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1 . Introduction . We are concerned with properties of the infinite sym-
metric random walk over the lattice of points with integer coordinates in
Euclidean space of d dimensions. (For a precise definition see [4] .) We con-
sider two problems .

PROBLEM A . Suppose H" , (a, b) denotes the set of points S,, (n) (a - n b)
of the random walk in d-space ; suppose f(n) is an increasing function of n .
What are the conditions on the rate of increase of f(n) which are necessary
and sufficient to ensure that the sets

LI"'(0,n ) , Jji/)(n

	

.f(n), ~)

have points in common for infinitely many values of n with probability 1 ?

We complete the solution of this problem in Section 3 . Clearly, there
is no problem for d-== I or 2 . The solution takes a different form in the
cases d= 3, d-4, and d = 5. For example, if d = 4, an interesting con-
sequence of the result is that, with probability 1, there are infinitely many
n for which 17+ (0, n) and /1 4(2n, x ) have a point in common . This in turn
implies that any two independent random walks in 4-space have infinitely
many points in common . This at first surprised us, because two independent
Brownian motion paths in 4-space have no points in common with proba-
bility I (this follows from the result of [2]) . The explanation is as follows :
with probability 1, two independent Brownian paths in 4-space approach
arbitrarily close to each other for arbitrarily large values of t ; thus they have
infinitely many near misses, but fail to intersect because the fine structure of
the paths is not sufficiently dense (in fact, the paths have zero 2-dimensional
measure, see [5]) . It can be shown similarly that, with probability 1, 3 inde-
pendent random walks in 3-space have infinitely many points in common,
while 3 Brownian motion paths have no common points (this last follows
from the result of [3]) .

This paper and the paper [41 were written while P . ERDÖS was visiting the Uni-
versity of Birmingham .
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PROBLEM B . A point S,,(n) of a random walk path is called 'good' if
there are no points common to H()(0, n) and 17 , j1(n 1, C-) . For d = 1 or
2 there are no good points with probability 1 . For d 3, the result ofPólya
implies that there must be some good points : how many are there?

We prove, in Section 4, that there are absolute constants r,7 (d -- 5)
such that, with probability l, a random walk in d-space has good points at
a subsequence of density z,, . For d=3 or 4 the subsequence of good points
has density zero with probability l . We obtain in these cases asymptotic
bounds for the number of good points .

We start, in Section 2, by obtaining some preliminary results, and
collecting results which are already known but are needed in the sequel .

2. Preliminary results . If E is a condition on the random walk path,
we write P(E) for the probability that the condition is satisfied . If E,, E_,, . . .
. . ., E,,, . . . is a sequence of conditions, we write

P{E,,. i . o .}

for the probability that the path satisfies infinitely many of the conditions E L .
c~', {Q,', o-' {Q ; denote the mean and variance of a random variable Q .
[x] denotes the largest integer not greater than the real number x .
r will always denote a positive number .
c,, c-' , . . ., c

	

will denote suitable finite positive real constants .
If X is a vector in d-space, i XI denotes the distance from X to the

origin .
For paths in d-space, ; ,,(n) denotes the probability that in the first

n-I steps, the path does not return to the origin . It is proved in [1] that,
for d -- 3, there are positive constants ,, such that

(2.1)

	

,, <

	

(n) < ;',; + 0(nI-.',') .

S,,(n) denotes the position at the nth step of a random walk in d-space .
If L is any lattice point in d-space,

u,, (L, n)

	

PIS,,(n)=L} .

Clearly, all points can be reached either only in an even number of steps or
only in an odd number of steps, We need the following easy estimates for
11,4, n) . Suppose L is a point which can be reached in an even number of
steps, and j L l -,o . Then

(i) if o = 0, we have

(2 .2)

	

u,, (0, 2in)-2~ d4 m •-r ~. nil
1

.'

	

'



(ii) if m > ~. 2 ,
a2 r

(2.3)

	

ii (L, 2in)=2( 4rd
.-U

	 )
L

l -{- O ( m )] ;

(iii) if m > 20 9'', there are constants c,, c,, with

(2 .4)

	

m";, , > u,-,(L, 2 w) > m,1 ., ;

(iv) if rn< ,d-2,

(2.5)

	

u,, (L, 2 ni) - 2 ( 4d )
e-h --„F l 1 + O (  m )) .m :-r :

	

. .
The same asymptotic formulae are valid for u,,(L, 2w+ 1) in the case where
L can be reached in an odd number of steps .

We now need estimates for entering a point L at least once .

LEMMA 1 . Suppose L is a lattice point in d-space (d - 3), with ~L =.o > 0,
and r,? (L) is the probability that an infinite random walk starting from 0 will
enter L at least once. Then there are finite positive constants fi, g1 such that

of? < ~",( L) <	 '

PROOF . We may clearly assume that n > 100. Considering the last time
of passage through L, we have

rc
(L)

	

%,t

	

u,,(L, 71),

since p,u,,,(L, n) is the probability that the path is at L at the nth step and
does not return again to L and these events are mutually exclusive . Using
(2. 4) we have

c>(L)

	

1

	

for a suitable f,, > 0 .

In the other direction, it is clear that

or',
(L, n) -

	

u,r (L, n) =

	

uq (L, n) - p'
-I

	

I16 ,2

for a suitable g,, > 0,
using (2 . 5) and (2. 4) .

SOME INTERSECTION PRoPERTIES OF RANDoM WALK PATHS

(d- 3, 4, . . . ).
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This completes the proof of the lemma .
A modified form of the same proof suffices to prove

LEMMA 2. Suppose L is a lattice point in d-space (d - 3) with I L = P > 0
and w,1(L, n) is the probability that a random walk : of n steps starting from
0 will enter L at least once . Then there are finite constants h,1 such that if

n > 5 e", then

w,, (L, n) > P ' :,

	

(d = 3, 4 . . . . ).

For d - 3, we know that random walks wander off to infinity . We need
estimates for the probability that they are not too far from 0 at some time
in a given range of t.

LEMMA 3. For every integer N ~ 0 and real number r > 0, put

Q, (r, N) PflS,,(n)l - r for some n -N},

then we have for d 3, N > r'

I

	

r

	

1
2	 ea l.N

	

-~ Qa (r, N)

	

e,, 11"N
.)

for suitable e,, > 0 .

This gives the probability of being within a distance r of the origin at
some time after the Nth step . The corresponding result for Brownian motion
is proved in [1] ; the random walk result follows because of the relationship
between random walk and Brownian motion .

A proof is also given in [1] for

LEMMA 4. For every integer N ~:0 and real number r>0, put

P?(r, N) P{S,,(n) - r for some N ~ n -4N) ;
1 •>

then for d = 3, P„ (r, N) > I e,,	10

	

I ., :J TV
,

For a random walk in d-space, we put o,, (n) = Sa(n) . In [4] we briefly
studied the average behaviour of ),,(n) and in doing so proved

LEMMA 5 . If o4(n) is the distance from the origin at the nt" step of a
random walk in 4 dimensions, then there exists a constant c.,,,>0 such that

o
+ is (n)J,)- ;t (1 } (1))

.
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Similarly one can prove

LEMMA 6. If o 3(n) is the distance from the origin at the n tt1 step of a
random walk in 3-space, then there exist constants c ,,", cj' such that

cs

	

I

	

+

	

c ,'
11+pa(n)( C

3. Solution of Problem 1 . In order to estimate the probability of an
intersection between II("(0, n) and II«" (n + f (n), a) we need first of all to
estimate the probability of at least one intersection between two independent
random walks starting at different points . It is critical to suppose that if the
starting points are separated by a distance Q, then one of the paths takes
approximately ()" steps, while the other either takes ~, ' steps or is infinite .

LEMMA 7. Suppose 1J1 (0, n), M" 1(0, n) are independent random walk
paths of n steps in d-space (d ? 3), the first starting at the origin and the

second at P where P' = P and 2 u < n < 2V`-'then there are constants

c4 , c;, ch t~ such that

(i) P{HIP(0, n) intersects 1V 3'(0, n)} > c4 ,

(ii) P{II > (0, n) intersects 1h3) (0, n)} > c'

log n
(d)

(iii) P {MI"(0, n) intersects TI,(' t'(0, n)} > n ~
Co
4) for d = 5,6, . . . .

PROOF OF (i) . In Euclidean space of 3 dimensions consider a cube b

with centre at the origin and side
2

	 o . Let r; be a large positive number and

(3. 1)

	

t3 = [-r n 1i6 ] .

Let ~ be the subset of the lattice points with integer coordinates ob-
tained by taking points all of whose coordinates are multiples of t:3 which lie

in b but are not within

	

o of the origin . The number r(~) of points of

clearly satisfies

(3.2)

	

CT
17

and the distance of any point L in

	

from each of 0, P lies between

o and 2t1 .
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Let pi (L) denote the probability that I1,3>(0, n) passes through L, and
p 2 (L) the probability that fl 3) (0, n) passes through L. Since the paths are
independent, the probability that L lies on both paths is p1 (L)p2 (L) . Using
Lemmas I and 2 we have immediately that

4g

	

) p1 (L) j

	

h3
(3.3)

	

o - ! p 2 (L) I - 29
so that

(3.4)

	

p1(L)p2(L) - n
If interference could be neglected, (3. 2) and (3 . 4) would be sufficient

to obtain the desired result. We now show that provided '; is chosen large
enough, the interference is small . Let p, (L, M), p2(L, M), respectively, be the
probabilities that 1I(j`' ) ( 0, n), TI,'(0, n) pass through both L and M . Clearly, it
is sufficient to show that

(3.5)

	

, p1(L)p (L)- ~~7 p1(L, M)p2(L, M) > c., .
L E i

	

L,zv4,

In the notation of Lemma 1, r 3 (L) is the probability that an infinite
path from the origin will pass through L . It is clear that

p, (L, M) za(L-M)(pi(L)+p1(M)),

P2 (L, M)

	

>1(L-M)(p,(L)-p2(M)) .
By (3. 3),

(3.6) 2:p1(L, M)p1(L, M) _ ( a '

	

[r. ;1(L-M)]=< 0) 'V [,-B(L- M)12

For fixed L E r, let 1', .(L) be the number of points of

	

whose distance from
L lies between 2' and 2'" 1 (r-- 1, 2, . . .) . It is clear that

(3.7)

	

r, (L)

	

c

	

2"i
rn

For a point M whose distance from L is at least 2' we know that

z ;3 (LM)

	

ga
.

Hence

S ?-3(L -M)2

	

gZ r, . (L) ,. < C11
3 ,

M E

	

~

	

2-

	

'i

using (3 . 7). By (3 . 6), it follows that, for each L in ,

p, (L, M)p~~(L, M) <
co c 1 1 < 1p1~L)p?(L},

AqE

	

n ';

	

2



If 2' > P
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by (3. 3), provided

	

is chosen large enough . This together with (3. 2) and
(3. 4) is clearly sufficient to establish (3 . 5) .

PROOF OF (ii) . A very similar argument will work using for t only
points whose co-ordinates are all divisible by

t4 -_ [r (log n)''4 ]
for large enough r .

PROOF OF (iii) . Again the same argument works using this time points
whose co-ordinates are all divisible by to where tai is a sufficiently large
fixed integer .

The simplest way of obtaining an upper bound corresponding to Lemma
7 (ii) seems to be a calculation of the expectation of the number of points
common to the two paths by two different methods . We first obtain a lower
bound for this expectation in the case where both paths start at the origin .

LEMMA 8. Suppose II,("°(0, n), H 2(") (0, n) are independent random walks
of n steps in d-space (d = 3 or 4), both starting from the origin . Let D ( " ) (n)
denote the number of points common to the two paths . Then there are con-
stants c 14 , c 13 such that

(1) iP {Dtj)(n)} > C12111 -,
{ii} t {D(4)(n)} > c13 log n .

PROOF OF (i) . Consider the points P in 3-space with integer co-ordi-
nates whose distance from 0 is less than 1/n . It is clear that if '3(P) is the
probability that a path of n steps will enter P,

{D(3) (n)} ?

	

[ z s (P)]' ?

	

["3 (P)] 2 .

we have, by Lemma 2,

~ 3 P

	

cll > c14( )j P

	

2' .

As the number of points P with 2" -' _- J Pj < 2" is at least c1,52 3i', it follows
immediately that

{D~3~(n)} -_ c12 n 12 .

PROOF OF (ii) . The same method works . As above,

fl)
(4) (n)i

	

1,

	

[VV(P)] 2

	

C16

	

I > c 13 log n .

3 Acta Mathematica X1 3-4
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REMARK 1 . It is clear that there is a constant c, 7 such that for any n
and d-5

1 :5 ~cll (DO) (n)) < c, T .

REMARK 2. By carrying out the computations more carefully it is possible
to prove that

6 {D t'' (n)} - cis n~ "(1 + o ( l )) ,

6 {D (4) (n)} =c1 log n(1 -x-0(1)),

{D(")(n)}=c{a) (1 -;-0(1))

	

(d > 5),

for suitable constants c,,,, c, q , c('(? . We do not prove these as they are not
required in the sequel .

Though we do not require it, we prove the following lemma to com-
plete our results :

LEMMA 9 . Suppose •/i (0, oc), _,W' ?) (0, c-) are independent random walks
in d-space (d = 4), the first starting at 0, the second at P where ~P! = p

and 2 p' < n < 2p' ; then there are constants c2 , and c» ) (d = 5, 6, . . .) such

that

(i) P{114)(0, n) intersects Il(2;) (0, o)} <	
1Iogn '

(ii) P{III`°(0, x) intersects 82[`0)(0, oc)} < nCC_2>>2 for d-5,6, . . . .

PROOF OF (i) . Calculate the expected number of points common to
H14)(0, n) and II2(4, (0, oc) . This turns out to be finite . However, if there is

an intersection between If1 (0,
[
2

,
) and M )(0, c), both paths can con-

tinue independently after the intersection, both of them for at least [_n
'

22
steps . By Lemma 8 (ii), the conditional expectation of the number of points

common is at least c,3 log 2
given that an intersection occurs . (i) now fol-

lows as otherwise the expected number of common points would not remain
finite .

PROOF OF (ii) . In the notation of Lemma 7, let p,(L), p2(L) be the
probabilities that ii (0, cc), " 2(" ) (0, «c), respectively, pass through the lattice
point L . By using Lemma 1, the result (ii) follows immediately on summing
pi(L)p2(L) over all the lattice points with integer co-ordinates .



The main result of this section is contained in

THEOREM 1 . Suppose f(n) is an integer-valued function of n which
increases to infinity as n - 1o and E('`I) is the event that the random walk path
in d-space is such that II ( ` I)(0, n) and H ) (n=, f(n), cc) have at least one
point in common .

(i) For d = 3, if f(n) = n {cp(n)}-' and cp(n) is monotonic increasing, then

P{E J( ' ) i . o.}-0 or 1,
cc

	

1
according as Y-	 converges or diverges .

k=19(2 )

(ii) For d = 4, if f(n) = n ip(n) and VJ(n) is monotonic increasing, then

P(E„4 ) i . o.}=0 or 1,

according as ~ 1 	converges or diverges .
k=1 k"Ip(2)

(iii) For d - 5, if sup f(m) , c23f(n) , 1 thenm

	

n

P{E<i 1) i . o.}=0 or l,

according as	 l	
f(n)','
	 „~ ;,, converges or diverges .

PROOF OF (i). Our first object will be to obtain

(3.8)

	

P(E(?3 ) )<Vin )

for a suitable C24>0 . Let Q( 3)(n) be the number of integers r (0 _- r ~ 2n)
such that TIO(n+f(n), x) returns to the point S3(r). By (2 . 2) it is clear that
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1
. ~-.f(tt)l' J

{Q' (n)

	

C24~

Thus
C2,-, 11

1

(3.9)

	

CIS {Q(3) (n)}
< cp (n)

since f(n) = n{ep(n)} and (f (n)

	

as n
As in the proof of Lemma 9 (i) we can estimate {Q('')(n)} by another

method. If E~' ) occurs, this means that there exist integers r,, re with 0 r, n
and r> > n +f(n) such that Ss(n)=S:; Now think of TiO(r l , 2n) and

I This condition is not really necessary for the truth of the theorem . It is inserted
because it simplifies the proof slightly .



240

II(3)(r-_,, a%) as two independent random walks of length > n starting from
the same point. Since r2 > n{cp(n) 12 -and cf:(n) ~ x, the knowledge that
S3 (r2) =S3(r,) will have no appreciable effect on the behaviour of TIO(r,, 2n) . 2
Hence by Lemma 8 (i) the conditional expectation of Q (0) (n) given E~,') satisfies

.̀ { Q( :')
(n)/E,"')}

> C20 n12 .
Hence

< O n '

	

P E~ J

	

(s)

	

(s) > c n' P E (3)
1Q Or

	

( ,~ )~ {Q (n)iE '

	

(

	

) .

Using (3. 9), this immediately establishes (3 . 8) .
For k- 2, 3, . . ., let R;,:'' be the event that H(3) (0, 2'') and H(3) (2 L +

+2'-'{cf(211'-1)}=, o) have a point in common . By (3.8)

(3>

	

2c,){
(3 . 10)

	

P(R. )<
T'(' . 1)

	

(k=2, 3, . . .) .

Hence, if ~~
cf (2')

converges, then

	

P(k;)) converges and, by Borel-

Cantelli,
P (R(~.` I i. o.} = 0 .

But from the definition of Rk3 the non-occurrence of RE` ) implies that no
3)E;, occurs for n,;_, - n 1. n,, . Hence

P {E`,3 ' i.0 . 1'l ,= 0.

Conversely, suppose

	

T
	 (Z_) diverges. We have independence diffi-

culties in applying Borel-Cantelli this time : instead we prove that there
exists i,, >0 such that
(3. 11)

	

P {E,`" 1 i . o .} > ri .
By the law of 0 or I this implies P{E, 31 i . o.} = 1, and so completes the
proof of (i) .

Let F 31 (k - 2, 3, . . .) be the event that iit 3 l
2

n, n and H")(n +

f(n), n+5f(n)) have a point in common for n 2'` . Let H;3) (k=2, 3, . . .)
I 1

	

'

	

1be the event that IT 3 > (n + f (n), n -}- 4 f(n)) returns within 1, 2
	 n I of S3

( 2
n~

'- Strictly speaking the conditional probability distribution for {S3(r)-S ;3(r1)}
(r, .<r<2n) given S3(r.}=S3(r1), should be obtained . It can be shown by simple but
laborious computation that the conditional probability differs from the 'free' probability by
a factor which -~ I as n-c ; hence it is clearly justifiable to use Lemma 8 (i) with suit-
able different values for the constants .

P. ERDÖS AND S. J . TAYLOR



for n = 2k. By Lemma 4,

so that, by (3 . 12),

(3.13)
CD
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1
10 e3

(3.12)

	

P (H`3'

	

F(
) > c	

2~ )

1

	

1 '

	

1
and after having returned within 2 n

	

of S3 ( 2 n there are still at least

f(n)>n steps to complete /1('(n+f(n),n+5f(n)) . Again, since 99(n) x,
the departure from the situation of two independent random walks each of
length ~ n starting at a distance apart Vn becomes negligable for large n .

Hence by Lemma 6 (i),
P(F,3) H~ 3')>c2;,

P (F,` 3)) > ~fj	
(21.)

.

Hence

	

P(F,~3 ') diverges. Since F 3 ' c R%3 ', it follows from (3 . 10) and the
h-2

fact that ck(n)-* x that P(F~3) 0 as k-~ D . Hence for any r; >0 there is
a K= K(r;) such that given k, = K one can find a k2 k 1 such that

(3.14)

	

2 i1 < 2: P (F 3') < 3 r; .

We shall show that, provided ii is chosen small enough, (3 . 14) will
imply
(3.15)

	

P i U F: 8 > r,

which clearly implies (3 . 11) .
Suppose now that Fp:o) has happened . This implies that there are inte-

gers r3 , r.1 such that 2^' -1 - r3 - 2': 2' + 2 1 {(F (2")}- -_ r4 -- 2'- + 5 .2 1 {T (2')}'- and
S3(r3)=S3(r4) . In considering whether or not F;+{ happens, there are at least

(16-5)2': (p (2k14)

	

2 f (2r,-4)

steps after r4 before we look at H' (n + f (n), n + 5f(n)) for n - 2 1'+1 . The
method used earlier for estimating Rt 3j shows immediately that

P

	

/F,} < {2 })
so that, by (3. 13), it follows that

P {F;+} n F 3 } < C3 0 P (F) P (F,+k) .

241
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The same argument shows that for an integer I - 4,

(3.16) P(F,,+ , n F.)<c3IP(F,;)P(F;+,) .
If (3 . 14) is satisfied, (3 . 16) implies that

P {F4, . n

	

U F4,} < 3 r, c 3 „ P (F4 ,.),
kr 4f~d,

so that if r is chosen small enough to ensure that 311c3„<
2

, it follows
that for k, :s4r < k,

1
P{F4 ,.-F4,P

	

n U F,} > P(F r )
4

.

Using (3 . 14), this clearly establishes (3 . 15) as required .
PROOF OF (ii) . A very similar argument will work. Instead of (3 . 10),

(3. 13) one obtains

P(RI,)<(k-I)y',(2r-')'

	

P(FF4')>kCf(2 '°)

PROOF OF (iii) . Define a sequence of integers by : n 1 is some fixed in-
teger such that f(n,) - 4,

P . ERDÖS AND S . J . TAYLoR

(3.17)

Under the conditions given it is clear that Y-.l	 1
verges with the series

(3.18)

Suppose first that (3 . 18) converges . For d ~ 5, let Q1 ,11 (k) be the number

of points common to II~'0(0, Ilk) and ZIil"~ n k + [ 1
2

	 f (n,; 1 )],

	

Then the ar-

gument used in (i) shows that

{Q'>(k)}

	

C33	<
_1)}(a_M ;,	 .

{ f{n,;

Hence

P {Q(`')(k)

	

1 1, < {

	

c;; 3	
f(nh i V,1-4)'2

.

)

By Borel-Cantelli, there is probability 1 that Q('?(k)=0 except for finitely

n,;-

	

nk _f [fnk2 ( (k = 1, 2 . . . . ).

converges or di-

1
,`

	

- 4 )' 2



many values of k. Further, if Q(''>(k)=0, then E ;`I' does not happen for
n,I :fz-:~ n - n,; . Thus

P {E,"?) i . 0 .) = 0.

Conversely suppose that (3 . 18) diverges. Let Ffd ' be the event that
there is a point common to II(d)(n k -f(nk), m) and HO(nk+f(n);), nk+
+2f(nk)) . By (3.17), under the conditions satisfied by f(n), the events
F,~ "' and F,,~+; are completely independent when l ~_ ca .r where c34 is a suit-

able integer . Hence it is sufficient to prove that . P (F,c"'',) diverges and
-1

apply Borel-Cantelli .
Now if HA'" is the event

S, (n t.) -S,(n,; Tf(nA)) j < (f (nk)) 1 ,' r

then an easy computation shows that P(H,~" ) ) > c"') . Further, by Lemma 6 (iii),
(d)

P(FE`I)1

M" )) >  {f(n)j,,-4);2
so that

(d)

P(FV)> {f(n)} ;' ~, ;,

Since f(n) is increasing with n and (3.18) diverges, it follows that
CJ

S' P(F<") ) also diverges . This completes the proof of the theorem .

REMARK. The result of Theorem I (ii) implies that there are infinitely
many values of n such that f14

(0, n) and T14(2n, x) have points in common .
A somewhat simplified version of the same proof is sufficient to prove the
following interesting result :

THEOREM 2. (i) Two independent infinite random walks in 4-space which
start from any two given fixed points have infinitely many common points
with probability 1 ; whereas two random walk paths in d-space (d ~:5) meet
only finitely often, with probability 1 .

(ii) Three independent infinite random ) .walks in 3-space which start from
any 3 given fixed points have infinitely many points in common with proba-
bility 1 ; whereas three random walk paths in d-space (d ~ 4) have only finitely
many common points, with probability 1 .

The relationship between these results and those for Brownian motion
was discussed in the introduction .
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4. Points where the past and future do not intersect . We first
need to estimate the probability that two random walk paths starting from
the origin have no points (other than their starting point) in common .

For d ~ 3, let T(,( n) be the probability that two independent paths of
n steps in d-space starting from 0 have no intersection . Let tt,,(n) be the
corresponding probability for two paths, one of n steps, the other of infinite
length . Clearly,

-ra(1)-T,,(2)- . . . -Ta(n) gy . . .,
y (1)-,cc,,(2)- . . .

	

ua(n) - . . .
and
(4.2)

	

T,, (n) -y,, (n)

	

(n- 1, 2, . . .) .

Let S,,(1), S,,(2), . . ., S2(n) be the sequence of points in path III, and
S"(1), S (2) . . . . the points of the path H,, . Put

e, (r) = S, (r)

Then we can enumerate the possibilities that S,,(r) is entered by Ih, but
later points of h i are not entered . This gives

T,, (n)

	

p,.

	

1

where p r is the probability that 17_, enters S,,(r) before the nth step, since
the probability of later non-intersection is greater than that for the non-
intersection of two paths of n-steps .

For d = 3, by Lemma 2,

p'.>cj`~ I ~ 3

	

1 > rig , by Lemma 6 .
+ . (r)

Hence by (4.3) we have

(4.4)

	

T~(n} ~ ,cls

For d = 4, by Lemma 2,

1

	

cal

	

b Lemma 5 .Pr > C40 ~ I 1 + 104(r) } J,2,

	

r

	

Y. .

Hence by (4. 3) we have

(4.5)

	

T4 (n) - logn



(4.6)
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To obtain estimates in the other direction, it is easier to use
Clearly, for 0 - k l --:~: n,

where q L is the probability that Ih enters Sr(k) at least once .
For d - 3, the method does not give a good lower bound for ,u3(n) .

More complicated computations show that y 3 (n) _c43 n 1 .2, but we do not prove
this as it is not required in the sequel .

For d = 4, take k1= n - I
lon
g n ] . Then, if S4(k) = 0, H2 certainly en-

ters S4(k) at least once . If S.1(k)40, then by Lemma 1, the probability that
Ih enters S4 (k) is at most c44/{,o4(k)} . Since P{S4(k)=0}<c4 /k", it follows

that

	

C4.5	 ?q 1, < k ~--2c 4

	

1 + '104
	 k) f ,

	

Using Lemma 5 this gives qk < ke
Substituting this in (4.6) gives immediately

iL~

	

~(~

	

~!14

	

logn1) c
1;-i k +O I,logn) =1

CD

which implies

(4.7)

immediately

11,1 (n-kl) :q,:+

	

q, 1,
k-1

	

k k 1 -I

	 C47
log n .
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For d > 5, a similar argument shows that 2 q L, is a convergent series .
k. i

Hence, if k1- L2 n
J

,

,u,I([ 2 nJ) $+0(1)

	

1

which implies that

(4.8)

	

«,,(n) - cps .

By (4. 1), (4 . 2) it follows that for d -_ 5, there are constants T, -_!1, I > 0
such that
(4.9)

	

r,t(n)--x-,1(1

	

0(1)) .

In fact, the results of Section 3 imply that T,, <1,, for d--5, and further
that the probability of the non-intersection of two infinite random walks
starting from the origin is also T,, .
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THEOREM 3 . For d ~: 3, let GO ) (n) be the number of integers r (1 :!E:- r ::E~; n)
for which H( (0, r) and W (r+ 1, x) have no points in common, then

(i) for any E>0,

y(ii) P 0 = lim inf G(4)(n) log n
-- lim sup G(4 )(n) log n

+

	

- cso = l ;
>,->30

	

n

	

;<~c-

	

n

(iii) for d =-~- 5,

P lim 0,11 (n)
=r = 1 .

PROOF OF (i) . By (4.3), we have p 3 (n) ~ c a ,3 n -1,2 , so that

6 {GO)(n)}

	

c39 ~ r-' < c :,, n''' .

Hence

P G (n) > 2 n'-+,F ~

	

c;_
n£

,

so that if n,, -_ [k" E], the series

~~ P G' 3 'n,, > 1 n' ~'+Ej

	

( )

	

2

converges and there is probability I that there exists k, such that

G(3)(n,,) 2
n; - for k :~-ko . Since GO(n) increases with n, and n,,1

	

I

as k-~ co , this implies that for u,;--n-n,,, k ::-ko, G(S)(n) f~ n''°+ .F

PROOF OF (ii) . Let T( 4 )(r) be the event that H(4)(r-[ ( l ) 4]' l

og rr) and

III'>I r7 1, r+ [(log r) 4]
1 have no point in common and let H (4) (n) be the

number of events T(4)(r) which occur for I r=n. Clearly,

(4.10)

	

H(4) (n)

	

G (}) (n) .

However, by (4.5) and (4.7),

C,

	

P J T (4 r

	

c,4
log r - `

	

( )} - log r
so that

(4.11)

	

c :.3
n

	

t Ht'>(n)'

	

--

	

nlog n - t'

	

r -

	

log n .

Now the events T(4)(k) and T(1>(r) are completely independent whenever

P . ERDÖS AND S . J . TAYLOR

P { G (3 ) ( n) > n'' 2+iF i . o .} = 0 ;
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k>r+4
(log n)}'

so that the variance a''{H(4)(r)} of H( 4 ) (n) satisfies

(4.12)

	

a2 {H1})(n)} - c ;~	
n'

.(log n) 4

By Chebyshev's inequality, using (4 .11) and (4.12), we have

	 "
11(4.13)

	

P ;JHM(n)-~-{H (4 ) ( n) } > log n I C C?' (log n)'

For the sequence m k. _ [e'k'logk] an application of the Borel-Cantelli lemma
shows that for every ~F> 0

j H(4)(171,)- {H ({)(mk)} <
Fmk

log m,,

except for finitely many integers k with probability 1 . Since M,-+j -* 1 as
k-> x, this implies that

	

M A

lim 1°9n H(4)(n) {H(4)(n)}I,=0
„_,m n

with probability 1 . By (4.11), (4 .10) it follows immediately that

P l m sup log n
H( 4)(n)= c;;:, = 1,

which by (4 . 10) implies the right side inequality of (ii) .
By Theorem I (ii), there are, with probability 1, infinitely many integers

n for which
.U( 4)(0, n) and II( 4)(n+n [log log n], a)

have a point in common . For such values of n there are no points of non-
intersection between n and n + n [log log n], so that G(4 ) ( n) = G( 4) (n [log log n]) .
Thus it follows immediately from the right side inequality of (ii) that

P lim inf log
n

G( 4 ) ( n) = 0 = 1 .
i „_,M

	

n

	

1

PROOF OF (iii) . For d--5, let T(')(r) be the event that H(2')(r-[r34], r)
and H('')(r+ 1, r+[r3 ' } ]) have no points in common and let H(")(r) be the
number of events T(')(r) (1 - r :fE~ n) which occur. By (4. 9),

P {T('')(r)} =T,J(1 +o(1)),
so that
(4.14)

	

{H~'')(r)]-- n •r2 (1 +o(1)) .

If k>r=, 4n 54 , the events T(')(r) and T( 2)(k) are completely independ-
ent. Hence
(4. 15)

	

a'{H(5)(n)}<c :,,n %4 .
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The usual Chebyshev estimate using the sequence rF, = k10 (k = 1, 2, . . .} now
establishes using (4. 14), (4. 15) that

I	(4.16)

	

P ~ l m H( `O(n) = -ra	 1 .
n-)-Co

	

n

However, from Theorem I (iii) there is, with probability 1, an integer
no such that for n ~7 no (a) 17(d)(0, n-[n3 4]) and 110)(n, c) do not intersect
and (b) H(d) (0, n) and ]1(17 ) (n + [n3% 1], ,o) do not intersect. For n - no the
difference G(l)(n)-H(d)(n) remains fixed, so that

GO) (n)-H(l)
P lim

(n)

	

1 .
~~

	

n

This result, together with (4 . 16), establishes

P lim 0`11(n) -z,
n

and completes the proof of the theorem .

REMARK 1 . The result of Theorem 3 (i) is clearly not best-possible :
even the methods we have used can give a better upper bound for the den-

sity 1 G0)(n) . We expect that	1 ;, G( 3)(n) is bounded but did not succeed
n

	

n
in proving this .

REMARK 2. An obvious problem arises out of the result of Theorem 2

(ii) . Is lim sup
log

n G(4) (n) positive or zero?
11,I- CO

REMARK 3. It is clear that -r,l, the density of good points, increases
with d. In fact, -r, 1

	

I as d, o .

(Received 16 November 1959)
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