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Denote by cp(n, E, C) the set in a, 0 < a < 1, for which the in-
equality

(1)

x

P
q

E

< 2 , n<q<Cn, (p,q) _

is not solvable . In a recent paper Szüsz, Turán and I (see [l]) have
obtained various inequalities for m [q) (n, E, C)] (m (T) denotes the Lebes-
gue measure of (p) . We have conjectured that for every E and C

limm[99(n, E, C)]

exists . So far we have not yet been able to prove this conjecture . At the
end of our paper we state without proof the following

THEOREM 1. For every E and q, there exists C = C( .-, r7) so that for
every nn

m [rp(n, e, C)] < ~7 .

I have now obtained a different proof of this Theorem from the one
we had in mind at' the time of writing our triple paper ; the new proof
has also other applications, and thus it seems worth while to give it in
detail .

By the same method we can prove the following Theorem, which
contains Theorem I as a special case .

THEOREM 2. Let h(n) > 0 be a non-decreasing function for which

(1 /nh(n)) diverges . Then for every j7 > 0 there exists a C, ( ,q) so that if
nil

n<4<k(n)

1

qh(q) > c, (n),

then the measure of the set in a for which the inequality
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Then for almost all a

By the same

THEOREM 3' .

1

< g2h (q)
,

	

(p, q) = I,

	

n. < q < k(n),

is )not solvable is less than -j .
We omit the proof of Theorem 2 since it is very similar to that of

Theorem 1. We obtain an interesting special case of Theorem 2 by put-

ting h (n) = loge ; here k (ii) = n, eci(" )
Finally we shall outline the proof of the following

THEOREM 3 . Let t(n) > o be a non-decreasing function . and assume

that ~~1/l(n)) diverges . Denote by N(l,a,n) the number of solutions of
11=1

the eguation
1.

ma- [rna~ < ---, 1 < rre < n .
l (m.)

n
1

	

1 .

	

1
lim 11' (1, a, )'1,)

»L=1

- 7 .

method wee can prove the following

Denote bye N'(l, a, n) the number of solutions of

0<qa p<
7(q),

	

(p, q)=1,

	

0<q<rr' .

Tlren, for almost all a
hL

L

	

1

	

--1

	

1-2
~  _

~~

	

l(q)

	

7,q=1

We omit the proof of Theorem 3' since it is similar to that of The-
orem 3 . Theorems 3 and 3' should be compared with a recent result by

Leveque(1) -Leveque's result is much stronger than ours but applies

to a more restricted class of functions .
Throughout this paper m, n, p, q, r, s, t, . . . will denote integers,

Greek letters will denote real numbers, e l 81, 827 837 847 ri will denote
suitably chosen positive, sufficiently small numbers, 0 will denote a num-
ber satisfying 01 < 1, C17 C2 i . . . will denote positive constants, C will
denote a suitably chosen large constant (C = C(E, r), 8i )) . We will always

( 1 ) See [2] ; through the kindness of Professor Leveque I saw the manuscript
of another paper on the same subject, which helped me in writing some parts of
this paper .
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have (p, q) _ (p i , qi) = 1, 0 < p < q, 0 < pi < qi . Ipq will denote
the interval

p _ t; p

	

E

q q2 q + q2

Define /q (a), 0 < a < 1, as follows :

1,

	

if for some p

	

1a-p/q~ < E/q2,
(a) _ 0

	

otherwise .

Theorem 1. will be proved if we show that the measure of the set
in a for which (C = C(E, q))

n,<q<Cn
11,(a) = 0

is less than ri . fn fact we shall prove considerably more. Put (clearly
i
f /q (a)da = 2Eq~(q)lg2 )
o

FC =

	

fIq (a)da = 2E

	

<P (q)

n<4<Cn 0

	

n,<4<Cn g2

By partial summation we easily obtain (as v -> oo)

EC = ( I +0(1)) 122 log C .
7r

We are going to prove that for every p and sufficiently large C
i

(2)

	

I = f (

	

/,( a)-EC)2da < qEC .
0 n<q<Cn

From (2) we immediately find by Tchebycheff's inequality that
the measure of the set in a for which

/,, ( a) - EC > P-E"
n<q<Cn

holds is less than q// 2 , and thus the measure of the set with G /q(a) = 0
n<4<Cn

is less than ij (here # = 1), which proves Theorem 1 .
Thus we only have to prove (2) . Clearly by f,2 (a) _ /,,(a) we have

for sufficiently large C = C(E, 17) (we omit da since there is no danger
of confusion)
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1

	

1

(3)

	

= J

	

fgl (.a)fgz (a))-2Ecf

	

, f, (.a» } L+'c
0 aa-gl,g2<Cn

	

0 n<q<Cn

To

( 4 )

estimate
1

0

= 2f 1 fgl (a)fg2 (a) - EC+ f 1 g2 (a )

0 n<ql<g2<Cn

	

o 9a<q<Cn
I

2 , I^ C

	

!gl( .a)fg2(a)+ EC -EC

= 2Y+Ec-Ec = 2~ -Ec ~ . .1-~OE2r .

r

we shall need several lemmas .
1

LEMMA 11 f fq,(a)fg2 (a) < 8E 2 /q,g 2

fq, (a) fq~ (a) > 0 holds if and only if for some p, and p 2

(i . (, . if 1,1 ' ,1 and Iá,2 q2 overlap) . But then

p

	

P2

	

1

	

1 .

	

2e
--i < E~-- }

-)
<

q,

	

q2

	

q1

	

q~

	

q,

f

	

1

	

1g1( (1)fg2(a)
0 'a -~gl<g2<C. n

or

P2
a--

q2

E
< i

q2

~PIg2 - PA11 < 2e q2 .
q,

Put d = (q l , q 2 ) . The number of solutions of p1g2 -p2g1 = a is 0 if
a-f 0 (mod d) or a = 0, and is at most d otherwise . Thus the number of
solutions of (4) (in p1 and p 2 ) is at most 4Eg 2 /q 1 . Thus the Lemma follows
immediately since the intervals Ir1,g1 and Ipz g2 overlap in an interval
of length at most 2E/q2 (i . e. the length of IPz.g2) .

Now write
(J)

	

f

	

,á,J1 I f2

where in 1, the summation is extended over the g1 and q2 satisfying
n < q, < q 2 < CV. satisfying every one of the following three conditions :

a~ . (ql, q2) > a1-1 7

b.

e .

q, < q2 < q, S2 1 ,

> b4



(6)

if á, ~ d,(r, rj) is sufficiently- small .
Further by Lemma, 1

( 8 )
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where, in c ., r runs through the primes satisfying r 1q, q2, " > 63 ', 6 19
6 1, 6 1, 64 are suitably small numbers, which will be determined later .

LEMMA 2 .

	

1

	

2
1 < io ~-EC .

We evidently have

,v1 - Ia+ Llb
+ Gle

where in I8 condition a . is satisfied, etc . Thus by Lemma 1 (the dash in
the summation indicates that n < q, < q2 < Cn, (q,, q 2 ) > 8~')

i

	

1'q,
1

(7)

	

t < 8e 2

	

q < SE2

	

v
2

	

-/

	

--
~

	

2

	

,,
d>al1

	

nld<ql<q2 C-nldg l q 2

1

	

,
< 16E2(loge)2

	

2 <
16E2ó1(loge)2 < 30 I+,c

1

	

V

	

Y.

	

1
< 8E2

	

-

	

- < 16PI log 0log 62--' < ,~ qEr
d b

	

7aql<rn ql

	

qz
ql<q2<gp51 1

if C = C(e, 11, 62) is large enough .
Next we estimate J, . Clearly c . implies that for at least one of the

numbers q, or q 2 we have
1

	

1
(9)

	

r1

	

)

	

2 Ó
4

j
r>á3

From (9) and Lemma 1 we obtain

< 8e2 1 1;

	

1 < 168 2 1oge ~, -1 ,
n<q'<Cn q

	

q

	

q

where in Z' the summation is extended over the it < q < Cn satisfying
(9). We have

X

1

	

x 1

	

-~ 1r <

	

r r <x

	

9. 2 <xs3
q=1 riq

	

r>d31

	

r>83 1
r> 11

1
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Thus the number of integers q < x, satisfying (9) is less than

26,x1á, < 6,x if N < 216 5 64 .

Hence b partial summation

( 11)

	

Y 1- < 4os log(' .
g

From (10) and (11) we obtain

(1 .2)

	

< 64e"~' log(,
< 30n

E
~c

for sufficiently small b; . Lemma 2 follows form (6), (7), (8) and (12) .
Now we estimate 12 • First we prove
LEMMA 3. Assume that ra < qI < q2 < C'n a d that the yah qI, q2

does not satisfy, a., b. or e. Then for some 101 < 1
I

	 yo) 4 e 2q)(g1)ry(g2)
I f4I (a) f42 (a) = l+

20

	

q~q2

1

	

1

	

I

The Lemma implies that f fgI (a)f,2 (a) nearly equals f fgl (a) f f, 2 (a),
0

	

0

	

0

or the fq(a) behave in some respects as if they were independent functions .
The intervals [NI ,11 and Ip2,,z2 overlap if and only if (4) holds . Clear-

ly if

(14)

gI

Je
2. .

,al \e g2_g1)
t
9I 02

C2

q2

1

	

1`
< s

gi
-

	

,
2

or

then Ip2,u2 is contained in I„I ,11 . Thus

I

y(a) < f 4I(a)fa2(a) <
g
2

	

~, y(a)
0

	

2 IaI<e 2+ q2)(q
t 1

where g(a) denotes the number of solution„ in p I and p., of

a = plg2 - h .agl .

Put (ql , q.,) - d < 6 I . Clearly y(a)

	

d

	

b, _I (by a.), and since_e by b .
there is at most one integer in the interval

qs
F

	

~ ~ q2 ~ qI

q]

	

q2

	

g,

	

g2

l P lg2 - P2g1~ < E
-q2
-

qI

q,

	

q,
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the right and left sides of (13) differ by less than 36d/qty < 3s/g261 .

Thus we have

(.1J)

	

1Q1(.a)!g2(a) - 22

	

Y g(a)+ ` 2eU ,
Ó

	

q2 lal,

	

/Qi

	

q ., 1

for some IOj < 1 . (C- will always denote a real number satisfying
Í0J < 1, but it will necessarily be the same number .) Clearly g(a) = 0
if a ~- 0(modd) . Put a' = a/d, q,' = qj /d, q2 = q,/d. Clearly g(a) -= 0

unless
(16)

	

a -- 0(modd),

	

(a', q 1 q2) -- 1 .

LEMMA 4. Assume that a satisfies (16). Theca

J

	

l.
g(a)-dI](1- ).I1~(1-

s

where the is are the prime factors of d fo-r which r*a'giah( awl the s riOt

through all the other prime factors of d .

To prove the Lemma observe that clearly

a' -- Ih q2 -- 12qí

has a unique solution in

0 < p, < q1,

	

0 < p2 < q2,

	

(PI , ql') -- (P21 g ) = 1 .

We obtain g(a) by determining the number of integers a satisfying

(17)

	

(PI+ aq l , (1 ) _ ( p2 -F "lq2, d) _= 1 ,

	

0 < a < d .

Clearly every solution of (17) satisfies (11), and (11) can have no other
solutions . Thus we have to determine the number of solutions of (1-7) .
Let t be a prime factor of d. By (q,, q2) -- 1, tjgi and ti g 2 cannot both
hold. If tlq~ then (1.7) implies a -p 2/g2(modt), if t j q2 then (17) implies
u / - p, /gi(mod t) . If t*gig2 then a

	

-p, /gí(modt), it $

	

2

(modt) . These two residues coincide if and only if tÍa' . Thus Lemma, -1
follows by a simple sieve process .

Now we return to the proof of Lemma 3 . Let a, u	ud run
through a complete set of residues (modd) where we further assume
that p *vi for every prime factor of q, g2 which is not also a prime factor
of d. (In fact unless (u i , q j q2) = 1 we find from (16) that g(uz(l) _= 0,
but if we did not exclude the prime factors of d in the condition p- .v j ,
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the Ws could not run through a complete set of residues (modd)) . From
Lemma 4 and (16) we obtain by a simple argument

d

(18)

	

Y g(d'ui) = d2 1I 1--
i=1

where t runs through all the prime factors of d.
Denote by í , ( z, u), z = [q 2 F/q 1 ] the number of integers 71a satisfying

where t' runs through all prime factors of qí q2 which do not divide d.
A simple sieve process (the details of which can be left to the reader)
shows that for some 101 < 1

~
(1y)

	

N(z, u) = d2 (1+
(U40) lI 1--

1
i,

if z/d2 is sufficiently large (i . e. 6 2 = 6 2 (q, 6 11 6„ 6 1 ) is sufficiently small) .
From (18) and (19) we easily find that (since as a' runs from 1 to

z/d through the integers relatively prime to gig2, (19) shows that it runs
through at least

and at most through

complete set of residues mod d)
z

	

Z/d

(20) ú g(a) _ Vg(a') = z(1 { . -~ ~ ~ (1--
a=1

	

a'__

	

`1

gOT(g1)99 (g2)= 2' (1 + . .--	
40

	

ql q2

1 < »i, < zfd,

	

»b - u(modd),

1

c (1
.

Thus finally by (15) and (20) we have

(M, t') - 1-

(

	

,10 4e2,p(gl)q)(g2)

	

2e0 .
f21( a )f112( a ) - 1-~ -

	

q2q2

	

+ 240

	

g1 g2

	

9261



Now we have by a. simple computation for sufficiently

(22)

(21) and (22) clearly implies Lemma 3 .
From Lemma 3 w e have

rt()

	

4E2Y(gi)99 q2)
2 - 11 + 20) ~2

	

qi q2

and from the proof of Lemma 2 we hav*

(24)

	

4E29p(gi)q9(g2)

	

7t-EC .
2:1

	

qi q2

	

10

Thus from (23), (24), and (5) we have

(23)

On diophantine approximation

.1

	

qE2 9%(gi)99 (g2)

q2 ai

	

40

	

qig2

(25) ~, --
11

-F-
12

- (1-}-
r~0

.~

	

20 LJ
ic •, qi<42 <Caa

(25) and (3) imply (2), and thus the proof of Theorem 1 is complete .
Now we outline the proof of Theorem 3 . The most interesting spe-

cial case is l(n) = n and to save complications we will only prove our
Theorem in this case . Thus we have to prove that the number of solu-
tions 1V jn) of

satisfies for

(26)
Now define

F.(a) _

almost all a the relation

k

0

_ 1-E q~ EC ~~o Ec =
1
E~+

r~0 EC .
2

	

10

	

.i

	

2

	

4

1
0<ta --[ta]< -,

	

0<t<n,
11

if for some

	

h,

otherwise .

Na(n) /logn

	

l .

m

Clearly fF2 (a) > Na (n) . Define further
q-1

1

	

N

	

1
q2(k + 1)2

	

q2 k2'

(a)

	

1".(a)

	

if

	

11',(a) < (logq)2 ,
Ha

	

---
0

	

otherwise .

small

-1E L~P(gl)~(g2)

	

+lU,,~
qi q2

	

5

367

a2 - 6 2
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A well-known theorem of Khintchine asserts that for almost all a
the inequality

has only a finite number of solutions . Thus for almost all a
n

(27)

	

~(F,(a)-Fq(a)) -- 0(1) .
q=1

Also a. simple argument shows that

~Fq (a) < NQ(7t(logra) 2) .
q=1

Thus to prove Theorem 3 it will suffice to prove that for almost all a
n

(23)

	

loge

	

~ q (a)

(29)

where
1

	

n

(e30) & =
f

( Y .Fq(a»
0

	

q=1 q=

q=1

As in the proof of Theorem l, put

1

T, (q)

	

1

	

1

q 2 \1+
22 + . . . + [(logq)2 1 2

76

~Oq)
1t2

	

log n+0(loglogn) .
~, q 2 ( 6

	

(logq)$~
_

q=1

Further a simple computation shows that
1

(31)

	

(~,~ (a)'(

	

o,T,(q)loglogq
qo

Thus from 29), (30) and (31) we obtain as in (3)

(32)

	

I = 2,Y-E2 +0 (log n log log n)

where
1

(33 )

	

Fg1 (a)Fg2 (a) .
o 1<q1<q2<n



i

Now we write
(34)
where in

	

,
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q2 - q, e x p ((log-n)I'2)

	

(exp .; _= e )

(/2 > q, exp«loge)''2 ) .

we can prove that

c
Z+vl(a)b'g2(a)

< q, q 2

if q I < q 2

	

gl exp((login) 1 12 ) . Further as in Lemma 3 for
x exp ((log n:) 112 )

U

	

1
(36)

	

.~ -Fgl (a) Fg2( (I )

	

+

	

'
110

(109)01

	

-- .
q1 q2

Thus from (32), (33), (34), (35), and (36) we finally obtain

(37)

	

f < c(log n) 2- ' 110 .

From (37) we infer by Tchebycheff's inequality that the measure
of the set (in a) for which

rt

~i Fel(a)--togn -- eloge
q--1

is less than -2 (loge) --1 10 , and the proof of (28) proceeds by well-known
F

arguments .
The factor (loge) --11k í in (36) could easily be improved to say (togn)

but the ql and q 2 in 11 cause considerable difficulties and because of
these I have found it impossible to obtain a result analogous to the cen-
tral limit theorem which would generalize and strengthen the results
of Leveque .
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