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Introduction

Let q„ qzf . . ., q,t , . . . be an arbitrary sequence of positive integers, re-
stricted only by the condition q,,2. We can develop every real number x
(0 - x <-1) into Cantor's series
(1)

	

X =
	 E>>(x)

„-~ q,q	q,,

where the n-th "digit" FJx) may take on the values 0, 1, . . ., q,, -1
(n =1, 2, . . .) . The representation (1) is clearly a straightforward generaliza-
tion of the ordinary decimal (or q-adic) representation of real numbers, to
which it reduces if all q„ are equal to 10 (or to q, resp .) .

In a recent paper [3] (see also [2] for a special case of the theorem)
it has been shown that the classical theorem of BOREL [1] (according to which
for almost all real numbers x the relative frequency of the numbers 0, 1, . . ., 9
among the first n digits of the decimal expansion of x tends for n-* + m
to 1~) can be generalized for all those representations (1) for which ; 1

is divergent . The generalization obtained in [2] can be formulated as follows
Let f„(k, x) denote the number of those among the digits R,(x), 8jx), . . ., c,,(x)
which are equal to k (k-0, 1, . . .), i . e . put

f,(k,x) -

	

1 .
Ej(x)=k
l-j-n

,L 1
Q. _Y1 -

i=1 qj

1
Q,,, k

	

-.
.i=i qjqj= k

Then for all non-negative integers k for which
lim
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we have for almost all x

(5)

For those values of k for which Q,, k is bounded, f,(k, x) is bounded for
almost all x . (For other related results see [4] and [5] .)

In the present paper we consider the behaviour of
(6)

	

M,, (x) - Maxfn(k, x),

L e. of the frequency of the most frequent number among the first n digits .
We shall discuss the three most important types of behaviour of M„(x) :

Type 1 . lim M"(x)
= I for almost all x. This is the case if q„ is con-

11~ W Qn

stant or bounded, but also if e . g . q,, -cng with c > 0 and 0<#<l (see
Theorem 1) .

Type 2 . lim M„(x) - C for almost all x where 1 < C< + oc . This is
n~+m Qn

the case e . g . if q,, cn with c > 0 (see Theorem 2) .

Type 3 . lim M,z(x)
-+

	

for almost all x . This is the case e . g. if
n>.+m Qn

q„ , n (log n)a with 0 < a 1 (see Theorem 3) .

There exist, of course, sequences q,, for which lim M„(x) does not
n-> m Qn

exist for almost all x, but we do not consider such cases in the present paper .

We shall deal with the case when

	

1 < + a and with some other questions
q)2

on Cantor's series in another paper .
All results obtained are based on the evident fact that the digits é n (x),

considered as random variables on the probability space [SZ, d, P], where S2
is the interval (0, 1), 61 the set of all measurable subsets of S2, and P(A) is
for A E S2 the Lebesgue measure of A, are independent and have the prob-
ability distribution

(7)

In
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lim f" (k' x) -1 .
n-+m Qn, h

P (E„ (x)	k)

	

(k-- 0, 1, . . ., q,,-1) .q

§ 1 . Type 1 behaviour of X(x)

case q„ is bounded, q,, K, we have by (5)

lim N„ (0, x) 	1 and lim X, (k, x)
1 for k 1

nom

	

Qn

	

11- CO

	

Qn
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and thus, as in this case M,,(x) = Max f"(k, x), we obtain for almost all x
0=1: s

(8)

	

lim M"(x) =1 .
"~+co Q.

We shall show that (8) is valid under more general conditions. We prove in
this direction the following

THEOREM 1 . If

(9)

	

lim Q1 _ + ~,
„_,+co log n

then we have for almost all x
M" (x)

(10)

	

lim		 =1 .
,»+00 Qz

PROOF OF THEOREM 1 . Let FZ denote the set of those number s n for
which q,, < n 3 . Let us denote the elements of the complementary set a of a
by nj (nj < nj+1 ; j =l, 2, . . .), then we have nj > j and therefore q„j n - j 3.

Then we have for any k

P (Ej (x) = k) -

	

P (E"j(x) - k) _

	

1

	

13
< } 00

jESC

	

j

	

j q"j j-1 j

and therefore, by the Borel-Cantelli lemma for almost every x, every k occurs
only a finite number of times in the sequence E„j(x). On the other hand, the
probability that a number k occurs more than once in the sequence Q,,j (x)
(j=1, 2 . . . . ) does not exceed

and we have1
W'.
_

.2'12:
min (q,,, 97í) _

	

1

	

01 2 l,-<+- .k=0

	

q,+,,q"j

	

d=1 j>i qaj

	

i=i j=i+1 ,l

Thus, using again the Borel-Cantelli lemma, it follows that for almost all x
only a finite number of integers k may occur more than once in the sequence
s.,,,(x) . This, together with what has been proved above, implies that for almost
every x in the sequence E,,Jx) only a finite number of values occur more
than once and these values occur also only a finite number of times . By
other words, in proving Theorem 1 we may suppose that

(11)

	

q„ < n3 for all values of n

without the restriction of generality .

1
,1% k q q"j
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we have

Clearly, we have
Mn(x) , fn(0, x)
Qn

	

Qn

and thus, taking into account that owing to (9) condition (4) is fulfilled for
k = 0, it follows by (5) that

lim M. (x)
n-*+co Qn

Thus to prove Theorem 1 it suffices to show that for almost all x

(12)

	

lim M. (x) , 1 .
n->+m Qn

As by (4) we have for any k o

n->+m

	

Qn

(12) will be proved if we show that for any E > 0 and for some k o which may
depend on e, putting
(13)

	

M,("') (x) =- Maxf, (k, x),
k>ko

k~)(14)

	

lim Mn (x . - 1 f &
n--> co

	

Q,.

To prove (14) we start by calculating the probability P(fn(k, x) =j) . In what
follows cl , c2 , . . . denote positive absolute constants . We evidently have

n '

(15) P (fn(k, x) =j) _ (

	

'5~'

	

1

	

_ )

	

1-I
l~il<i2< . . .<ij-n (qü-1) . . .(gij 1

	

h=1

	

qh
qir>k ;r=1,2, . . .,j

	

qh> k

Using the well-known identity

j=N j !

we obtain for 0 < A<N
1 -{-
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Max f,, (k, x)
lim O :f~ k :!~ ko_

	

1,

P(fn(k, x) = j) C e- Qn, k (Q1, k)
j

j!

nn*k =, 1
j t ,, qj

-

qj>k

1

X

=fte 1dtNi
0

CO ~j

	

(N-;)2
Ye-7.

	

----	Cl e 2N
j=N j!

	

EVN



We obtain from (20) for k > 8
E-

(25)

and

(26)

(27)
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Thus we obtain for 0 < E < 1, in view of

'

	

1'I

	

1
(19)

	

Qn k- Q,,., k I 1+
k

	

Qn 1+
k

'

that

(20)

	

P (f,, (k, x) ? ( 1 + E) Q,,)

In this § we shall prove the following rather

THEOREM 2 . If

0 < C2
n,Z

-
C3

llm	 Qn =a>0,
„,co log n

then we have for almost all x

lim MI(x)
-Y(u)

I '---C

	

Q7a

	

Ql E
k

ek e

	

#
EVQ"

k2 Q,,

2 5,

(21)

	

p (f , (k, x) -(I + E)Q) <c'
EVQ

	 e Is

n

This implies, putting k„= [ 8 ] + I and taking (11) into account,
E"

11 .3

	

3

	

0 Q,,

(22 ) P (M,, °) (x) - ( 1 + E) Qom)

	

P(fn (k, x) ( 1 + E) Q.)

	

cI~l
n

e Is

k=k"

	

E
V Qn

As by (9) we have for n >_ n o Q,>E80, log n, it follows that
E-

(23)

	

P(Mlt",(x) ( 1 +oQ.) n'
Thus

co
(24)

	

P (M(k"' (x) (1 + ,0 Q.) < F °°~- I

and therefore by the lemma of Borel-Cantelli, the inequality M(k ) (x) (1 f)Q,F

can be satisfied for almost all x only for a finite number of values of n.
This implies (14) for almost all x which proves Theorem 1 .

§ 2. Type 2 behaviour of X(x)

surprising

(n=1,2, . .)
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(31)

Thus

(32)
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where y - y (a) > 1 is the unique (real) solution of the equation

(28)

	

Y log y 	1
cc

PROOF OF THEOREM 2 . We start from the inequality, which follows
simply from Stirling's formula,

(29)

	

e-2,jJ !

	

c4 (N) e

for N>R~ with fixed 13>1 where c4 depends on j3.
Now evidently (25) and (26) imply that

(30)

	

Q 4, = a log k + o (log n) .

Thus, by virtue of (16), we have, if Y> y(a) where y(a) denotes the solution
of the equation (28), for any s with 0 < E < a Ylog Y-1 and n - no (a)

C, 74 P (fY4 (k, x) -- YQ ,	 c`	
)

	

na log S 1 £ .

P(M, 4 (x) > YQ„)
- c ' for n - no(s)

where d = a Y log Y-1-s > 0. It follows that
Co

(33)

	

~:: P(M, W > YQ,S) < + °°
S=1

and therefore by the Borel-Cantelli lemma the number of those values of s
for which M.s (x) > YQ 2s is finite for almost every x. If 25-1 < n < 2s , let us
choose an arbitrary number Y, such that y(a) < Y< Y,, then

M,4 (x) c Ms(x)

	

Y, M93 (x)
Q74

	

Qs .,

	

Y Q

if s L- so . Thus, if for such an n M„ (x) > Y, Q4, then M, ., (x) > YQ ' . As the
last inequality can be valid for almost all x only for a finite number of values
of s, it follows that M,,(x) > Y, Q, is valid for almost all x only for a finite
number of values of n. As Y, may be equal to any number greater than
y(a), this implies that for almost all x

(34)

	

lim MM12 (x ) ~Y(a) .
H4 OD

	

Qit

It remains to prove that we have also

(35)

	

lim M.(X) ~Y(cc)
U4 CD

	

Q74

for almost all x.



(36)
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As for any sequence of positive numbers b l , b 2i . . ., bN we have
A* l7

	

N l7 9

~

	

b
i1
b
i?

. .

	

b~ l
	 - 1

	

N
b )

(~ bi I

1-4,<ig<	:.,ij-N

	

,J!

	

2 (

	

(,-2)!

we obtain from (15)

Taking into account that

i _ -9

	

1
Qn ' L

P(fn(k, x)-j)--cGe Qn,k Qn' k

	

q2 -- h i- qZ

j!

I

	

c7

i~n,si>>v qi k

and that for j= y Qn and k - nI- E

	 i	

1)

	

-~ CH

(Q11, k) , = F2

2(j-2)!

27

if 1 < y < y(a) where y(a) denotes the solution of (28) and 0 < 8 < 1-ay log y,
it follows that

(37)

	

P(f,(k,x)-yQ„)-c,n6 for n-n,(8)
1082, -k < rz

where d =1-ay log y-F > 0 .
Now it is easy to see that

P (f. (k,, x) --j, f. (k,,, x) =j)
(38)

	

(
I I + k,) (1 + k2) P(f, (k~, x) -j,)P(f,(k2, x) = jz)

It follows that for k, log' n, k_ -. log' n we have for any y with 1 < y < y(cc),

where y(cc) is the solution of the equation (28),

P(f, (k,,x)jyQ f,(k2,x)-yQ.)<

P(.f,,(k,, x) - yQ,,)P(.fn(k2, x) - y Qn) ( I + 0 (log2 n))
.

If we define ri, = r, (x) as the number of those values of k for which
log2 n < k < n and f,(k, x) - yQn, we have, denoting by M(r,,) the mean value
and by D'(rin,) the variance of rn,
(39)

	

M(rin) - c, n 6
and
(40)

	

D _(rn)
_ c

c„ M2	 (r„)
loge n '
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It follows by the inequality of Chebyshev

(41)

	

P(ri"=0)--P(

	

M(';`» log'
cio

n
and thus

Co
(42)

	

2P (r,,, = 0) < + . .

It follows by the Borel-Cantelli lemma that we have for almost all x

M.,,,(x) - y Q.,,t for n no (x) .
Thus for any s > 0 and for n - n,(x, k) and 2` N< 2"+1 we have

(43)

This

(44)

MA-(x) j M, ,~(x) --Y Q,-", ~ (Y-0 QV

implies that for almost all x

lim M„ (x) y

As y may be any number not exceeding y(a), we obtain from (44) that (35)
is also valid for almost all x . Thus the proof of Theorem 2 is complete .

§ 3. Type 3 behaviour of M,,(x)

Now we shall prove a theorem which deals with conditions under which
M"(x)

tends to -L

	

for almost every x .

THEOREM 3. Let us suppose that

(45)

	

lim q"

but at the same time

(46)

	

lim Q, +~ .
1L-á+W

Then we have for almost every x

(47)

	

lim M"(x) _+ C.C .

+CDQ.
PROOF OF THEOREM 3. The proof follows the same pattern as the second

half of the proof of Theorem 2 (i . e . the proof of (35)) .
We have from (45)

(48)

	

o (log n),
=1 qi

	

-, i qi



further for any A > 0

(49)

	

2: 1 -
o (log e"e,,) = o(Q~~)

and thus
(50)

	

Q,,,,;

	

Q„(1-o(1)) for k :!szeA2 11

It follows from (36) that for any N> N„ > 1

(51)
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P (f (k x) - NQ) e-"

Now let us choose A = 3Nlog N, then we have
P(f„(k x)~NQ)-e'~-,ogle-.ran .

Ira

On the other hand, we have from (38)

P(f,,(k,, x)-NQ,,,f,(k.,, x) j NQ,) -

P (f» (k,, x) ~ NQ, ) P (f, (k,, x) - NQ, ) (1+0	

and thus, defining r„ = r,,(x) as the number of those values of k for which
iQ; < k ~e' „ and f,(k, x) > NQ,,, we have M(r,) +

	

and

D2 (ii,)- c,,
M2(1,") .

Similarly as in the proof of Theorem 2 we obtain that

lim M,,(x)
N

P--> W Q.
for almost all x. As N may be chosen arbitrarily large, Theorem 3 follows .

(Received 29 October 1958)
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