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1. Introduction. We are concerned with properties of the infinite sym-
metric random walk over the lattice of points with integer coordinates in
Euclidean space of d dimensions. (For a precise definition see [4].) We con-
sider two problems.

PROBLEM A. Suppose 1" (a, b) denotes the set of points S,(n) (a=n=0)
of the random walk in d-space; suppose f(n) is an increasing function of n.
What are the conditions on the rate of increase of f(n) which are necessary
and sufficient to ensure that the sets

0, n), H"(n-+f(n), ~)
have points in common for infinitely many values of n with probability 1?

We complete the solution of this problem in Section 3. Clearly, there
is no problem for d==1 or 2. The solution fakes a different form in the
cases d=23, d=—4, and ¢ = 5. For example, if d=4, an interesting con-
sequence of the result is that, with probability 1, there are infinitely many
n for which 71#(0, n) and /1*(2n, ~) have a point in common. This in turn
implies that any two independent random walks in 4-space have infinitely
many points in common. This at first surprised us, because two independent
Brownian motion paths in 4-space have no points in common with proba-
bility 1 (this follows from the result of [2]). The explanation is as follows:
with probability 1, iwo independent Brownian paths in 4-space approach
arbitrarily close to each other for arbitrarily large values of £; thus they have
infinitely many near misses, but fail to intersect because the fine structure of
the paths is not sufficiently dense (in fact, the paths have zero 2-dimensional
measure, see [5]). It can be shown similarly that, with probability 1, 3 inde-
pendent random walks in 3-space have infinitely many points in common,
while 3 Brownian motion paths have no common points (this last follows
from the result of [3]).

* This paper and the paper [4] were written while P. Ernds was visiting the Uni-
versity of Birmingham.
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ProBLEM B. A point Si(n) of a random walk path is called ’good’ if
there are no points common fo (0, n) and 1" (n+1, ). For d=1 or
2 there are no good points with probability 1. For d = 3, the result of Pilya
implies that there must be some good points: how many are there?

We prove, in Section 4, that there are absolute constants 7. (d = 5)
such that, with probability 1, a random walk in d-space has good points at
a subsequence of density 7,. For d=23 or 4 the subsequence of good points
has density zero with probability 1. We obtain in these cases asymptotic
bounds for the number of good points.

We start, in Section 2, by obtaining some preliminary results, and
collecting results which are already known but are needed in the sequel.

2. Preliminary results. [f £ is a condition on the random walk path,
we write P(E) for the probability that the condition is satisfied. If £, Es, ...
.oy Ei, ... is a sequence of conditions, we write

p{E}.: f. 0.:‘

for the probability that the path satisfies infinitely many of the conditions Ei.

&{Q}, 0*{Q} denote the mean and variance of a random variable Q.

[x] denotes the largest integer not greater than the real number x.

¢ will always denote a positive number.

Ci,Ca, ..., 0 will denote suitable finite positive real constants.

If X is a vector in d-space, X| denotes the distance from X to the
origin.

For paths in d-space, y,(n) denotes the probability that in the first
n—1 steps, the path does not return to the origin. It is proved in [1] that,
for d = 3, there are positive constants ;. such that

(2.1) 72 <7:(M) < 7,+0("2).
S8i(n) denotes the position at the n™ step of a random walk in d-space.
If L is any laltice point in d-space,
u, (L, n)=P{S, (n) =L}.

Clearly, all points can be reached either only in an even number of steps or
only in an odd number of steps, We need the following easy estimates for
uq(L, m). Suppose L is a point which can be reached in an even number of
steps, and |L'=—g¢. Then

(i) if o=0, we have
N ' 1 ]

(2.2) a0, 2m) — 2[ | O[]
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o) .
m!|’

(iii) if m>Ep , there are constants ¢y, ¢o with

(i) if m> 2,

2. 3) (L, 2m) =2[I;nd—7][

(2.4) m’ —— > ua(L, 2m) > — If i
(iv) if m<o®,d =2,

(2.5) ua(L, 2m) = 2[ " g [_'1 " o(%]]

4m:T
The same asymptotic formulae are valid for ws(L, 2m--1) in the case where
L can be reached in an odd number of steps.

We now need estimates for entering a point L at least once.

LEmma 1. Suppose L is a lattice point in d-space (d = 3), with |L|=p >0,
and v:(L) is the probability that an infinite random walk starting from O will
enter L at least once. Then there are finite positive constants f;,g. such that

Ja

On’ 2

<L) < r, L (d=3,4,...).

Proor. We may clearly assume that o > 100. Considering the last time
of passage through L, we have

L) =7 ;...H (£, n),
since y,u,(L, n) is the probability that the path is at L at the n'™ step and
does not return again to L and these events are mutually exclusive. Using
(2. 4) we have

o
N C: i .

va(l) = va _}_‘ —f ;{% for a suitable fi > 0.
1 S

In the other direction, it is clear that

] (L) i,f

lll/‘a

u{;(L n)— l: (L, n)—+ l (L, n) = OT’T_,
""E‘,_—,_f,“ " :-]_'9_

for a suitable g, >0
using (2.3) and (2. 4).
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This completes the proof of the lemma.
A modified form of the same proof suffices to prove
LEMMA 2. Suppose L is a lattice point in d-space (d = 3) with |L =0>0

and wy(L, n) is the probability that a random walk of n steps starting from
O will enter L at least once. Then there are finite constants h, such that if

n> —é o°, then

fbr.
o'

wa(L, n) > (d=3,4,...).

For d = 3, we know that random walks wander off to infinity. We need

estimates for the probability that they are not too far from O at some time
in a given range of .

LeEmMA 3. For every integer N =0 and real number r >0, put

Qi(r, N)=P{|Si(n)| = r for some n = N},
then we have for d =3, N> r*

for suitable e; > 0.

This gives the probability of being within a distance r of the origin at
some time after the N'™ step. The corresponding result for Brownian motion

is proved in [1]; the random walk result follows because of the relationship
between random walk and Brownian motion.

A proof is also given in [1] for
LEMMA 4. For every integer N =0 and real number r >0, put
Pi(r, Ny=P{Ss(n) = r for some N=n=4N};

then for d =3, Pi(r, N) > 1%6’& ‘LNJ-

For a random walk in d-space, we put o4(n) = |S.(n)|. In [4] we briefly
studied the average behaviour of ¢;(n) and in doing so proved

LEMMA 5. If ou(n) is the distance from the origin at the n'™ step of a
random walk in 4 dimensions, then there exists a constant c3 >0 such that
&l - __] o } = i(l -+ 9(1 ))

1 {ou(n))” L .
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Similarly one can prove

LEMMA 6. If o4(n) is the distance from the origin af the n™ step of a
random walk in 3-space, then there exist constants ci,ci’ such that

% _g) !

'n M1 (

3. Solution of Problem 1. In order to estimate the probability of an
intersection between [1(0, n) and II'"(n— f(n), o) we need first of all to
estimate the probability of at least one intersection between two independent
random walks starting at different points. It is critical to suppose that if the
starting points are separated by a distance ¢, then one of the paths takes
approximately ¢® steps, while the other either takes ¢* steps or is infinite.

._4
= Y Rach

LemmA 7. Suppose I11"(0, n), I1:°(0, n) are independent random walk
paths of n steps in d-space (d = 3), the first starting at the origin and the
second at P where P =op and %99<n < 20%; then there are constants

i, €5, ¢ such that
(i) P{II{*(0, n) intersects I15"(0, n)} > cs,
id) (4)
(ii) P{I1Y7(0, n) intersects 1157(0, n)} > ——— logn

(th

(iiiy P{II"(0, n) intersects 115"(0, n)} > — = for d=5,6,.

nti- 4)*
Proor of (i). In Euclidean space of 3 dimensions consider a cube &

with centre at the origin and side %9. Let #; be a large positive number and

3. 1) ts = [nn).

Let € be the subset of the lattice points with integer coordinates ob-
tained by taking points all of whose coordinates are multiples of # which lie
in & but are not within %g of the origin. The number »(£) of points of ¥
clearly satisfies
n

(3.2) Jiatt

and the distance of any point L in £ from each of O, P lies between

% o and 2o.
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Let p.(L) denote the probability that 119°(0, n) passes through L, and
p»(L) the probability that 7757(0, n) passes through L. Since the paths are
independent, the probability that L lies on both paths is pi(L)pa(L). Using
Lemmas 1 and 2 we have immediately that

4g{ _ \pl(z)! s

(-3 =1 mayl =3y
so that
(3.4) mmmmzﬁ.

[f interference could be neglected, (3.2) and (3.4) would be sufficient
to obtain the desired result. We now show that provided s is chosen large
enough, the interference is small. Let pi(L, M), p:(L, M), respectively, be the
probabilities that /77(0, n), I15?(0, n) pass through both L and M. Clearly, it
is sufficient to show that

(3-3) L? L p(Lpa(L)— X .._ > (L, M)pa(L, M) > cu.

, M=

[n the notation of Lemma 1, v4(L) is the probability that an infinite
path from the origin will pass through L. It is clear that

pu(L, M) = va(L—M)(pi(L) + pr (M),

paL, M) = vy(L —M)(p: (L)+ p: (IW)).
By (3.3),

(3.6) X pi(L, Mp:(L, M)g(s—fi]w:[;_-g(L—M)}f < 5 3 [ (L—M)P.

For fixed L €g, let » (L) be the number of points of £ whose distance from
L lies between 2" and 27" (r—1,2,...). It is clear that
3.7 pill e
’ = e
For a point M whose distance from L is at least 2" we know that

i3 (L —_ J'W) = ag%

Hence
Erm—m%.Zr@P <,
Mé\: 1=2"=g "J
using (3. 7). By (3. 6), it follows that, for each L in ¢,
X oL pall, M) < S S < 5 pLypaL),

1”("
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by (3.3), provided 7 is chosen large enough. This together with (3.2) and
(3.4) is clearly sufficient to establish (3. 5).

Proor OF (ii). A very similar argument will work using for £ only
points whose co-ordinates are all divisible by

ts = [r;(log m)'"]
for large enough 1.

ProOF OF (iii). Again the same argument works using this time points
whose co-ordinates are all divisible by {; where ¢; is a sufficiently large
fixed integer.

The simplest way of obtaining an upper bound corresponding to Lemma
7 (ii) seems to be a calculation of the expectation of the number of points
common to the two paths by two different methods. We first obtain a lower
bound for this expectation in the case where both paths start at the origin.

Lemma 8. Suppose 111"(0, n), 11$”(0, n) are independent random walks
of n steps in d-space (d=3 or 4), both starting from the origin. Let D (n)
denote the number of points common to the two paths. Then there are con-
stants ¢y, C13 Such that

(i) E{DO(n)} > cran'?,

(ii) &{DM(n)} > c13log n.

Proor oF (i). Consider the points P in 3-space with integer co-ordi-
nates whose distance from O is less than |'n. It is clear that if #3(P) is the
probability that a path of n steps will enter P,

ooz X [(PPz X 3 [P

1= Pl " 1=27-5' % 27 = ploat

If 2" >|P|, we have, by Lemma 2,

Cia Ci4
i) == 3=
3(P) P~ 2

As the number of points P with 2" = |P|<2" is at least ¢152", it follows
immediately that
&(DO(n)} = cron'™.

Proor oF (ii). The same method works. As above,

['_i]lﬂge"
(DI ()= X > [MuPF=ce 3 1>culogn
1 1 a7 =]

ey © P =P

3 Acta Mathematica XI-3—4
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REMARK 1. It is clear that there is a constant ¢;; such that for any n

and d =5
1=8&{DW(n)} <cir.

REMARK 2. By carrying out the computations more carefully it is possible
to prove that

(D (n)} = cisn' (1 o(1)),
&{DY(n)} = c19 log n(1+o(1)),
${D(n)} = cSP(1 + o(1)) (d

{3

5),

I

for suitable constants cig, C1a, € :... We do not prove these as they are not
required in the sequel.

Though we do not require it, we prove the following lemma to com-
plete our results:

LEMMA 9. Suppose H{(0, o), I1°(0, =) are independent random walks
in d-space (d = 4), the first starting at O, the second at P where |P|=o

and ~1—99 <n<20; then there are constants ¢ and ¢ (d=5,6,...) such

2
that
CJl
logn’
(J)
(i) P{IT{(0, ) intersects 11570, o)} < —ioz for d=5,6,.

(i) P{IIP(0, n) intersects I15°(0, »)} <

ProoF oF (i). Calculate the expected number of points common to
(o, n) and 775°(0, ). This turns out to be finite. However, if there is

an intersection between II‘”(O, [%J} and I157(0, ), both paths can con-

tinue independently after the intersection, both of them for at least l%]
steps. By Lemma 8 (ii), the conditional expectation of the number of points
common is at least leog% given that an intersection occurs. (i) now fol-
lows as otherwise the expected number of common points would not remain
finite.

PROOF OF (ii). In the notation of Lemma 7, let pi(L), po(L) be the
probabilities that 77{”(0, =), [15°(0, =), respectively, pass through the lattice

point L. By using Lemma 1, the result (ii) follows immediately on summing
pi(L)p:(L) over all the lattice points with integer co-ordinates.
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The main result of this section is contained in

THEOREM 1. Suppose f(n) is an integer-valued function of n which
increases to infinity as n— o and E” is the event that the random walk path
in d-space is such that IT(0,n) and H”(n-+f(n), ~) have at least one
point in common.

(i) For d =3, if f(n)=n{¢e(n)}* and @(n) is monotonic increasing, then

PEY i. 0)=0 or 1,
according as ;il&-(;—n) converges or diverges.
(ii) For d =4, if f(n)=nvy(n) and w(n) is monotonic increasing, then
P{EY i. 0.}=0 or 1,

according as Z converges or diverges.

ke!(é’_
(i) For d=5, if sup?™ = ¢, 7 o pen

”l—
PE" i 0)=0 or 1,

converges or diverges.

&1

ProOOF OF (i). Our first object will be to obtain

according as >

Cay

g(n)’

for a suitable cx > 0. Let Q®)n) be the number of integers r (0=r=2n)
such that I1®(n - f(n), o) returns to the point 8i(r). By (2.2) it is clear that

:!rr

§(QOm) S e X

(3.8) P(E) <

-Hf(ﬁ)l‘ .

cosnt?
g (n)’

since f(n)=n{g(n)}* and ¢(n)—+ ~ as n— o,

As in the proof of Lemma 9 (i) we can estimate §{Q®(n)} by another
method. If E” occurs, this means that there exist integers ri, o With0=n=n
and r. > n+f(n) such that Ss(r))=S;(r2). Now think of [I®(r,,2n) and

Thus
(3.9) E{Q® (n)} <

! This condition is not really necessary for the truth of the theorem. It is inserted
because it simplifies the proof slightly.

3
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H®(r2, o) as two independent random walks of length = n starting from
the same point. Since 7 >n{g(n)}*> and ¢(n)— o, the knowledge that
Ss(rs) = Ss(r1) will have no appreciable effect on the behaviour of I7®(ry, 2n).”
Hence by Lemma 8 (i) the conditional expectation of Q™ (n) given E® satisfies

H 8{QV()/E) > cun'?,
gnce
8{Q”(n)} = PEV)&{QV () EP} > cxn' *P(ED).

Using (3.9), this immediately establishes (3. 8).
For £k=2,3,..., let R be the event that 77¥(0,2") and ¥ 2"+
28U g (2F1)}% o) have a point in common. By (3.8)

2¢9

1]
(3. 10) P(R*-' )< q:(2""")

(k=2,3,...).

Hence, if Zr]—,— converges, then > P(R{’) converges and, by Borel—

) p(2)
Cantelli,
P{RY i.0.)=0.

But from the definition of RY’, the non-occurrence of R’ implies that no
E? occurs for m_, =n = n,. Hence

3 .
P{E" i.0.}=0.

Conversely, suppose > diverges. We have independence diffi-

1
%(2°)
culties in applying Borel—Cantelli this time: instead we prove that there
exists >0 such that

(3.11) P{ED i.0)>1.

By the law of O or 1 this implies P{EY i.0.)—1, and so completes the
proof of (i).

Let F" (k=2,3,...) be the event that [I® [% n, n) and 119+
+f(n), n+5f(n)) have a point in common for n = 2", Let H}f” (k=23 ...)

\ 172 x 5

be the event that /1'®(n+ f(n), n--4f(n)) returns within t% n, of Sy t% HJ

2 Strictly speaking the conditional probability distribution for {Si(r)—S;(ry)}
(ry=r=2n) given S;(r;) = S;(ry), should be obtained. It can be shown by simple but
laborious computation that the conditional probability differs from the 'free’ probability by

a factor which 1 as n-oc; hence it is clearly justifiable to use Lemma 8 (i) with suit-
able different values for the constants.
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for n= 2% By Lemma 4,

m&’i
1]
(3. 12) P (H: )>m:
1.2
and after having returned within {—n] of Si(?ﬂ] there are still at least

f(n)>n steps to complete [1®(n+f(n), n+5f(n)). Again, since ¢(n)— o,
the departure from the situation of two independent random walks each of
length =n starting at a distance apart |'n becomes negligable for large n.
Hence by Lemma 6 (i),
P(FYIHY) > ex,
so that, by (3.12),
i) Cas

Hence }ﬁP(F;Ea’) diverges. Since F\" < R, it follows from (3.10) and the
k=

(3

fact that q(n)—wx— that P(F;"')— 0 as k— . Hence for any 5, >0 there is
a K= K(x) such that given k = K one can find a k»=k, such that

(3.14) 2n< _\__ P(FY)< 3y,

Sh=t

II"

We shall show that, prowded 1 is chosen small enough, (3.14) will
imply
(3.15) P{ U F">y

T=h=hk,
which clearly implies (3.11).
Suppose now that FY has happened. This implies that there are inte-
gers rs, ry such that 2--'=ry3 = 2%, 284 2M g (24 =ry=2"4-5-2¢{e (2%} and
Ss(rs) = Ss(rs). In considering whether or not Fi”, happens, there are at least

(16—5)2 (@)} >3 F(2~)

steps after r, before we look at Hw'(n -+ f(n), n+5f(n)) for n= 2", The
method used earlier for estimating R}” shows immediately that

pFIA—-{F,I’]‘x_ (2""4)

so that, by (3.13), it follows that
P {F.lril-l n FJ’EH]}{C:;OP(F’J.—)P(F{;.;.‘{).
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The same argument shows that for an integer [ = 4,
(3.16) P(Fiu 0 Fy)<eanP (Fu)P(Fii).
If (3.14) is satisfied, (3.16) implies that

P{Fi.n U Fu)<3ncenP(Fs),

dr 4=y

so that if 7 is chosen small enough to ensure that 37cs< % it follows
that for h=4r=k
P{Fo—Fun U Fu}> -;—P(F;,-).
4=k,
Using (3. 14), this clearly establishes (3.15) as required.

PROOF OF (ii). A very similar argument will work. Instead of (3.10),
(3.13) one obtains

(n Ci (4 {32
PED<G—wey PO Eey

PrROOF oF (iii). Define a sequence of integers by: n, is some fixed in-
teger such that f(m)=4,

(3. 17) N1 = Ny, [ f(ﬁ!.)

(k=1,2,...).

Under the conditions given it is clear that Z converges or di-

I

verges with the series

=t f(m)93
Suppose first that (3. 18) converges. For d = 5, let Q" (k) be the number

of points common fto 7770, n,) and H*"'(n +[ fm- ,)] m) Then the ar-

(3.18)

gument used in (i) shows that

@ f)id s
S{Q"(k)} < Tl )yaoe -
Hence
Cas

P{QD(k)=1)< o J!”—’

By Borel—Cantelli, there is probability 1 that Q" (k)=0 except for finitely
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many values of k. Further, if Q" (k)=0, then E” does not happen for
M1 =n=n;. Thus
P{E" i.0.)=0.

Conversely suppose that (3.18) diverges. Let F;” be the event that
there is a point common to I (n,— f(m), ny) and TI(n+ f(nx), ne+
~+2f(m)). By (3.17), under the conditions satisfied by f(n), the events
F" and FY) are completely independent when /=c¢; where ¢y is a suit-

@
able integer. Hence it is sufficient to prove that ZTP(F}L?,) diverges and
r=1

apply Borel—Cantelli.
Now if H'" is the event

S () — Salm—+f(n) | < (F ()2,
then an easy computation shows that P(H{") > ¢i7. Further, by Lemma 6 (iii),

)

(@) gty Co
P(Fk / H; )/ {f(nk)}u:--n:'z ’
so that
P (F(r:'}) S Cgf?
k {F(n) )92 .

Since f(n) is increasing with n and (3.18) diverges, it follows that

D'P(F\)) also diverges. This completes the proof of the theorem.
r=1

ReEmARK. The result of Theorem 1 (ii) implies that there are infinitely
many values of n such that 77%(0, n) and /7%(2n, =) have points in common.
A somewhat simplified version of the same proof is sufficient to prove the

following interesting result:

THEOREM 2. (i) Two independent infinite random walks in 4-space which
start from any two given fixed points have infinitely many common points
with probability 1; whereas two random walk paths in d-space (d =5) meet
only finitely often, with probability 1.

(ii) Three independent infinite random walks in 3-space which start from
any 3 given fixed points have infinitely many points in common with proba-
bility 1; whereas three random walk paths in d-space (d =4) have only finitely
many common points, with probability 1.

The relationship between these results and those for Brownian motion
was discussed in the introduction.
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4. Points where the past and future do not intersect. We first
need to estimate the probability that two random walk paths starting from
the origin have no points (other than their starting point) in common.

For d=3, let 7;(n) be the probability that two independent paths of
n steps in d-space starting from O have no intersection. Let uq(n) be the
corresponding probability for two paths, one of n steps, the other of infinite
length. Clearly,

Ta.(])é ’1’.',?(2) = é'l-}f(ﬂ) == iy

4.1
s (D) =pa(2)=---=ma(n)=. ..
and
(4.2) 74 (n) = ua(n) (=T1:2:)

Let Si(1), Sa(2),..., Sa(n) be the sequence of points in path [77;, and
Si(1), Si(2), ... the points of the path IT,. Put

ea(r) = |Sa(r)|.-

Then we can enumerate the possibilities that S;(r) is entered by /1, but
later points of 77, are not entered. This gives

(4.3) () Z pr=1

where p,. is the probability that /7, enters S;(r) before the n™ step, since
the probability of later non-intersection is greater than that for the non-
intersection of two paths of n-steps.

For d=3, by Lemma 2,

Cag

Bo Cal8 H-{—od(r)z = e
Hence by (4.3) we have
| Cae
(4.4) T3(n) = Hfl .
For d=4, by Lemma 2,

by Lemma 6.

: E>C%', by Lemma 5.

o)
Dr>Cne * Wu

Hence by (4.3) we have

(4.5) 7s(n) = !C“

ogn '
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To obtain estimates in the other direction, it is easier to use wuq(n).
Clearly, for 0O=ki=n,

(4.6) “?("—'kr)/_ g+ Z = 1,

where g, is the probability that I/, enters S;(k) at least once.

For d =3, the method does not give a good lower bound for uz(n).
More complicated computations show that ws(n)=cwn'®, but we do not prove
this as it is not required in the sequel.

For d—=4, take ky=n— [Tgn—J Then, if Si(k)=0, /I, certainly en-

ters Si(k) at least once. If Si(%)=~0, then by Lemma 1, the probability that
11> enters Sy(k) is at most cu/{o.(k)}. Since P{Si(k) =0} <cu/k?, it follows
Ca5 H 1 Csg

= +2cub fW Using Lemma b5 this gives g, < ——

k
Substituting this in (4.6) gives immediately

[ a | . \’_‘i | 1 ‘ =
'”4(_[[Ogﬂ],]&“;.f_’—i 2 TO(_]Ogn‘ =1
which implies immediately

(4‘ 7) ”4(!?) =

that q. <

o
For d=5, a similar argument shows that > g, is a convergent series.
=1

Hence, if &k — ':12— nl,

ty ([% HDCJ,Q—I—O(I) =1

which implies that

(4.8) wa(n) =

By (4.1), (4.2) it follows that for d=D5, there are constants wa=u;>0
such that

(4.9) i(n) =71 -+ o0(1)).

In fact, the results of Section 3 imply that #,=wu, for d=5, and further
that the probability of the non-intersection of two infinite random walks
starting from the origin is also z,.
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THEOREM 3. For d = 3, let G'"(n) be the number of integers r (1=r=n)
for which I1'"(0,r) and I1'(r+1, o) have no points in common, then

(i) for any >0,
P{G®(n)>n'**¢ j 0.}=0;

)
(i) P ;oz lim inf G(Mlogn _ . sup m = cm: -
(iii) for d=5,
() |
P ; lim _C%)_ — t _—

PrOOF OF (i). By (4.3), we have wa(n)=cgn'?, so that

E{GO(n)} = Cauz < e nt
r=1

Hence

/ Csz
i< n¢’

P Gl"’(n)> n‘ e
so that if n,—[k*¢], the series
Z‘ P ; G (ny) > ;lg n:;,.-gﬂt

converges and there is probability 1 that there exists Ak such that
M1

— 1

G (ny) = —é—n; ¢ for k= k. Since G®(n) increases with n, and =
X

as k—» oo, this implies that for n. =n = nwu, k=ko, GO (n) = n'3,

PrOOF OF (ii). Let 7™(r) be the event that /7t ( [(l )4], ]and

H(*)(r—}-l r+[(log 7y ] have no point in common and let H®(n) be the
number of events 7 (r) which occur for 1=r=n. Clearly,

(4.10) H®(m)= GW(n).

However, by (4.5) and (4.7),

Css
log r

=PITO0) = g
so that
(4. 11) £

= 12 S H® < (-s
Ca og 7 =&{H®(n)} =5

=N
logn’
Now the events T (k) and 7(r) are completely independent whenever
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k>r+4( Y so that the variance o*{H®W(r)} of H™(n) satisfies
TR .
(4.12) o2 {H®(n)} = cse Tog iF

By Chebyshev’s 1nequa!1ty, using (4.11) and (4.12), we have

en i< w1
logny = & (log n)*’

(4.13) P )|H(4)(n)—u (HO@m)}|> 2

For the sequence my==[e*'°¢%] an application of the Borel—Cantelli lemma
shows that for every ¢>0

ey

€] —E&IHMW =i L
[ HH®(my)— & (m)} = 10grn

except for finitely many integers & with probability 1. Since %ﬂl as

k— oo, this implies that i
lim log ¥

IES Su el

with probability 1. By (4. 11) (4.10) it follows immediately that

HO(n)— & {HD(n)} | —

P} lim supl g H®(n) = ==
which by (4.10) implies the right side inequality of (ii).
By Theorem 1 (ii), there are, with probability 1, infinitely many integers
n for which
WO, n) and D (n+ n[log log n], =)
have a point in common. For such values of n there are no points of non-

intersection between n and n -+ n[log log n], so that G®(n) = G (n[log log n]).
Thus it follows immediately from the right side inequality of (ii) that

P! lim inf 28" %8 G (n) = 0’—1

PrOOF oF (iii). For d =5, let T™(r) be the event that IIW(r—[r*4], r)
and H(r+1,r4[r*%]) have no points in common and let H(r) be the
number of events 7 (r) (1 =r=n) which occur. By (4.9),

P{T"(r)} = (1 +0(1)),

so that
(4. 14) SLHO(r)) = nra(1 4 0(1)).

If k>r-+4n, the events T (r) and T(k) are completely independ-
ent. Hence
(4.15) 02 {HO(n)} <csen™.
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The usual Chebyshev estimate using the sequence r.=k" (k=1,2,...) now
establishes using (4. 14), (4. 15) that

i O ]
(4. 16) Pjlim = £ =1
However, from Theorem 1 (iii) there is, with probability 1, an integer
no such that for n=n, (a) 0, n—[n*']) and I (n, =) do not intersect
and (b) (0, n) and H®(n-+[n%], ~) do not intersect. For n=mn, the
difference G (n)— H(n) remains fixed, so that
\ . GD(n)—H®(n)

Pi lim =Of——~l.
{ nse n !

This result, together with (4. 16), establishes
' (d) '
P e Ol

LD

and completes the proof of the theorem.

REMARK 1. The result of Theorem 3 (i) is clearly not best-possible:
even the methods we have used can give a better upper bound for the den-

o1 3 ; 7
sity E—G(g)(n). We expect that ﬁG(a)(fI) is bounded but did not succeed
in proving this.

REMARK 2. An obvious problem arises out of the result of Theorem 2

lo 2

(ii). Is ]1m %up G (n) positive or zero?

REMARK 3. It is clear that 7., the density of good points, increases
with ¢. In fact, r.— 1 as d— o<.

(Received 16 November 1959)
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