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1. Let the infinite triangular matrix

X1
X1z X2

Xin Xan =+ Xin

be given, where for n=1, 2, ... the inequality

(1. 1) 1= %00 > Xaw > <2+ > X =—1
holds. Putting
(1.2) 0, (x, A) = L (x—2x;),
J=1

A = GuX Ay
(-3) o A= o, HE—%
the polynomial
(1. 4) LGl Fniice o Wiy i) o= ;;'T Vil (x, A),

the so-called n™ Lagrange interpolation polynomial belonging to A, is the
only polynomial of degree =n—1 having the value y, at x==x, for
Jj=1,2,...,n. Particularly important is the case when the values y; are
given by

Vi :f(x._r'u) (f =1,2,... n)

where f(x) is a prescribed function continuous in [—1, +1]; in this case
we shall denote the polynomial in (1.4) more simply by L.(x, f, A). From
the classical investigations of G. FABER' and S. BERNSTEIN® it follows that
no matrix A is “effective for the whole class C of functions continuous in

1 (5. Faser [5]. The numbers in brackets refer to the literature quoted at the end of
the paper.
2 S. BernsTen [I].
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[—1, 4 1]”; the latter even proved that for every A with (1. 1) there is an
fi(x)€C and a —1=§& =41 such that
Iiﬁ|£—n(§mﬁ); A)| =+ Ry

(o o5

in contrary to everything what was expected since NEWTON.

2. As FEJER discovered essentially in 1913, the situation changes com-
pletely if instead of the sequence of the Lagrange polynomials L.(x, f, A)
one considers an appropriate special case of the general Hermite interpolation®
(which HERMITE himself considered only from formal point of view). FEJER
considered the polynomials fH.(x, f, A) of degree =2n—1 uniquely deter-
mined by the requirements

(2. 1) Ho (x5, [, A) = f(x;0),
(GH, (5, £, A) i1, 200 ).
2.2) (—‘m LB} )Jm. —of U ")

He proved that choosing e. g. for A the matrix P, the n'" row of which con-
sists of the roots «;, of the n'" Legendre polynomial

{(xl - l )‘H.}[h’,),
one has, whenever f¢ C, the relation
lim H,(x, f, P)=f(x)

Ji—=m

for —1<x< -1, but not necessarily' for x= +1. Later he proved® that
choosing as A the matrix 7, the n™™ row of which consists of the rcots g,
of the nt" Chebyshev polynomial 7'.(x) defined by

(2.3) T.(cos 3)=cos nn:%,
the relation
(2.4) lim H,(x, f, T) = f(x)

2 L. Fejer [6].
+ As it was shown recently by E. Ecerviry and P. Turin [2] for the sequence of
polynomials H»(x, f) of degree = 2n—3, defined by

H:(aj, Jt-E.rf} zf{aJ ;:—2)’ H:{i L ‘f) =f(:|'_ ]),
’dH;(x,_f}) =1 (j=1,2,...,-'1~—2),
dx =

the relation .
lim Hu(x, f) =f(x)
dpw 3
holds uniformly for [—1, — 1].
5 L, FeEr [7].
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holds uniformly for [—1, 4 1]. Here, generally, H.(x, f, A) stands for the
polynomial of degree =2n—1 defined by
(2 5) Hvl(xjru f: A) = f(xf")!

dH,(x, f, A)
(2.6) (__ dx ]

g y}"

:“I.I'.”

where the real numbers y;, are subject only to the restriction

(2.7) lim max 7‘]}-”"’1%” —0.
PN
3. The relation (2.4) is surprising owing to the great arbitrariness of
the slopes yj.. This raises naturally the question that perhaps choosing an-
other matrix A instead of 7 this arbitrariness of the slopes can be increased.
To give a more exact form to this question we remark that, as easy to see,
everything depends upon the expression

@.1) M, (A% max §|f),fn(x, A)|
A=r=a =

where

(3- 2) ) h_j., (xl A) — ty (x’ A).{

) (x.f'm A)z(x'_x.i") '

Hence it is natural to ask for the “optimal” matrix A= A* (which is not
necessarily unique), i. e. for which

(3.3) M,.(A) — minimal
for n=1,2,.... Since, according to FEJER,” for arbitrarily small >0 for
n>n,(¢) the inequality
3.9) M..(T)<‘ : ] log
holds, we certainly have, denoting ®
(3.5) min M. (A) = M,(A") * g (n),
the inequality
(3.6) iim g =2
% L. Feger [7].

7 See L. Fejer [7] with a slightly different notation.
5 It is easy to see that for fixed n the minimum exists.



224 P, ERDOS AND P, TURAN

Now we are going to prove
3.7

1.,
(3.8) Iiml —— g(n)=

By (3.7) our extremal problem is af least asymplotically solved and shown
that the choice A— T gives essentially the greatest freedom for the choice of
the slopes y;.. More exactly, we are going to prove the following theorem
where ¢, (and later ¢, ¢y, ...) denote positive numerical constants.

TueOREM . By whatever choice of the maifrix A we have the inequality

(M, (A)def) max 2 |bi(x, A)| = —— (log n—c, log log n).
It would be of interest to delermine the exact value of g(n), at least
for small n’s. A proof of the weaker inequality

(3.9) gy =c, 18"

could have been proved more briefly; we shall, however, omit this version.
Probably also the inequality

l

(3.10) | }2 i (%, A) de;-q '—Ofi
holds or even the inequality
@.11) 2 i (x, A)] > “:’f i
in [-—1, 4+ 1] with the exception of a set with measure tending to O with
—!]?-; we could not prove so far whether or not for all —1 =a<b=1
< 2 log n

(3.12) max 2 bmlx, A) > ‘ ] .

=r=h j=1 4

holds for all n>n,(s a, b) (or even for n>n,()).

In our theorem the factor loglogn can perhaps be replaced by 1; a
further refinement, enabling to prove that g(n) is a convex function of n,
seems to be very difficult.
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Our method furnishes mutatis mutandis a proof for the inequality

(3.13) max Z|zj.,(x A= -—Iog n—c; log log n

==+

for all matrices A; a somewhat weaker inequality was proved in S. BERN-
STEIN's paper [1]. The significance of (3.13) is given, of course, by the fact
that, in conjunction with the fact that for n> n,(¢)

max 3110, 7)) = Z4e|log

-l=r=41 j=I
it solves asymptotically the extremal problem to find the minimum of
max Z|Iﬂ,(x A)| when A varies. We shall sketch our proof for (3. 13)

-l=r=+1 j=1
(Theorem II) and drop the formulation of problems analogous to (3.10),
(3.11) and (3. 12) with [;,(x, A) instead of b;,(x, A).

Since in the proof of our theorem we are always dealing with a large
but fixed n, for simplifying the notation we omit n from the indices. Hence for

lle>x3>“'>xn§'_l,

o (x)

o= L, 109~ e

we have to prove that

" ()
3.14 max 5’ — o 7 — Max [] X
( ) ==t ,.h-f 1) (XJ')" x—x;| ~1=Sr=41 a— ’ ( )
i 2

— max  |r—x by =

—1=r=41 j=1

(log n—=c log log n).

4, We shall need two lemmas.

LEMMA L f for a O<b<% and 0<1,<1 and a rational polynomial

J(x) of degree n the inequalities
Jjx)| =M for —1=x=+1,

lJx)|=muM for —b=x=+0b

hold, then for 0<1,< % and
—(l—n)b=x=(1—1n)b

the inequality
4]
| dx

=M ; (1 +b‘-’)-:;1n+% \
holds. ' !

15 Acta Mathematica X11.1-—-2
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For the proof of this lemma we may suppose M =1, and consider the
pure cosine polynomial

4.1 J(cos §) = /i(F).

We apply the well-known interpolation formula of M. RIESZ® which gives

df, _ (=1
dnf gjl '9' + ‘9!) -

—Cos &

where

2j—1)s
B (12n) .

Since our hypothesis amounts to
A& =1 for 0=8=m,
L) = for arccosb=9=a—arccosh,

we get for
arc cos(1—1)b =3 =a—arc cos(1—np) b

the estimation

PN
d$ I 21 arccosh=91F Zmn-arc cosy 1—COS P
?‘; Z 1 e 1 ’ ]
21 siarceos B=8+9 =2m-arccos 1—cos 9, Y 2n =¥ T—cos &

where the last summation is extended to the /s not contained in the pre-
vious two. Since

1 z 1
TR

=1 —CO0S 3‘; - Fh
we get
dj, | _ 1
‘W =mat —cos(arc cos(1—rn,)b—arc cos b) =S
1
=+ — ——= = =
—(— )b — ) T—(— )b —b*
W 1—(—n) b’} + | 1—(1—nfb" [ 10"
T {I=(l—= ) P —{1—(1— )0’} (1—&°)
2 1 2 1

<1

I ——2(—n) & T

¥ M. Riesz [9].
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Hence for _(]_fi'-))bﬁxi:(l—fjg)b

46| _| 41 sy s

| a'x‘ |1 i+ b)l il —r
indeed.

LemmA 1. Let /,(x) be a rational polynomial of degree =m which as-
sumes its absolute maximum u with respect to [—1, 1] at x=E&. Then there

g5 ?
pb

is an interval I in [—1, +1] of length 1,, such that one of its endpoints

is &€ and in which the inequality

1
()= 5 u
holds.
We choose, namely, as / that one among the intervals

i 1 = 1 =
l‘;, '.E‘i"m]. |E_W’E]

which lies in [—1, 4 1]. We may suppose the first. Then using MARKOV's
classical theorem™ we get in /

Ja(x)i=Ij-z(§)+J"J-£(f)ﬂ'f‘EU-;(E)!— J umtdt—p— o =14,
g

g

indeed.
5. We shall employ the following notations. Let

(5.1) M max |o(x)|,
—1=r=4+1
and this should be attained here for x = &, say. We shall consider the intervals
' 1 1\ _ 1 1Y
(-2) Gk = log n (I +]-r_)g‘-’n) =RE log n (I_{_Iog‘*n)
and
.3) By o (1'— L )w(l )«z
’ . logn\" ' logn log’n -
1 o 1Y ] 1
=R log n [l +10g2n) { _WJ
for
(5. 4) r=0,1,...,[log%n] R

1 See Marxov [8].

15*
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We shall use dj,1—d, and d, (the complementary of d, with respect to
[—1, +1]) in the usual sense. We shall denote by &, one of the values x
in d, with

(5. 5) |w(E,)| & max |w(x) eM,.

The intervals d, are for n>¢; in [—1, + 1] and thus
6. The proof of our Theorem I is split into three cases.

Case I. There is an index 1=k =n and a —1=5= 41 such that

6. 1) max |5, (x)] = |4,E) =
SI==

Applying Lemma II to 4 (x) we obtain the existence of an interval / in

[—1, 4 1] of length > -—; such that in / the inequality

2 U

6.2) X

holds. We choose in / a &* as follows. If x,, is not in [, then let &* be
the middle-point of /, say; then

(6. 3) [E7F—x, | =

If x;, is in /, then & can be chosen in / so that (6.3) holds again. Then
we have

¥

max 2 () = 2 i€ = [0, E)] =

—1=r=+1 j=I i=1

S e 1 1 . 2 logn
= & —x |k, (E ey n > n

for n >¢;,. Hence in this case our theorem is proved and we may suppose
in the sequel the inequality
(6. 4) max |L(x) < n’

—1=n=-1

for k=1,2,...,n. This last inequality will be used only in the form that it
implies " upon the x;’s that writing them in the form

x=0c08% (O=%h=m;j=12...,n)

11 See Erpos [3]. His proof is an improvement of that contained in Erpos—Turix
[4], esp. p. 548—552.
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the $’s are uniformly distributed in the sense that for 0=« <g<=a

n(<cslog n.

(6.5) { .

a=9;=p

7. Case [I. With the notation of 5 we suppose the inequality

. M
holds.
We apply Lemma I with
1
j(x)=“)(x)’ b: Iogﬂ,
1 .
" login’ T Togin’

the assumption (7. 1) assures the applicability of this lemma. This gives for
x € dj the estimation

Sa e )( ) n (
| (x)EZMi_ ok log'n/ log*n +logt & Iogf‘n
roughly, for n>¢,. Hence we obtain
S R R (=L v o) My 1] l:——-ﬁ
FEPAUCEPNICES A7 _,erif'. Ty = B 2
Applying (6. 5), the last sum is (roughly) for n>¢,
L1 n_
4 logn’
i &
max S‘ h(x) = log glogn
e W= TR

for n>c,. Hence also in this case our theorem is proved and in the sequel
we may suppose (Case III)

a) the uniformly dense distribution in (6. 5),

b) the inequality

(7.2) M

M, = W ;
8. Case 1II (and the last). First we assert that there is an index », with
0=r,=[log’n]= R and

®. 1) M, =M, [1+

log n ]
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For if not, then we should have for all these »’s

Mo >M,,(1 + ]0; n),

i. e. from (5.6), (7.2) for n>¢;; by multiplying we get

J > M) n>l£g M>2M

which is false. Hence (8. 1) is true. With this 7, we have, with the nota-
tions of 5,

M;MI,.>M0[1+ e

®.2) max 2 [b(x)|= Z [0:En) —
J.".I,Erf,‘,“ & Eaf1 +lhd1u Je'i1n+1

To obtain a lower bound for S, we use Lemma | with n>¢;; and

M, 1
M=

b= Iogn ( + log* n)1’0(> 10;,'1]'

This gives for x; € d;, owing to (7.2) and (5.6) for n>c,

] (x)|~M=(l—] 25 ] M,

n+4logn¢

<M;[l+ 25) rnn_{_l 1ogn]4log :

log-n
M,n’( ]n+4log n§<M"(]+Iogn]
and hence
M; SR
8.3 S = / - 2 ;
( ) I T.?'Ezfé' ™ (xr) |E [I 4t _%} | &s— .;a|
Iog n)
In order to obtain a lower bound for S, we apply again Lemma I with
= Ma'(,—.—l ¥ — |
i M ! iz loganr

- 1 ] + 1 T'{_.H -’\) 1 )
~ logn ( log®n " logn!”
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This gives for x; € d; .1, as before,

, 30
o' ()| = Mot (1 + m) n,

i. e. by using (8.1)

M
§:= ZJ o (X | & — X #

T E a1 =T,

M, 1 1 1
>3 % T Zi £ =
Mir 4 30 " wed] 1~ | &, — ]

log*n

> i L d ]

( L+ 30 )* n* wetri-a;, | 8n—X;
. logn,
This and (8. 3) give together for n>¢y;
1 1
- RSN R T :
(8 4) Sl i Sg} (1 + 30 )4{12 J'j%i,.l ’§1’a_xl,«'i .
log*n

9. Now we use the full force of the uniform distribution in (6. 5).

do so we write first

&, =cos O,
and have f
et (H— l ]vnﬁcos@.s ‘ [ J"
log n log’n) — = logvz ’
i. e
a )1 R
9.1 5 —0,,| < arc Sm}logn l\l + Iog""n) (5

we remark further that the x;’s in (8.4) are exactly the %/s with

y 1 I s/ fdei
f (]+log‘3n] ll logn]

1 1 _ 1
|&,—x;|  [cos ©,,—cos &| = [O,,—

we have in the remaining Case IlI

0.2 |5—% =

Since

%7

3130 1 !
(9.3) max_ ;|1?;(X)|>(_] log’n) |z [0, — %"
iz 5 J—l_-(f

iu|_1

231

To
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Since from (9.1) we have

i(—)__—(:—’y-1~n¢‘J‘2arcsinii ] (]'1' 1 JWI[I_I—)E_
n— | T¢]|= | Tog n log*n . log’n))

L Pt
_a,-cmn}lgn( +Iognl \>arcsm3 T [l_l_log""n,] [1+210g2n,)\—

) 1 i PR ( 1 ]"" 1 1
Hgn(]+log”n) \ " logn H—loggn 210g2n>210g3n’

— arcsin

the range of summation in (9.3) is not increased by replacing the original
one by
1
— | = .
|@7'-._\ 9I| = zlognn
Denoting the arcs

B logn __log'n ( _ [i n ]
On—(+) == =9<0y—x— = |#=01..., | 5|

and
log’n =@. 1 ( log’n (—- [3 f J
A, 47 <$=0,+A+1) = A=0,1,..., 2 log'n J

by U, and Vi, respectively, (6.5) results

+ 1 n 1
i = 1
,3%.3‘ |G, — %] _logni—i-la% -

bt Ello “n—cslo ‘znt—i I ; wes |
log’n A41) [ g 8108 \ ot A1) log'n {’
and similarly for
O 1
578t [On—H[
Hence from (9. 3) in Case lII
~ 30 ' 2 7ECy 1
| R L S _ u)
SR 2 16;x) >(1 log’n) ztn (1 log"‘n]_c =N A+ ?
== [i5e]
2 logn log log n
Bl g
TN n

for n>¢;. Q. e d.
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10. As told we shall sketch the proof of
THEOREM II. For n>c¢s we have
max 5 t(x)|>£logn—cm]og log n.
“1=a=41 -y_l
Proor. Without loss of generality we may suppose the inequality
(10.1) |L(x) | =log n

for —1=x=+1 and v=1,2,...,n, from which the equidistribution (6. 5)
follows at once. So we shall have only two cases (keeping the previous
notations).

Case .

(10.2) '

" 20log'n M
We apply Lemma 1 with

Jx) =w(x), b= !

logn’
1 U
" 20Tog’n’ T Togin’

again (10. 2) assures the applicability of this lemma. This gives for x € diy as
in 7 for n>cy

; M n
W)= 10 log’n
and
5, BY ) = M ~ 1 log’n 5, 5
mazﬂf, Oz Z1hE) =3 =i To' ()] L .1%-3“ 308"

using (6. 5) roughly.
Case II. We may suppose

M
(10.3) Mo= gioern

Again we have for n>¢, an index » with 0=» =R and

Y
(10.4) M, ﬁM:-l[l + m),

for if not, we should have

M>M\n>M = n

20 log’n

>2M
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which is false. Again

max ,ﬁu,,-(x):—Zu(:yn— 3+, 2 s

—I=e=4 =1 b el -,

To obtain a lower bound for S, we use Lemma [ for n> ey, with

M, 1
- > Jog'n’

1 A T
- log n {1 + log‘zn) [> logn}

This gives for x; € dy,, using also (10. 3), for n>cy

25 | M,
o' ()| =M | ( +Iogn] . n+4logni
\ Mo, [ My, 30
<M}tl+logn) T [ 2010gn]4logn <M,,l(1+logn)

The further part of the proof runs exactly after the pattern of Theorem I and
can be dropped.

(Received 19 April 1960)
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