Conversely, if (2.5) and (2.6) hold, an easy discussion {encircling the singular
points —1, +1, B, ') shows that (2.4) is an analytic function single-valued and
regular in the whole finite z-plane. 1f z — = we find y = 0(| z "), so that y
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must be a polynomial of degree n. Of course it satisfies the differential eq
(2.3), and it has all the properties mentioned above,
For later purposes we note that

[, | [A_l}z e
(5 et 3 T
B L | {A'{"l}‘ = =
(2.9) (=1)"y"' =n B+ D F1 at =z 1.

These values can be obtained from the differential equation (2.3). ,

3. Lesua 1. Of the three quantities A, B, C (1 < A < B < () safisfying
the two franscendental equations (2.5) and (2.6), any one can be P:I'EM?‘I-'BE& arhi-
trarily provided that

(210) 4 > l,orB > LorC > ¢a = 1 + 2a, = 1 4 2 tan’® [x/(2n)]

respectively; the two others are then uniquely defermined, As A increases mono-
tonically from 1 to + =, B and C increase hikewise from 1 fo -+ = and from ey
to + =, respectively.

Furthermore the values of v, y, 3. ™ for aﬁmf::mﬂeast.&aﬂm,m&
values of (—1)%y, (=1)""y', .-+ , 4™ for a fized = not greater than —1, are in-
ereasing functions of A.

The only exceptions are y = 1 forz = Land (—1)"y = —1forz = -h,
In particular, the expressions (2.8) and (2.9) are respectively inereasing and
decreasing functions of 4.

In order to prove this Lemma, let B denote a fixed value, greater than 1,
and let €' be variable, such that C > B; we define 4 = A(C) by (2.6) so that
1 <4 < B. Then

fldA 1A —1 i -y t :
L (E 'EE':—t)(B—ﬂ (C— o™ — 1)y dt = 0;
henee
o8 e ld =k
ac 20—
Now consider the function A(() defined by the left-hand member of (2.5), where
A = A{C). Wefind

N(C) = LH (% ;g ){B — e — 07 — &t

where 1 < i, < B,

ai EI (% 3—: :: ; g )(B - 07 - 7M1 — M de <0,

so that A(C) is decreasing. Let C' — B; then from (2.,6) we see that 4 — B,
so that
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#1
AC) — f (1 —&dt = o,
1-»: hmedﬂ. M) = 0, the equation MC) = (n — 1)x/n has precicely one

4. Further let p(z) and ¢(z) be two apecial cases of (2.4) corresponding to the

wvalues A', B', (" and A", B", C" of A, B, C, respectively. First suppose that
1) < ¢'(1). Considering the polynomial 3(z) = p(x) — glx) at the n points
1 =% = 41 at which p(z) = L1 and assuming that &{z) = 0, & familiar
ment furnishes the existence of m — 1 distinet points +1 > 5 > m >
> fn-1 > —1such that 8(m) > 0,8 (n) <0, - . Furthermore §'(1) <0,
that 6'(z) has n — 1 roots (that is, all its roots) in —1 < 2 < +1. The same
olds for 8" (x), 8" (x), + - - sothat 6(z) < 0, 8(x) < 0,§"(x) <0, - forz 2 1
ept. that &(1) = 0], and also (—1)%(z) < 0, (—1)"%(x) < 0,
YY) < 0, - forz S —1 [except that 8(—1) = 0]. From this we
ly conclude that the relations 4' < A" B .< B" ' < €' hold for the
onstants corresponding to pix) and g(z).
I p/(1) = ¢'(1) the previous argument still holds good [unless &(z) = 0],
except that 6'(1) = 0 so that the roots of §'(x) arein =1 <z 5 +1. Conse-
ntly 8'(z) < Oforz > 1. Interchanging p(z) and g(z) we obtain &(z) > 0,
> 1, which is a contradiction; so that in this case pix) = g(z), 4’ = 47,
‘-' BH' cfp‘ m— Cr.f.l'

me the previous considerations we conclude that B and € are incressing
funetions of A. It remains to calculate the mits of B and ¢ as 4 — 1 and
+=. In the former case, (2.6) shows that B — 1, and from (2.5) we
in £ — ¢, sinee the equation

[0+ 07 = o7t = (o = 1am

the unique solution v = €¢.. II 4 — <o it is pbvious that B — + =,
—+ 4=, This completes the proof of Lemma 1.

In what follows we denote the polynomial (2.4) [for which (2.5) and (2.6)
| by y = t.lr; A). We note that, from (2.4) and (2.10),

Unlz; +1) = lim wa(x; A)
A=r]

- cns{n.fl:l-Ft}_*fﬂn—ﬂ_ldi} = —-T(f:_:)

e un(+1; +1) = 0. Also
wa(+1; +1) = —(1 + @) "Thleos (x/n)] = —}a® cot® [x/(2n)].

eae considerations require only alight modifications if we replees the right-hand
berain (2.5) and (2.6) by sw/nandx — wr/n, L S92 n— 1. The resulting polynominls
en used for varions purposes by Achyeser; see loe. eit.
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Further, let 4 — + = #o that B — 4= and € — + =, From (2.5)
(A —t)(B—t)7HC — )™ = (n — 1)/

where # is a suitably chosen number between 0 and 1. Henee 4(BC)™
1 — 1/n, so that, from (2.4), :

(2.13) Ua(2; +2) = lim a4 = T (),
Henee

(2.14) un(+1; +=) = (n — 1)%;
(2.15) Un(+1; + ) = dnln — 1'(n — 2).

Therefore, as A inereases from 1 to + e, un(+1; A) increases from 0 to
(n — 1)%, and un{+1; A) inereases from the negative value (2.12) to the positive
value (2.15), corresponding respectively to 4 = 1 and A = +=. There 18
precisely one value of A4, 4 = A, , for which u,(41; 4,) = 0. We denote the
corresponding values of B and € by B, and C.. Tn §§4 and 5 we shall prove
that the function u.(r; A.) furnishes the solution of I. Schur's problem formu-
lated above, provided n is sufficiently large.

From the differential equation (2.3) we obtain

" i -— ] {A - 1)! 1 {-& A 1}’
a1 4) = +n B — I:H:c = 1}{“ EB — 1)@ — 1)

2 1 1
_1_2(A—1-B—1_G—1)}*.

so that the condition u,(41; A) = 0 is equivalent to

i (4—=1} 2_1_1)

@) e H‘E(a =1 F—1 0=1"
The transcendental equations (2.5), (2.6) and (2.17) determine the constants
A=A, 8B=B8,,C = C,uniquely. These constants depend only on n.

The polynomial ¥ = w.(r; 4.) is completely determined by the following
conditions: The surve y, — 1 = = = +1, consists of n — 1 monotonic arcs
varying between +1and —1,y = lforz = L,y = (—1)" "forz = —1 and
' =0forr =11,

(2.16)

3. The limiting process n — =

1. First we prove the following
Lemma 2. The constants A, , B., C. deﬁmd by the transcendental equations
(2.5); (2.6), (2.17) satisfy
lim n*(4, — 1) = a%/2, lim n(B. — 1) = b*/2,

lim »%C, — 1) = ¢'/2

where 0 < a < b < e. The numerical values of a, b, ¢ are given in (3.17).

(3.1)
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By Lemma 1
lim inf n'(C. — 1) 2 /2
and from (2.17)
vl =g 2 2
i s (e i N s
(3.2) WA — 1! + 20%(4. — 1) Z 20%(Ca — 1),
g0 that
(3.3) lim inf (4. — 1) 2 (1 4+ #) — L

o

The same inequality holds if we replace A, by B, .

On the other hand, let us assume that n*(C. — 1) — + = for & proper sub-
sequence n = n, as v — =; then, from (3.2), n’(4, — 1) — +=, =0 that
'ﬁ'fE,. — 1) = + . Therefore, by (2.17), for the same subsequence n = n, ,

{An = 1}! L4
{(Bx — 1)(Ca — 1)

Now let w be a fixed positive number; for large n, from (2.5),

(3.4) 0,

b & [:1{1 — AVl — (A — O(Ba — §7(Co — 7]
i
(385) >n [ doll — (4 — cos @)(Bn — co8 o) HCa — o @)Y}

- - [ (1 — (s — com (o AY)ER. — ook (MY (Cs — o8 /Y.
(A, — cos (y/n))(B, — cos ($/n))™Cw — cos (¥/n))

< (Aw — 1By — 1)7HC, — 1) {1 4 "Aﬁﬂfs_ﬁfiﬂ}}

and since forn = n, ;85 v — =,

ni(l— cos(y/n) _ o
ni{ds — 1)

uniformly in , for 0 = ¢ = , we find ¥ 2 w. This is a contradiction if we
choose w > 7. Thus we have proved that the points of accumulation of the
sequences a*(4, — 1), n*(B — 1), w'(Ca — 1) are positive snd finite.

- 2. Now let n = n, be a subsequence for which the limits (3.1) exist, where
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D<a=b=e<+=. From(2.5), (2.6) and (2.7} we shall derivea < b <
and

(3.6) f (1 = @ 4+ W0 + 07N+ w) Y du = m,
3.7) _£ @ — 0 — &HE — T du =0,
(3.8) j; (f = a)® — b H — W du = .
Also from (2.17) by the same limiting process (n = n, , » — ),
(3.9) %,—4(2;—512—;2)=u.

Instead of (3.7) we can show more precisely

s j: (e = O(Ba — 170 — 74 — 1)t
by [ (@& — W) — e — w

n [ = 4B~ D7HCL — 07 - D

(3.10) J

8

the two limits being the same.

First, (3.9) is obvious and this equation shows that a = 1§ = ¢ is LmPombi@
In case @ < b = ¢ both formulas (3.10) follow easily [writing ¢ = 1 + w'/(2n)];
but the first limit is finite and the second one turns out to be + =, which ia"'i
contradiction. In case a = b < ¢ the same formulas can be mﬂy eatablished
again, but the first limit iz positive whereas the second one is 0 [since
max{(t — A(Ca — 7€ — 1)), 40 = ¢ < B, is bounded]. Therefore
a<b<e _

Now (3.7) and (3.8) follow directly, and (3.6) can also be easily obtained.
However (3.6) follows also from (3.8) by applying Cauchy's theorem to

fi2) =1 — (@ = —H N - H7?

integrated along the half-cirele | 2 | = R, %z = 0 and along the segment iz = 0,
—R = 3z 2 +&, R—*‘|‘°°

3. Substituting ' = b sin® ¢ in (3.7) and o* = & — (¢ — b*) sin’ ¢ in ISS‘#
we find

N |
W, ";b {“g 3 ﬂl}{:ﬁ' _ :}-i{ﬁl 8 ﬂﬂ}_‘fﬁtﬁ

wid
(3.11) L (a® — ' sin’ )¢ — ¥ sin’ o)V dp = 0,
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¥
(3.12) _[ [e! — @* — (¢ = b") sin® g} ¢ — (¢ — ") ain’ o]V dp =

Using the standard notation these equationa can be written in the form
(3.13) (1—d/)K = E, B — (@K' =«

where the complete elliptic integrals K and E belong to the modulus & = b/e.
Eliminating a'/¢’ we find

(3.14) E/K + (B — xfe)/K' = 1.
Comparing this with the classieal equation®

(3.15) EK' + E'K — KK' = =/2

we obtain ¢ = 2K. Henee

(3.18) a =4K(K — E), b=2kK, ¢=2K.

The relation (3.9) furnishes the transcendental equation (1.5) of Theorem 1
(see §1) for the modulus k. This equation has precisely one root as k' goes
from 0 to 1 [which shows that the limits (3.1) exist as n — = unrestrictedly].
Indeed, differentiating the left-hand member of (1.5) with respect to &°," we have

KK — B) — 1,

where k' is the complementary modulus. The expression in the curly bracket
increases with k%, as the well-known power series expansion of K and F shows:
it is negative for small &* and positive as i approaches 1. Therefore the left-
hand member of (1.5) first decreases and then increases; but for &' = 0 it is
zero and for &' — 1 — 0 it tends to 4. This establishes Lemma 2.
Using the tables of Milne-Thomson™ we find

E=084---, a*=11.4055-+-, b =43245:-.,
¢ = 47185 .-+, a'/b'¢ =03124---.
We alzo note that (2.4) implies that

(3.17)

(3.18) lim uq(cos (z/n); An) = cos { [ {a* + u)(b* + vy + B} du}

“uniformly in z, for all complex z sueh that |z| = R.
4. Another limiting formula important for the proof of Theorem 1, is _
Luvwa 3. Let A = A, be a sequence of values such that A, — 1 = o(n™).

4 Bee for instance, E. T. Whittaker and G. N. Watson, A course of Modern Analysis,
Fourth edition, 1935, p. 520.
¥ Bee Whittaker-Watson, loc, eit, p. 521,
WL, M. Milne-Thomson, Ten-figure table of the complete elliptic integrals K, K', E, E' and
@ table of 1/83(0| ), 1/83(0]+'), Proceedings of the London Mathematical Society, series 2,
vaol. 33 (1932}, pp. 160-184.
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Denating the mrreapandmg values of B and C delermined from the equations (2.5)
and (2.8) by B, and (', , respectively, we have

(3.19) 1:_:2, uslcos (z/n); An) = —cos {(x* + 2}

The last equation holds uniformly in z, for all compler ¢ such that | 2| 5 R.

We note that (3.19) arises from (3.18) on writinga = b =0,¢ = 7.

For the proof we use an argument similar to that of Part 1. Let w be fixed,
w > 0; we find [see (3.5)]

(3.20) => _L‘dultll — (A7 — cos (y/n))(B — cos (y/n))HC}, — cos (p/m))7H).

Assuming for 4 certain subsequence n = n, , » — = that the limits
limn* (B} — 1) =8, limn*Ch —1) =«
exist, we have 8 = 0,y = #'/2. Thus we conclude from (3.20)

L5 j; dell — /28 + /27 Yy + 2y,

s0 that

G2 wz [ apl— W6 + v+ v,
Now

(3.22) = [awlt -+ Y

consequently (3.21) and (3.22) involve a cuntmd;lctmn, unless 3 = 0,4 = = /2.
Further

ualeos (2/n); AL)
3.23 ;
B { [ (A% — con 9/ — con (/Y HCh = cos (/) dﬂr}.

Nowlet0 < e < v < Rand|2z| = R. Then

[ (4 — cos (/mINBL — oo8 (/RHC, — con Go/m)yHdy

< [ (4%~ con (e/m)(Cl— cos (w/m)ap - [yt + 90t

as n — o= the last integral is arbitrarily small with ¢ Integrating from ¢ to
z, we can assume that f # 0, &= = on the path of integration; and the assertion
follows immediately from (3.23) for n — w«,
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4. PI.'E‘.’If of Theorem 1

In what follows, the symbols Q. , Q.(r:) defined in §1 are used.

I, Lemma 4, Suppose —1 = 33 & + 1, and let fylz) be a polynomial of the
class Qu(xo) for which max | f'(z) |, flz) € Quiz), 2 attained. Then | fulz) | as-
sumes its marimum 1 af least n imesin —1 S ¢ = 41,

The proof follows the usual lines. Let fa(z) > 0 and let us suppose that
the assertion of Lemma 4 does not hold, Denote by 2y, 2a, -++, z3l < n,
the distinet values in —1 = z = +1 for which | fui(z.,) | = 1 and write wiz) =

i fzr —x). H —1 < x < +1 we have my # z, [otherwise 'f;(zp]l would
be (). However if @y = =1 we may have zs = &, in which case wiz) = 0
but w'{zs) = 0.

We form the polynomial

- wlx)
{411] H.Tr} E HEN ﬁ:(l‘,} m + N(IHE{:F Iu.:]' -+ b!
and want to determine the constants a and b such that r'(z) > 0, r" () = 0;
this ean certainly be done provided the linear equations

ﬂml:zﬂ} s b“*"r‘:zﬂ} - G}
20w (20) + bo'(z) = H

have a determinant =0, Now w(z)w'(m) — 2{e(n)}® = 0 is obvious if
wiz) = 0 (cf. above); but if wlz) = 0,

W20 _ o el _ S oy {m’{xﬂ}’
e i) - me-t - {8 <o

Obviously r(z) is of degree [ +1 = n and we find for sufficiently small ¢ > 0
that | folx) + erlz) | = 1in —1 = = = 41, henee folx) + er(z) belongs to
Q.(rs). On the other hand f3(x) + e'(xy) > fo(ze) which is a contradiction.
This proves Lemma 4.

2. Let the extremum (1.2) be attained for the value 2, and for fiz) = fulx),
filx) ¢ Qulxs). Then fi () = 0, and fulz) possesses the property formulated in
Lemma 4. Further we show that fo (xs) # 0. By Lemma 4, | fo(z) | attains
its relative maximum 1in —1 << = < 41 for at least n — 2 distinet points for
which If][:f.} = 0. Sinee fy (x) vanishes an odd number of times between two
‘consecutive roots of £ (z), we find that f; (z) has precisely one simple root between
‘two consecutive roots of fi(xz), and these roots of fo (x) are maximum points of
| falx) |, The number of these maximum points is at least n — 3. If x, is one
of these points, we must have fi (z) # 0. If zpis different from these maximum
points (whose number in this case is n — 3}, then we must have again i () # 0,

‘and thus there is a relative maximum of | fy(x) | at z = o .

If we assume that fo(zs) > 0 then [y (x) = 0, fi (x) < 0, so that falz) has a
relative maximum at @ = @ .
Now we distinguish various cases.
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{(a) 1 = £1.

Let # = +1 and let us denote an extremum p-ul}rnumml of our problem by
Ualz), un(1) > 0, ub(1) = 0. As we showed before, u,(x) has at tHﬂht w—2
and u, (z) at least n — 3 distinct roots in —1 < z < +1. Since ul(1) = 0,
we find that n — 2 is the precise number of roots of uL(r) in —1 <z < +1.
Consequently | ua{—1) | = |ua{+1)| = 1; and, since u,(1) > 0, we find
Uall) = 1, u(=1) = {=1)""

Thus the eurvey = wa{z), —1 £ ¢ = +1, consists of n — 1 monotonic ares:
var}"mg between 41 and —1, and w,(1) = 1, w(—1) = (=1)"", up(1) > 0,
u,. I[I] = (.

Hence from the last remark of §2 we conclude that w.(z) is identical with the
polynomial w.(z; 4,) defined there,

Consequently, under the assumption ry = =1, the extremum polynomials of
our pmb]ﬂm are ua(z; A.) and u.—=x; 4.), respectively. The asymptotie
value of | un(1; A,) | is @ e 0’ [see (3.17)).

(b) —1 < z < +1, and there exists a polynomial g{z) of Q. for which
|0(2) | > [filas) |. Suppose fula) > 0, g'a) > 0.

Consider the polynomial hdz) = fu(x) + elglz) — @)}, 0 < e < 1. Ob-
viously h.(x) e Q. ; furthermore hi(zo) > film). For sufficiently small ¢ there
is & root of k, (z) in the neighborhood of @ , #; say, and hi(z) attains a positive
relative maximum at = x; . We evidently have

he(zs) 2 helm) > fola)
which shows that fs(z) cannot be the extremum polynomial,

6. Proof of Theorem 1 (continued)

The remaining case requires a more elaborate discussion, This case is:

{e) —1 < xy < +1 and fi(zr) s the paijrunmj&liu @, with the maximum vaiue
of f'(zs).

Then W. Markoff has shown' that fy{z) must be one of the polynomials

=Pm), LTl - HT (1 - u) e (z + :z)T

(5.1) 1 +a

ua( kx5 A)

where 0 < & < e, = tan’[x/(2n)], and w.(z; A) are the Zolotareff polynomials
defined and discussed above. As n — oo, the largest relative maximum of
| Tulz) | in —1 < z < +1 is asymptotically M -n" where — M is the minimum
of sin 8/ for real §, that is M = 0.2172 - . Comparing this result with the
asymptotic value of u.(1; A,), that is with a'b "' [see (3.17)], we see that
for large values of n the four first types in (5.1) can be excluded.

I Loc. oit. p. 240,
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As W. Markaff has further shown", fu(z) = =u.(z; 4) if and only if (a) z
‘belongs to certain open intervals in —1 < z < +1, and (b):

(52) 2|l 4

Sinee wn(zy 3 A) #= 0, and u:{x::.\ ; A) = 0, the latter-mentioned condition im-
plies that

(5.3) s=Ad = (A"=1), A4 —=1=(1—2)/(2x),

g0 that 0 < zp < + 1. Now we distinguish again two cases:
()0 < 2o = (1 — 160 %", According to 8. Bernstein's theorem

(5.4) lublz; 4) | = n(1 — N = '/

@D (1 —1n"y* < <1 Thend — 1 =A, =1 =0n". Now
we assume that this case oecurs for an infinite number of values of #, and we
write 7y = cos (z/n); then 2, is bounded. From Lemma 3 we conclude that
: 3 - f N L T _sin “fz-i-ﬁ!]*i
(5.5) lim n"u, (cos{z/n); 4.) e Tt
The maximum of the absolute value of the last expression for real z is
M = 0.2172 - - - so that this case can be also eliminated.

The assumption fo(z) = Zu.{—x; A) can be dealt with similarly,

Thus for large n only Case (a) remains. This completes the proof of
Thegrem 1.

}-ﬂ st = 2.

6. Proof of Theorem 2

1. First we consider again the case (¢) defined in §5 and let 2, belong to one
‘of the open intervalsin —1 < 2 £ + 1 in which the maximum of f'(xq), flz) € Q. ,
asattained for the Zolotareff polynomial fir) = u.(z; 4). [Theargumentissimilar
for —ualz; 4) or £u.(—2;4).] Then f(z) = w.(x; 4) = filx), where fy(x) has
the same meaning ss in §§4 and 5, so that fu(z) € Qu(z0); that is, fo (z) = 0.
We have folzs) > 0, fa (z) < 0.

By an important theorem of W. Markoff”, to every positive ¢ correspond
values z; such that'

(@) 0 < |z —m:m| <8

(@) if fi(x) = wu(x; A’) denotes the polynomial of @, for which f*(x,) becomes
& maximum, then

(6.1) fitm) > folm).

W Loc. oit, pp. 253-246.
1 Log. cit. p. 257.
¥ [n faet, o whole half-neighborhood of =y satisfies this condition.
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Now if ¢is sufficiently small, fi'(x) will have a root, say 1, in the neighbor-
hood of x; ; we can assume that —1 < z; < +1. Also fi"(;) < 0, 20 that
f{{z} has & relative maximum at £ = z; ; hence

(6.2) flz) 2 filzy) > folzs),

which shows that fofz) can not be the solution of our problem.
This argument leaves as the only possibilities for fi(c) either the Zolotareff
polynomials ==u,(x; A.) with 7 = =1, or the Tehebycheff polynomials £ 7'.(z).
2. Let D, be the largest root of u.(z; A,), B, < D, < €,. Using the con-
vexity of u.(z; 4,) for 2 > 1, we deduce

(6.3) D= B C— Dy

Further we make use of a theorem of I. Behur on the largest roots of the deriva-
tives of an algebraic equation with only real roots.” Applying this theorem
to ualz; An) we obtain

(6.4) D,— A, = 4. -1
20 that

24n—1) 2Dy — 1> 4B — 1 +Cu—1) > {(B. — 1)(Ca — DL
Hence, from (2.8),

(6.5) un(l; 4a) > n°/4.
3. On the other hand we show that
(6.6) | Thx) | S ni/d © if  T(z) =0

provided n = 5 (with equality only if n = 5.  Incidentally, I. Schur has proved
(6.6) for all large n."

Let ¢ be a root of the equation tan ng = nten ¢, 0 < ¢ < x/2. Then the
assertion is

SiN M| _ weow s g, wiy 2 " 15)i
(6.7) nl ainw‘ nin s’ e +cos’ @) = a/4,  sne= (ﬂ—s —3°
It is sufficient to show this for the largest root 2. = cos @, of T’::{a:}; that is,
for the smallest positive value o, , * < np, < 3r/2, satisfying the equation
ahove.

The function

(6:8) W) =\

[, Bohur, Zwei Sdtze dber alpebraische Gleichungen mit louter reellen Wurzaln, Journal
fiir die reine und angewandte Mathematik, vol. 144 (1914}, pp. 75-88,
¥ T, Schur, loe, eit.*, p. 277,
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increases from 0 to + = 4s ¢ inereases from =/n to 37/(2n).  Let 2 be the small-
‘eat positive root of the equation tan z = 2, v << z < 37/2. BSince

(6.9) h(z/n) = m <1,
we have g, > 2/n, so that (6.7) follows from
(6.10) SRS (Es%;ﬁ 'i)*'

Since n sin (z/n) increases and n’/(n* — 1) decreases as n increases, the last
inequality will be proved for n = 6 if we prove it for n = 6. But
(6.11) sin (2/6) = (3,/7) = 0.6546 --- ,

since’ z = 4.4934 -+ and sin (2/6) = 0.6808 .- .
In the case n = 5 we have

(6.12) Ty(x) = 3207" — 1202, 2 = cos s = (3/8)), sin g = (5/8)".

Comparing (6.5) and (6.G) we obtain £u.(22; A.) as the only eligible ex-
tremum polynomials [and , = =1 as the points at which the extremum is
obtained] provided n = 5.

7. Proof of Theorem 2 (continued)

The previous result holds also for n = 4, as a direct discussion shows; how-
‘ever, it fails for n = 3.
1. We have for n = 4:

(T1) Tyz) =8z' — 8 +1, Ti(z) =32" — 16z, TV(x) = 962" — 16,
50 that, with the same notation as before, ;s = 6 and
(12) | Tilzd) | = (16/8)(2/3)" = 4.3546 - - - .

On the other hand, let us denote by g and g , the values of z for which' the
relative extrema of wilr; A in —1 = z = +1 are attauned; thus —1 < 3 <
Ys <s+1, say. Then

(73) ug(z; Ay = 1 — M1 — z)(By — z)(pn — )
‘must satisly the following conditions:
(a): wl(=1; 4) = —1, ABy + Dl + 1) = 1,
(8):  wly; A = =1,  MI— w)(Bi— ) — m)' = 2,
i (v):  wilye; A = 0, = 1_ it E ;o 3 =9
(8):  w(l;4) =0, 2B, + 4 = 3.

1. Bee, for instance, E, Jahnke-F. Emde, Funktionentafeln, 1933, p. 30.
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Henee By < 2. Let
1 —wm=MWBi—=1), Bi—m=(h+1)B—1),

(7.5)
h—wn=(2— h(B -

then (v) becomes:

1 1 2 i !
@6 + iriTa=a=0 ie, A=+ (33)")/8 = 0.8430.-+, |

Further, writing #(z) = z(z + 1){z — 2)°, we obtain from (a) and (8)

(7.7) v ( i l) = (k).

Binee v(z) = v(h) hns k as a double root, it can be reduced to a quadratic equa-
tion giving
2

Now

L1
By -1
2
4 (B. = 1)

Comparison of this value with (7.2) furnishes w(z; 4,) as the solution.
2. Finally in the case n = 3,
To(z) = 42" = 8r, Tilx) =122 -3, Tiiz) = 24z,
=0 |Tim)| =3

(7.9)  wd(l; A) = AMBy — 1)1 — )" = 4 = 47881+,

(7.10)

On the other hand,
(7.11) us(m; dg) = 1 — M1 = 2)(By — 2)

with o relative minimum at ¢ = 3, —1 < yn < 4 1, satisfies the following
conditions;

(a): walpn s Aa) = =1, A1 — y)(Bs — w) = 2,
(7.12) (8): ws(w ; As) =0 3yt — 2Bap — 1 = 0,
(¥): w(l; 43 = 0, B, = 3,
g0 that
ho=1~—287  A=238,
ulz; A) = 1 — 81 — (3 — 2)/8, ws(l; 4y s 312 < 3.
This completes the proof of Theorem 2.

(7.13)
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B. Two problems of Zolotareff

1. The previous considerations permit a very simple approach to the follow-
g interesting theorem of Zolotareff:
Turonem 3.  Lel o be a given positive number and f(z) an arbitrary polynomial

:m_ﬁ;&apms n af the form
'.-lfﬁ.l} fl) =2" — ez 4 ---

Then max | f(x) |, =1 = z = +1, 45 minimized if and only 1f

- (8) f{z) = const. ua(z; A) provided ¢ = nan, N

{b) flz) = 2°"(1 + o/n)" T, G_;_:_'fr:) provided 0 < ¢ = na.

Here u,(x; A) denotes the polynomial (2.4); and in case (a) A = A(s) is a uniguely
determined function which increases monotonically from 1 to + = as o increases
from nan to 4+ a, = tan’ [x/(2n)].

A corresponding result holds for negative o, obtained by replacing fiz) by
L’{'—l}'f{—x}. For ¢ = 0 the extremum is given by Tchebyeheff's polynomial.
From (2.4) we obtain, for z > C,

B (2 4) = B2® — Sz o

=3

= cosn{n [ — )¢ = BY¥e - 0 - 1l
=mﬁh{ﬂflug;n—lugﬂ'} '
+ n fu ; [(t—A)t—B -0 -1 =
—n [[ 1= A= BN = 0y - 07 - cal;
g0 that, as £ — +=,
—ugfz; A) = §(z/C)" exp {ﬂ- f: = Ao — Byt — oy @ — 0t —

—n [T 16 +0) = ) + o) ds} + 0™,

Congequently
B 307" W

2) oo {n [ 10— 40— B¥e = 07 = 17t - >

S/R=nl}{B+C)— 4} >0,
that K and S are continuous functions of A.

| 3 Lo, eit? (a), (b), (0).
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From the results of Lemma 1,

i
is an increasing function of 4. Let 4, < 4, andlet By, 8, Ry, S; be the cor-
responding valuesof RandS, R, > Ry. Considering 7 wa(x; 4)) — By 'waleAs)
at the extremum points of w.(r;4s) in — 1 = £ = + 1 we see that it cannot be of
degree n — 2, so that S,/ R, = S:/R:. Henee S/R is monotonic. [ts minimum
value 15 attained for

T = oy
Hﬂf@p +1) = =T, (1_+_a)’
so that min (S/R) = na,. [ts maximum value is attained for wa(z; +=) =
Tu1{x), 50 that max (5/R) = +=,
Now let f(x) be a polynomial of the form (8.1}, and let ¢ = na, . Then there
exists a definite polynomial u.(z; 4), A = Ale) = 1, for which 8/8 = ¢ =0 that

(8.4) d(z) = f(5) + B ualz; 4)

is of degree n — 2. Let max |f(zr)| = B, —1 £ 2 = +1. Then the poly-
nomial (8.4} is slternately = 0and =0 at the points at which ua(z; A) = £1.
Unless d{z) = 0 this gives n — 1 distinel points at which d'(2) is alternately
>0and < 0, and hence n — 2 roots for d'(x) which is impossible.

2. The argument is similar in the other case, 0 < o < no. , since the poly-
nomial '

i—a L .I_U“l'llﬂ e n—1 e

(8.5) 7ML i) T (1—+ ﬂ’ﬂ) r oz’ =+
assumes its maximum modulus 2°7"(1 + ¢/n)" precisely n times in —1
g5 L

Replacing —R 'uqiz; A) in (8.4) by the left-hand side of (8.5), we obtain the
desired result,

3. Another theorem of Zolotareff is the following™:

Tureonum 4, Lel o, yo, be arbitrary real numbers, of which = > 1, and let
flx) be an arbitrary polynomial of degree n satisfying the conditions

(8.6) F) =g osery S0 = o

P mn LG =1 % % -1, o 5 melnimun if onid only o 105 o at 1ee
polyromials
1 . 1—n n L= o
_R_ ur,{-‘!f, AJ. 2 (1 + E} T-“ (]—_:—-_ﬂi-—a),
(8.7}
27" + )" T GE)' (=" R uu(—x; 4).
T+ a

1% Log. cit? (b)), p. 27, (¢}, p. 871
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¢ d = 1,0 = a = a. = tan’ [x/(2n)] are certain numbers wniguely deter-
ined by xo and ¥ .
The values of the polynomials (8.7) at ¢ = = increase

from — = to 271 4+ )" T (1 T ) =8

| as A decreases from + = to +1;
from 8 to 2" " T(xs) as & decresses from e, to 0,
from 2 TG 10 270 + ' T (S 52) =

1+ &,
: as @ increases from 0 to a, ;
 from 8 to += as A inereases from 1 to 4=,

respectively. These facts determine for a given g the extremum polynomial
?ﬁfn:} in guestion. Indeed, consider the difference f(z) —Jfo(z) at the points in
—1 = z = +1 at which fi(z) = =£1, and in addition at x = x;. Since this
difference is alternately = 0and = 0 at these n + 1 points, the usual argument
'T‘-; ea # — 1 distinet roots for its derivative [unless fiz) = fu(z)], which is im-

. Tha problem defined by the condition

®8) 5 ) = 4

ﬁ}herﬁl =k =n— 1,1 > 1, and y is arbitrary, can be treated in a similar
- manner; For i = n — 1 we obtain the first problem dealt with above,

9. A further application

" The previous considerations furnish another property of the polynomials
Cugfz; A) of Zolotareff which play a role in the interesting investigations of
i 'F Markoff [zee’].

1. We prove the following application of Lemma 1:

- TreEorEmM 5. Let

@U I T T, S SR S TIPS P - S |

be the values of @ characterized by the conditions

ulz, 3 4) = 0, y=1,2 1", n—1,
unlz, 1 A) = 0, T e P PN

then the functions x, = x,(A) and z, = z,(A) {ncrease as A increases.”

Tha roots 2 of ualx; A) satisfy the equation
f (A= 1B —0HC — 070 = O 'dt = (v — B/,
Ty

MERNEL B S

B5 Coneerning v, see W. Xackalf, loe, eit. . 2420 The largest root ) = f3(4) also in-
Cercases, s ean b eoneluded Trom the result of §2, Not,
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We can assume that 4 = A(p), B = Bip), C = C(p) are increasing functions
of & parameter p,p > 0, all these functions having continuous derivatives. Then
&, = m@,(p) and

u-mw-mﬂunﬂr4%Hm

= iu—ﬂw—}ﬁc—wm—:ﬁmz

= [[B-vre - o7 - 2t aat) - B 5 — 10 =

> {A'{p} - @At

>0

sinee the expression (2.9) increases with p.

The assertion about z. can be proved in a similay manner.

2, The assertion about 2, follows also from the following general remark.
Buppose the roots of an algebraie equation are real and distinet, and that they
are inereasing functions of a parameter; then the same holds for the roots of
the derivative. Indeed, using the notation above:

1 RETRCWI:
Bl B e
[Here x. = D denotes the only root of ua(z; A) which is > 1.] Differentiating
thiz relation,

-0 — 4 — Ayt
wuc+JLw e — o - &

=i gy =T,
Iy

# t
=g, — 1,

=l (3; T Iﬂ}i
g0 that m,, ::-‘l] implies .a, = 0.

Repeated application of this argument shows that the roots of all derivatives
ut(z; A) increase as A increases.

=10,

UNIVERSITY OF Pmsn.vmu
Branrorn UNIvERSITY
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Correction to
“ON A PROBLEM OF I. SCHUR"

By P. Expos aND G. SzEGO

These Annals, Vol 43 (1942), 451-470
(Received July 12, 1961)

Professor R. M. Robinson has called our attention to an error in the last
section of the quoted paper, p. 470. It can be corrected by replacing lines
7-9 (from above) by the following text:

We write for a fixed p

0(t) = A'(p) — 4 B(0)A — DI(B — ) — $C'(0)A — (C — 1),
#() = | (B—074C — o741 — e g(t)de .

Since g(B + 0) = — oo, g(C — 0) = + eo, the function g(t) has a zero be-
tween B and €. The other zero ¢, is between —1 and +1 since (in view
of Lemma 1) g(—1) < 0, g(+1) > 0. Differentiating (2.5) we see that
g{—1) = 0, also (1) is increazing for 0 = © = t;, decreasing for f, =v =1,
and (1) = 0. Thus ¢(7) > 0 for all T between —1 and +1 so that @}(g)>0.

s




	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21

