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Introduction

Let ¢1,4, ..., qu,... be an arbitrary sequence of positive integers, re-
stricted only by the condition g,=2. We can develop every real number x
(0=x=1) into Cantor’s series

= s,.(x)

(1) X=

n=1G1qa" " *qn
where the n-th “digit” &.(x) may take on the values 0,1,...,¢,—1
(n=1,2,...). The representation (1) is clearly a straightforward generaliza-
tion of the ordinary decimal (or g-adic) representation of real numbers, to
which it reduces if all g, are equal to 10 (or to g, resp.).

In a recent paper [3] (see also [2] for a special case of the theorem)
it has been shown that the classical theorem of BOREL [1] (according to which
for almost all real numbers x the relative frequency of the numbers 0,1,...,9
among the first n digits of the decimal expansion of x tends for n—»—l—m

110J can be generalized for all those representations (1) for which ) —

rll n

is divergent. The generalization obtained in [2] can be formulated as follows:
Let f.(k, x) denote the number of those among the digits & (x), &(x), ..., &(x)
which are equal to k¥ (k=0,1,...), i. e. put

2) Il x)y= 2 1.
5j(¢}=k
I=j=nu
Let us put further !
" I
(32) Q=2
=1 4g;
and
(3b) Qu = Z ==
J--‘- QJ
aj =k
Then for all non-negative integers k for which
4 lim Q. x =4 oe,

i+
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we have for almost all x
m Sl x) =1

5 li
( ) n—1+ct> Qn‘ k

For those values of k for which Q, » is bounded, f.(k,x) is bounded for
almost all x. (For other related results see [4] and [5].)
In the present paper we consider the behaviour of

(6) Ma(x) = Max fo(k, %),

i. e. of the frequency of the most frequent number among the first n digits.
We shall discuss the three most important types of behaviour of M, (x):

Type 1. lim M:l for almost all x. This is the case if g, iscon-

Hi=»00 n

stant or bounded, but also if e.g. g.~cn® with ¢>0 and 0<g<1 (see
Theorem 1).

Type 2. lim M:C for almost all x where 1<C< 4 . This is

fi—+ Qﬂ

the case e. g. if ¢,~cn with ¢>0 (see Theorem 2).

Type 3. lim i47}“-?(51—:4—00 for almost all x. This is the case e. g. if
>+ 13
gn~ n(log n)* with 0<e =1 (see Theorem 3).
There exist, of course, sequences g, for which lim M.x) does not

-+ @ Qu

exist for almost all x, but we do not consider such cases in the present paper.

We shall deal with the case when Z%( -+ o and with some other questions

n

on Cantor’s series in another paper.

All results obtained are based on the evident fact that the digits &,(x),
considered as random variables on the probability space [£2, d, P], where £
is the interval (0, 1), & the set of all measurable subsets of £ and P(4) is
for Acf2 the Lebesgue measure of A, are independent and have the prob-
ability distribution

0 P@@p:@:é; (k=0,1,..., gu—1).

§ 1. Type 1 behaviour of M,(x)

In case ¢, is bounded, ¢, =K, we have by (5)

tim V2% g ang fim Nelee)

1 for k=1
=0 Q]I o QN
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and thus, as in this case M.,(x)=0£4kaxxfn(k, x), we obtain for almost all x

- M,(x)
8 lim ——=1.
( ) N+ Qn

We shall show that (8) is valid under more general conditions. We prove in
this direction the following

THEOREM 1. If
QII

©) lim e + oo,
then we have for almost all x
M, (x)
10 lim =],
( ) =t Qn

PrROOF OF THEOREM 1. Let ¢l denote the set of those numbers n for
which ¢.<n". Let us denote the elements of the complementary set &l of &
by n; (nj<nj.; j=1,2,...), then we have n;=j and therefore g, =n}=/"

Then we have for any k

2 P = k)= 2Py —k) = Zq {% L T

ied " -
and therefore, by the Borel—Cantelli lemma for almost every x, every k occurs
only a finite number of times in the sequence &, (x). On the other hand, the
probability that a number k occurs more than once in the sequence &, (x)
(J=1,2,...) does not exceed

W= 2
q“r’ 3 qﬂliq’u‘J
',HF' -k
and we have o
min (¢, , gu;) SRS | SRS
IR el L o T, L8 B
q" qu 1=1 j >3 QJIJ =1 j=i+l j

Thus, using again the Borel—Cantelli lemma, it follows that for almost all x
only a finite number of integers & may occur more than once in the sequence
&,,(x). This, together with what has been proved above, implies that for almost
every x in the sequence &,(x) only a finite number of values occur more
than once and these values occur also only a finite number of times. By
other words, in proving Theorem 1 we may suppose that

(11) g.<n® for all values of n

without the restriction of generality.



24 P. ERD(S AND A, RENYI

Clearly, we have
# M) _ £2(0, %)
Q= Qu
and thus, taking into account that owing to (9) condition (4) is fulfilled for
k=0, it follows by (5) that

lim M = 1.

" n
Thus to prove Theorem 1 it suffices to show that for almost all x
(12) Tim M) =1.

-+ n

As by (4) we have for any k,
Max f.(k, x)

= 0=k=k
lim -==——=—

=1,

M+ T
(12) will be proved if we show that for any ¢>0 and for some k, which may
depend on &, putting

(13) M (x) = Max f, (k, x),
. k= &y
we have
(Ko}
(14) lim ﬂ«Q—(’t—)- =1+4é

To prove (14) we start by calculating the probability P(f.(k, xX)=/). In what
follows ¢, ¢, ... denote positive absolute constants. We evidently have
" o 1 L 1

P(f.(k, x)=j)= . 1—_J.

09 PUkI=D=(_ 5 Geng=n) ()

R dn
4, >k r=L2 .., o >k

It follows that

(Iﬁ) P(.f‘ﬂ(k, X) =j)§g'9u,k%ik)j
where
. = 1
(]7) Qﬂ,k—jg"j q}_l
Qj}k

(18} e Z'—é—“:e 2,
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Thus we obtain for O0<e#<1, in view of

(19) @ = Quif 1+ )= Q1 b

that ’ :
L el

(20) P(f. (k, x)é(lJrE)Qu)é—JéQTe" e+ .

We obtain from (20) for kg%

(21) P(fitk, x)=(14+8) Q) =—; =

PQ

This implies, putting k,— %]+l and taking (11) into account,

8,
16

@) POICE)=(1+9Q)= S PU(k0=(1+9Q) = 2o

Q

As by (9) we have for n=n, Q,> Ologn it follows that
(23) PMP@)=(1+8Q) = 5.
Thus
(24) 2 PMIQ=(1+8Q) <+

and therefore by the lemma of Borel—Cantelli, the inequality M\ (x)= (1 +¢)Q.
can be satisfied for almost all x only for a finite number of values of n.
This implies (14) for almost all x which proves Theorem 1.

§ 2. Type 2 behaviour of M, (x)

In this § we shall prove the following rather surprising
THEOREM 2. If

(25) O<a=P=q (=12..)
and
(26) lim Qn =a>0,
>+ 10Z 1
then we have for almost all x
(27) tim MO _ e

=+ Qn
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where y—=y(«)>1 is the unique (real) solution of the equation
1
(28) ylogy—-—

Proor OF THEOREM 2. We start from the inequality, which follows
simply from Stirling’s formula,

(29) et 2 i;_c, &e{) e

=N
for N> B4 with fixed 8>1 where ¢, depends on @.
Now evidently (25) and (26) imply that
(30) Q= log % +o(log n)

Thus, by virtue of (16), we have, if ¥ >y(«) where y(«) denotes the solution
of the equation (28), for any & with O<e<eaVYlog Y—1 and n=ny(e)

G o
Thus
(32) PM.(x)>YQ,) = :;,, for n=n,(e)

where 0 =« Y log Y—1—&>0. It follows that

(33) 2 P(My(x)> Y Qu) < o=

and therefore by the Borel—Cantelli lemma the number of those values of s
for which M,(x)>YQ, is finite for almost every x. If 2'<n<2’, let us
choose an arbitrary number Y, such that y(¢)<Y <Y, then
M, (x) M, x) Y, My(x)
Qn = st 1 Y Qw

if s=s,. Thus, if for such an n M,(x)>V,Q., then My(x)>Y Q.. As the
last inequality can be valid for almost all x only for a finite number of values
of s, it follows that M,.(x)>Y,Q, is valid for almost all x only for a finite
number of values of n. As Y, may be equal to any number greater than
y(e), this implies that for almost all x

M.(x)

(34) Tim oL =@,
It remains to prove that we have also '
(35) tim M = o)

for almost all x.
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As for any sequence of positive numbers by, b,, ..., by we have

S LTl

=i, <da = o <ij=N

we obtain from (15)

(36) P(f.(k x)=j)= *ceq“’”( i

Taking into account that

i=nq; =k
and that for j=yQ, and k=n'~*
Lt

if 1<y<y(e) where y(«) denotes the solution of (28) and 0<e<l—aylogy,
it follows that

(37) 2 Pk, x)=yQ)=cn® for n=n(e)

login=k<n

where d =1—eylogy—e>0.
Now it is easy to see that

P(fu(ky %) = o folke, ) = ) =
= (142 (14 £ PGk, 9 =Pl =i

It follows that for &, =log®n, k,=log"n we have for any y with 1<y<y(«),
where y(«) is the solution of the equation (28),

P(fulki, X) =y Qu, fulke, ) =y Qu) =
=Pk, 9 =7 QP 0 =3Q0) 140 (o)

If we define 7,=n.(x) as the number of those values of k& for which
logn=k=n and f.(k, x) =yQ., we have, denoting by M(7,) the mean value
and by D?*(».) the variance of #,,

(38)

(39) M(7,) = cyn®
and
(40) D (1) = €10 - Uin)

log*n ~
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It follows by the inequality of Chebyshev

(41) P (s = 0)=P(In.—M() = MO0 = o2
and thus
(42) j P (tn = 0) < + o<.

It follows by the Borel—Cantelli lemma that we have for almost all x

M,(x)=yQ,. for n=ny(x).
Thus for any ¢>0 and for n=n,(x,¢) and 2" =N<2"" we have

(43) My(x)= My (x) =y Qpu = (y—#) Q.
This implies that for almost all x
(44) lim M2 ()

o "

As y may be any number not exceeding y(«), we obtain from (44) that (35)
is also valid for almost all x. Thus the proof of Theorem 2 is complete.

§ 3. Type 3 behaviour of M, (x)

Now we shall prove a theorem which deals with conditions under which

M&.z(x) tends to - o< for almost every x.
THEOREM 3. Let us suppose that
(45) lim 9 —+ oo,
H-++CD
but at the same time
(46) lim Q. =+ o<.
T4

Then we have for almost every x

. M, (x)
(47) nl—lem Qu
PrOOF OF THEOREM 3. The proof follows the same pattern as the second
half of the proof of Theorem 2 (i. e. the proof of (35)).
We have from (45)

= o0

(48) Q=2 5= 2 a-—ollogn)
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further for any A>0

w Z qi = o(loge") =o(Q.)
J

and thus *

{50) QII, ke g Qn(l _0(1)) for ké er‘.(‘f“l

It follows from (36) that for any N>N,>1

(51) P(_fn (k, x) = NQ“) =¢ ‘\']Dg‘\-.l,i"-

Now let us choose A= 3Nlog N, then we have
Z P(fi(k, x)=NQ,)=e EN1RN-Qp
Ga=k=e"n
On the other hand, we have from (38)
P(fu(k,, ) =NQu, fu(ky, ) =NQ.) =

| =Pk, 0=NQIPGk 9 =NQ) [14+0( 5
and thus, defining 7, = 7.(x) as the number of those values of & for which
Q:=k=e"" and f,.(k, x)>NQ,, we have M(7,)— -+ > and
Dt (1) = ey M () ("" .
Similarly as in the proof of Theorem 2 we obtain that

limM_"‘(}_c_)gN

=+ n

for almost all x. As N may be chosen arbitrarily large, Theorem 3 follows.

(Received 29 October 1958)
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