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A CONSTRUCTION OF GRAPHS WITHOUT TRIANGLES HAVING
PRE-ASSIGNED ORDER AND CHROMATIC NUMBER

P. Erpos and R. Rapo*,

1. Introduction and statement of result.

The chromatic number yx(I') of a combinatorial graph I' is the least
cardinal number & such that the set of nodes of I' can be divided into
a subsets so that every edge of I" joins nodes belonging to different subsets.
It is knownt that corresponding to every finite ¢ there exists a finite
graph I', without triangles satisfying y(I';) =a@. In [1], Theorem 2, we
have extended this result to transfinite values of @. For every graph I'
the order ¢(I'), i.e. the cardinal of the set of nodes of I', satisfies ¢ (I') = x(I').
The construction used in [1] was of considerable complexity and did not
allow us to prove that it was most economical, i.e. that it leads to a graph
I', such that #(I';)=«a. This equation was only established ([1],
Theorem 3) when essential use was made of a form of the general con-
tinuum hypothesis.

In the present note we describe a much simpler construction of such a
graph I', and we shall at the same time prove, without using the continuum
hypothesis, that our new graph I', satisfies (I',) = x(I',) = a. Trivially,
for instance by adding isolated nodes to the graph, we can make its order
equal to any given cardinal b such that & >a, without changing the
chromatic number or introducing any triangles.

TaEoREM. Given a = R, there is a graph I, without triangles such that

$(La) = x(I'e) =a.

The proof depends on some lemmas, each a special case of a more
general proposition. An essential part is played by Lemma 4, which is an
adaptation of a result due to Specker [2].

2. Notation.

We use the notation set out in [1], §2. Every small letter, unless the
contrary is stated, denotes an ordinal. The order type of an ordered set
A is denoted by tpA. If A, B, ... are elements of an ordered set then
the symbol {4, B, ...}. denotes the set {4, B ,...} and at the same time
expresses the fact that 4 <B< ... For a cardinal r, the partition

relation] R
«—> (BO: Bla iy ,8”)' (1)

* Received 25 June, 1959; read 19 November, 1959.
t [3], [4], [5].
1 The obliteration operator * removes from a well-ordered sequence the term above
which it is placed.
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expresses the fact that whenever tp A = o; [A] =Z(v <n) K, thereis a
subset B of A and an ordinal v < n such that tp B=8,; [B'<K, If
0y=... =B, =8 we write (1) also in the form

x> (B)Tn)-

The logical negation of (1) is denoted by
a4 By, --us B

3. Lemmas.

Throughout Lemmas 1-5 we denote by « a fixed ordinal such that
either « = w, or « is of the form w,,;. In the proofs of Lemmas 2, 3, 5
only the case x = w,, is considered. The case « = w, can be dealt with
by making the obvious modifications and is easier.

Levma 1. Let B be an ordinal and ¢ a cardinal such that

a—> ()t B> ()
Then aB—> (af) .

Proof. Let 8= {(y, x): x <a; y < B}, and order § lexicographically.
Then tp S = «f. Let |N|=c; S=ZXZ(veN)S, Chooseanyy<<p. Pub
A,(y)={z: (y,2)e8,} (veN). Then, since every z < « is a member of
some 4,(y), [0, «) = Z(ve N) 4,(y), and by «—> («){y, there is an element
viy) of N with tpA4,,(y) >«. Put B,= {y:v(y)=v} (veN). Then,
since y can take any value less than 8, [0, B)=Z(veN)B,, and by
B-> (B)ly there is v,& N such that tpB, >=8. Then tp4, (y) >« (ye B,),
and the set D= {(y, x):ye B, ; xe 4, (y)} satisfies

De8,; tp8, ZtpD=0af.
This proves Lemma 1.

LemMa 2. o> (a®),! for every cardinal p such that p <|a|.

Proof. We mneed only consider the case a=w;; p==¥,. Let
[0, @) =E(r <w)S,. If for all v < w; we have | 8,| <X, then the con-
tradiction R,,; <E(v<w,)|8,| <N2=R, follows. Hence there is
vo << w, with |8, | =X,,;, and so tp S, =a. This proves a—> (a)k,, and
Lemma 2 follows by two applications of Lemma 1.

Lemma 3. Let k<wy, and let V be a set of vectors (x, ..., &) with
Ty, .-, By <@, ordered lexicographically. Let tpV =ao¥. Then there are
sets T,(xq, ..., &,) <[0, «) with tp T, (zg, ..., &) =a (v<k; 2, ..., 8, <)
such that the relations x,& T, (xg, ..., &,) (v < k) imply (z,, ..., Z,)eV.

Proof. Let o =w,,;. The agsertion holds for k=0. Let k> 1, and
use induction with respect to k. Put

Slwo) = {(®q, «-vs &) (20, @95 +oes eV} (wg<a).
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Then tpflz) <o (x <o); tpV =Z(x < o) tpfla).
Put Ty =1{e:ipfla) =o%1}
Assume that tp Ty < .

Then tp 7'y < wyy4q; | Tl <X, and T is not cofinal in [0, ).  There is
B <« with Ty<[0, B). If k=1 then the contradiction
a«=tpV =Z(x <p)tpflx) <B
follows. Now let & >2. Then tpf(z) <a*23(z) where
d) <a; [8()| <K, (B<zr<a)

If B <y <« then

18B)+... 80| <Kaly| <Rys 8B+ +H80) <y =a
Hence o = 8(8)+ - (x) < «, and we obtain the contradiction

tpV <Z(@ <P F1+E(F <z <a)ab28(x) = a1 8+t ak 20

L oaF1(B+1) < ok

Hence the assumption is false, and tp 7y = «.
Let 2yeT,.. By induction hypothesis, applied to f(z,), there are sets

T(xg -, 2)<[0,0) I1<v<k; 2, ..., B, <)
with tp T (@, - B)=0 (I<v<<kh; 2y, ..., 8 <)

such that whenever
z,eT (xg, ..., 2) (I1<v<k)

then (z,, ..., #;)ef(z,). Put

T(xg .0, 2,)=[0,0) (1<v<lk; 2,8[0, 0)—Ty; xy, ..., &, <a).
Then the sets 7', (v < k) satisfy the assertion of Lemma 3.

LEmma 4. o3> (3, o®)2.

Proof. Put 8= {(z, y, 2): 2, y, z<< o} and order § lexicographically.
Then tp S =o?®; [SP=K,+K,; K, K,=@,

Ky= {{(%: ay, Gg), (bos by, by)k<: @y <<y <y <by < 0‘} .
If ordinals @, b,, ¢, satisfy
[{(ay: @y, as), (B, by, Bs), (cy, €1, )} TP < K,

then the contradiction a, <b; < ¢, <<a, follows.

If, on the other hand, a subset V of § satisfies tpV =0o?; [V]2< K,
then there are sets 7', which have, for k = 3, the properties mentioned in
Lemma 3. Then there are ordinals @,, b, such that

aely; a8 Ti(ag)—[0, ag+1l); bye Ty—[0, a;+1),
ase Tap(aq, a1)—[0, bg+1); b e Ty(be)—[0, ay+1); bye Ty(by, by).
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But then the contradiction {(ay, ay, @), (by, by, b3)}.€ Ky[V]* = O follows.
This proves Lemma 4.
LemMaA 5. There is a graph I' without triangles such that, if y(I') =e,
$(I) =al; o+ (o)

Proof. Let a=w,,;q; tpS =02 By Lemma 4 there is a partition
[8]2 = K,+ K, such that (i) thereis no A = Ssuch that tp A = 3; [A]P <= K|,
(ii) there is no B< 8 such that tp B=a?; [B?<K;. Put I'=(S, K),
Then T' has no triangle, and ¢(I') =| 8| =|a?| =R, ;. Let |N|=x(T).
Then there is a function g from 8 into N such that g(z) = g(y) implies
{x, y}¢ K, Then S =3X(veN)S,, where S, = {z:g(x) =} (veN). Let
veN. If z, ye S, then g(z) =v=gl(y); {z, y}¢ K,. Hence [S,P<K,;
whence by (ii) above tp 8, <<«®. This proves a®+s («®)ly, and completes
the proof of Lemma 5.

Proof of the Theorem.

Case 1. a=N,. By Lemma 5, with « = w,, there is a graph I'
without triangles such that #(I') =X;; wp3+> (we®),!, where e= x(I').
By Lomma 2 it follows that e > X;. Henoce Ny < x(I") <¢(I') = X, and
we may put I', =T\

Case 2. a>N,. Put M= {b+: R, <b* <a}, where b+ denotes the
next larger cardinal to the cardinal b. Then X,eM; |M|<a. Let
c=bts M. Then b=N, for some A. Put «=w,,;. By Lemma 5
there is a graph I',’ without triangles such that ¢(I',") = K, ., ; «* > (7).},
where e =x(I'/). Then, by Lemma 2, e=c. We can arrange that
r,/=(4, B,), where A, A, =@ ({¢, cj<<M). Put

I, = (E(csM)Ac, S(ce M) Bc).

Then x(Iy) =x(Tg,) =8, If x(T',)) =d <a, then X, <d* <a; drelM,
and we obtain the contradiction y(I',) = x(I'g+) =d*. Hence

o <x(T) <$(Ly) =|T(ce M) A,| <E(ce M)a=a| M| <a,

and the theorem is proved.
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