INTERSECTION THEOREMS FOR SYSTEMS OF SETS
P. Erpos and R. Rapot

A version of Dirichlet’'s box argument asserts that given a positive
integer a and any a2--1 objects x, @y, ..., ¥,2, there are always a1 distinct
indices » (0 < v < @®) such that the corresponding ¢+ 1 objects x, are either
all equal to each other or mutually different from each other. This pro-
position can be restated as follows. Let N be an index set of more than a®
elements and let, for each element v of N, X, be a one-element set. Then thereis
a subset N' of N having more than a elements, such that all intersections X, X,
corresponding to distinet elements p, v of N’ have the same value. In this note
we investigate extensions of this principle to cases when the sets X, are of
any prescribed cardinal b. Both « and b are given cardinals, finite or infinite.
In the case of finite ¢ and b we obtain estimates for the number which
corresponds to a? in Dirichlet’s case, and we show that when at least one
of « and & is infinite then a”! is the best possible value of that number.

We introduce some definitionsi. A system %, : Y, (velN) of sets YV,
where v ranges over the index set N, is said to contain the system
Eo: X, (ne ) if, for every p, of M, the set X, occursin I, at least as often
as in 5y, i.e. if

|{v: veN; Y, =X} ={p: peM; X,=X }
If X, contains X, and, at the same time, X, contains X,, then we do not
distinguish between the systems ¥, and ;.

The system X, is called a (@, b)-system if it: consists of @ (not necessarily
distinet) sets of cardinal b, i.e., if | M|=a and | X,| =0 for ue M. The
system X, is called a A-system if it has the property that the intersections
of any two of its sets§ have the same value, i.e. if for

P s Por s ® D5 o e o F pig
we always have X, X =X X, . More specifically, X, is a A(a)-system
with kernel K if |M|=a and X, X, = K whenever pg, e ; py 5 py.
In the special case when | M | = 1, say M = {no}, we stipulate that K= X,
and the empty system X, for which M = @, is considered as a A(0)-system
with any arbitrary set K as kernel. Expressions such as

(= a, <b)-system, A(> a)-system

have their obvious meaning. Trivially, every (> a, 0)-system is a
A-gystem, and the box principle stated above asserts that every

+ Received & December, 1958; read 18 December, 1958,

+ The cardinal of the set .4 is dencted by |.4]. and set union by A48 or (v & N) 4, and
set intersection by AB or (v e N) 4,. Ac B denotes inclusion, in the wide sense. We use
the obliteration operator *~ whose effect consists in removing from a well-ordered series the
term above which it is placed. Unless the contrary is stated all sets are allowed to be empty.

§ Not necessarily distinet sets but sets having distjinet indices u.
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(> a? 1)-system contains a A(> a)-system. In what follows a and b
denote arbitrary cardinals, and b+ is the next larger cardinal to b.

THEOREM I.

(1) Ifa, b =1 then every (= bbb ab+, < b)-system contains a A(> a)-
system.

(i) If a=2;b>=1;a+b>=R, then every (=>ab <b)-system con-
tains a A(> a)-system.

TuroreM II. For every a, b such that a, b > 1 there exists a (a®tL, b)-
system which does not contain any A(> a)-system.

TreoreM III. If 1 <<a, b <X, and

; 1 2 b—1
omblab+1(1— g — grs — v — ) (1)

then every (> c, < b)-system contains a A(> a)-system.

Remarks. 1. It follows from IT that I(ii) is best possible, in the sense
that, for « = 2; b > 1; a+b > X, not every (a®, < b)-system contains some
A(> a)-system,

2. The (", b)-system of Theorem II will be constructed explicitly.

3. Fora = 2; b = 2 the result ITI is best possible. For we have ¢ = 12,
and the following (12, 2)-system does not contain any A(3)-system.

01, 01, 23, 23, 04, 04, 14, 14, 25, 25, 35, 35, where 2y = {z, y}.

However, for a = 3; b = 2 Theorem I1I is not best possible. By II we see
that IIT is best possible except for a factor between 1 and b!.

1t is not improbable that in (1) the factor 4! can be replaced by ¢,?, for
some absolute positive constant ¢;. Such a sharpened version of 111 would
have some applications in the theory of numbers, and in fact these applica-
tions originally gave rise to the present investigations.

Before proving Theorem I we establish a simple lemma which is at the
root of a large number of combinatorial arguments.

RAMIFICATION LiMmA, Let «, be an ordinal, ¢y, ¢y, ...,¢,, be cardinals;
let 8 be a set and M(sy, sy,..., 8,) be a subset of S defined for « < «, and
Spreees 8, €8, such that |M(sy, ...,8,)| <c,. Let V be a set of “wvectors”

(Sos 81y +ves &y,) SUCH that s, ..., 8,,€8 and
s, e M (85, ...,8,) for a << ay. (2)
Then RAE < S

Proof. For every subset S' of S choose a representation of the form
S"= {ty, ty, ..., &} ». where k is the initial ordinal belonging to |S'|.
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Define ¢(S',t) for te8' by putting ¢(8,t)=xrx (k<k). Now let
8 = (8, ..., 8,,) € V. Then, by (2), we can define an ordinal «(x, s) by putting

k(x, 8) = $(M(sy, - £), 8,) (2 <aq),
and a vector U(s) = (x(O, 8), (1, 8), ..., K (2, 3)).

Then |w(x, s)| <c, and sss" implies (s) #i(s') as can be seen by
considering the least « with s, ¢s,’. We conclude that

|V|=|{s:6eV}|=|{§(s):8eV}|<cpe;... 4,
Proof of Theorem I. 'We suppose that the system
2:X, (veN)

isa ( N|, <b)-system which does not contain any A(> a)-system, and our
aim is to deduce that
| N| <bt+btad+t, (3)

Throughout the proof the letters «, B denote ordinals such that
|ee!,|B| < b, and g, v denote elements of N. A subset N’ of N is called a
A-set with kernel K if the system X, (veXN’) is a A-system with kernel K.
Put X =X (veN)X, and choose an object § such that §¢ X. Well-order
the sets X and N as well as the set of all subsets of N.

We define elements f,(v) as follows. Let «, be fixed, and suppose that
f.(v) has already been defined for xz<<«, and for all », and that

L eX,+{6 (x<az;veN).

Let voeN. We now proceed to define f, (v,). Put, for any functions
Go(v), -+ fa,(v) defined for ve N and for any x,, ..., #,, & X+ {6}

F (9’0’ LERE g.zn; xl]s "y :ﬁau) = A‘.’H (0(< GC){V :ga{v) =xa}'
Let N'=N; KcX+{f. Put
H(N')=Z(veN') X,

and define I'(N', K) to be the first subset N'* of N such that (i) N""<N’,
(ii) N is a A-set with kernel K, (iii) N’ is maximal such that (i), (i) hold.
Then, by hypothesis about X,

I, K) <a.
Put N (ags v0) = F(for v fogs Folbods - oo (¥9))
K (og, vo) = {falvo) : 2 < g},
N#(a, v) = T'(N (o, 1), K (201 %))

Then  vyeN (e, ve); N*(ag, vo) N (oo, vo) i [NV * (g, o) [ < 8.
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Case 1. &K (ag, vy). Then put f, (v,) = 6.
Case 2. 8¢ K (u, vo).
Case 2a. vyeN¥(ag, v.). Then put f, (v,) = 9.

Case 2b. vyé N*(«,, vy). Then, by (iii) above, N*#(a,, vy)+ {v,} is not
a A-set with kernel K («, v,). If we now assume that N *#(a,, v,) = O then this
last fact implies that K(x,, v,)¢ X, which, however, is false.  Hence
N#(ag, vp) 79, and there is a first element »; of N#(x,, v,) such that
X,, X, 7 K(xg, vo). Since we are in Case 2, we have K(xg v)<X,,.
Since vy & N*¥(ay, v,) we have K (o, vg) =X, . Hence K(ag, vo) = # X, X, ,
and we may define f, (v,) to be the first element of theset X, X, — K (e, vp)-
This completes the definition of f,(v). We have, in Case 2b,

Frg@0) e X, SH (N#(a, %)) - (4)

Let veN. If for some «, we have f,(v) # 6 then Case 2b applies to «,
and hence also to each B <«; the elements f,(v) (8 <«) are therefore
distinet elements of X,. Hence, in view of | X, | <5, there is 8, such that
f.(v)eX, for « <B,, and f, (v) =0. Then Case 2a applies to B,, and we
have veN#*(f,, v). This shows that}

N=3X(veN)N#(8,,v), |N|<a|{N*@, v):veN}|.

We now prove that on the right hand side N* may be replaced by N.
Let N(B,, p)=N(B,, v). Then peN(B, u)=N(B, »): filp)=Lf()eX,
for « < B, ; B, =B, and hence, by symmetry, 8, >B,. Therefore 8, =8,

K(B,, 1) =K(B,,v) ; N*(B,, n) =N*(B,, v).
Thus [{N#(B,,v) :veN} | <|{N(B,, v) :veN}|.
For any « and any x,, ..., %, ¢ X put
G (g, ---s &) = F(fy, '”ufa. 3 X0y <o Bg),
Mz, ...,a:"J:H(F(G(xO, AN zﬂ}))

Then N(a, v) = G(fo(»), ...,f;(v)) .
Let o, be fixed such that «ye{B, :veN}. Choose any v with B, = a,.
Then N (B, v)= G (fo): -+us fio¥)-

Hence N (8,, v) is determined if the vector s = ( Fo¥)s -ony f;o(v)) is known.
Denote by S the set of all such vectorss, i.e. the set of all s which correspond

to choices of v such that B, =«,. Let now s= (s, ..., 5,)e8; a<ag.
We proceed to show that s, e M (s,, ..., &,).

t We remind the reader that [{N*(g,v):v¢€ N}| denotes the number of distinet sets
N*(8y, »).
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We can choose v £ N such that 8, = «,, and s5 = fs(v) for all B < «;. Then

s, =Fulv) 6 H (V¥ (z, %)) = H(P (N (@ »), Kl v)))

=H(P(G(fo(»), s £00), o0, .--,ﬂ<v>}))

3 A— )
In addition, we have

| M(sg, ..o, &) = | H(N*(a, v))| < b| N¥(2, v)| < ba.
o | |

Hence, by the ramification lemma, when v ranges through all values for
which B, has the fixed value «,, there arise at most (ba) %' distinet vectors

(7o), s Fio()) - We deduce that
|N| <al|{N*(8,, v):ve N} <a[{N(B,, v):veN}|
=a (x| KON (B, v):veN; B, = ap)|
<aZ (] <H)(Ba)*! <a(ba)bt,

which proves (3) and so establishes I(i).
Part (ii) of Theorem I follows from (i). Forifa =>2;b6=>1; a+b =N;
then b+ b2 Pt = al.

Proof of Theorem 11. Choose sets A, Bsuch that | 4| =a;|B|=b5, and
let F be the set of all mappings of B into 4. Consider the system
X: Xt = (x,f(x)):xab"} (ted; felF).

We consider the members of X as indexed by the pairs (¢, f). In fact, they
do not depend on {. Then X is a (a1, b)-system. Let us assume that X
contains a A(> a)-system X' with kernel K, say the system

X, =X(t,[,) (peR).
Then | B|> a and
(s So) # (655 15) for {p, o} . < R. (5)
Let zeB. Then |{f,(x):peR}|<|A|=a<|R|, and hence there is
{py: 0} » <R with f, (x) = fo,(x). Then, for any pe R,
(. foul®)) e X, Xo, = K< X, ={ (0. f,)) -y e B},

fo.() = f,(x), so that f, is independent of p. Sincel{t, :pe R} <|4A/<|R|
there is {py, 0} » =R with ¢, =4, . But then ({,,f, )= (,, f,,) which
contradicts (5). This proves Theorem II.

Proof of Theorem 111, Let 1 < a, b < N,. By Theorem I there exists a
least number d, where d << X, such that every (> d, << b)-system contains
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a A(> a)-system. Denote this number by f(a, b). We have to show that

fla, b) <e,
where ¢ is defined by (1).
There is a least number ¢(a, b) such that every (> ¢, < b)-system

Z:X, (ueM)

which satisfies X, + X, for {1, v} .< M, contains a A(> a)-system. Clearly,
¢ <f. Also, 4(a, 1) =a. We first show that

fla, b) <ad(a, b). (6)
Let ¥:X, (veN)
be a (> ad(a, b), < b) -system which does not contain any A(> a)-system.
We have to deduce a contradiction. Let

veN; K(v))={v:veN; X, =X, }.
Then X, (veK(v)) is a A-system, and therefore | K (v,)| <a. Henoe, if
{X,:veN} ={X, :pe M}, X,#2X, for {u, vjuc M,
then | M| > ¢ (a, b), and it follows from the definition of ¢ that the system
X, (ne M) contains a A(> a)-system. This is the required contradiction.
There is a ((ﬁ(a, b), < b) -system

2:X, (veN),
where X, = X, for p v, which does not contain any A(> a)-system.
Let N, be a maximal subset of N such that X, X, =@ for {g, v} .<N,.
Then |N,| <a, since X, (velN,y) is a A-system. Put X*=2X(veN,)X,.
Then we can choose elements

z,6 X, X* (ueN—N,).
Let £ X*. Then there is vy(§) e Ny with £ X, (5. Then the system (of
sets of at most b—1 elements)
Xoo— 186 X,— {8} (e N—Npi2, =)
does not contain any A (> a)-system since any such system X’ would yield
a A(> a)-system contained in X if we add to each member of X’ the element
¢. Hence 14 |{u:peN—N,; x,= & <é(a, b—1),
$(@, b) =|N|=|No|+H|N—N,| <a+Z(feX*)|{p:pe N—No;z, =€}
<La+t (qb(a-, b—1)— l) b = —a(b—1)4-abd(a, b—1),
dla,b) bh—1 é(a,b—1)
ad S H@ AT p—1)lat T

By means of b—1 successive applications of this inequality we obtain

plab)_ b=l  b—2 1 a1
Blab ~ Bl (p—Dlab2 " 2aT 1la

In view of (6) and ¢(a, 1) = a this is the desired result.

The University,
Reading.
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