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Introduction

TeE purpose of this paper is to give some counter examples in ergodie
theory. Some of the examples answer questions raised previously by some
authors, some are counter examples to published theorems later withdrawn
and some answer questions entertained privately by the authors of this note.

Let Y be an abstract space, y a o-field of subsets of ¥ and m a measure
defined on y. We shall assume throughout that (Y, y,m) is a o-finite, non-
atomic measure space. Let 7 be a 1:1, ergodic measure preserving trans-
formation of ¥ on to itself.

Examples 1 and 2 deal with the case where (Y, y,m) is a finite measure
space (in fact it is the ordinary line segment [0,1). Example 1 shows that
one cannot generalize theorems in Diophantine approximation theory like
Theorem 2 (12, 76) to arbitrary ergodic conservative systems on [0, 1).

Example 2 answers completely the questions raised by Halmos (7) and
more recently by Standish (13) concerning non-homogeneous ergodic
theorems.

et )

We put M(T,m,A) = - ; m(TiA)
1% % .

and M(T,4,y) =~ Zﬂmﬂ’*y}

where f,(y) is the characteristic function of 4.

Examples 3, 4, and 5 and Theorems 1 and 2 deal with the case where
m (Y} is infinite and study the relative behaviour of two ergodic measure
preserving transformations 7} and 7,. Example 3 shows that contrary to
some expectations (1,2) the sequence

M,(A, Ty, Ty, y) = M(T, A, y)[ M, (T3, 4, )

need not converge p.p. for sets of finite measure 4.

Example 4 and the remark following it show that M, (4, T}, T, y) need
not converge p.p. even if 73 = T'[1. Thus the past and future of infinite
conservative ergodic systems are relatively independent of one another.
It is known however (10, 53) that lim M (T}, 4,y) = lim M (7}, 4,y) = 0

N—>0 f—=00
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for every set A of finite measure but example 5 shows that
M{(ﬂ’ 4, y)"_Mn(gs 4, y)

need not converge to zero for every measurable set 4.

Theorem 1 shows that despite the possible wildness of behaviour of
M, (A, T}, T, y), this behaviour is independent of the set of finite measure 4
and depends only on 7} and 7,. Theorem 2 disproves Theorem 3 of (1).

We now change our assumptions about 7' by not only dropping the
assumption that 7' is measure preserving but assuming 7' to be a measur-
able, non-singular, and ergodic transformation of ¥ on to itself which
preserves no finite measure equivalent to m. Example 6 studies the relative
behaviour of two normalized equivalent measures m, and m, (both equiva-
lent to m). W. Hurewicz conjectured that

M (T, my, My, A) = M, (T, my, A)[ M, (T, my, 4) > 1.

It is known (4) that M (T, my A)—M (T, m,, A) — 0. Example 6 shows
T

that Hurewicz’s conjecture is not true.

The unifying idea in the construction of most of the examples is the
observation that every ergodic system can be represented as a system ‘lifted’
from an induced system in a subset by means of a skyscraper structure.
This representation is inspired by ideas introduced by Kakutani (11) and
used previously by various authors (e.g. (3, 6, 14)). The various ergodic
systems needed for the various examples are obtained by means of varying
the heights of the ‘storeys’ in the skyscrapers, the transformations in the
base and the measures in the ‘storeys’.

All transformations considered are assumed to be 1:1 and an ergodic
measure preserving transformation will be denoted by ‘e.m.p. transforma-
tion’. The reader may consult (8) for further definitions,

1. Induced and lifted transformations

1.1. Let (¥,y,m) be a measure space, 7' a measurable ergodic non-
singular transformation of ¥ on to itself and X a measurable subset of ¥
of positive measure. Then X and ¥ can be decomposed as follows: let

E,={z|zecX, Txe X}
B, ={|lzeX, TMzecX, Tx¢ X,i=1,.,h—1},

h =2, 3,.. . Then {E,} is a sequence of mutually disjoint measurable

sets and
w h-—1

X=Uruz, Y=U (TEU2Z,
h=1

h=14=0
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where m(Z,) = m(Z,) = 0 and all the sets appearing in the double union
above are mutually disjoint. (Cf. (11), (3).)

Some of the sets in the sequence {£,} may be zero sets. Let {i(k)} be the
subsequence of those integers satisfying m(#},,) > 0. Let Z be the smallest
invariant set containing Z,, all sets of the sequence E, which are zero sets
and all points € X such that Tz ¢ X for s = —1, —2,... . Let

4y = Eygy—Z.

hie) —1
Then(HX =4, UZAXand(2)Y = 9 U 774,V Z where all sets
I i=0

appearing in each of the unions (1) and (2) are mutually disjoint.

Let S be defined on X by putting Sz = T"¥z if xe A, and S, = @
if x e Z A X. Then it is known (cf. (11), (3)) that & is a 1:1 measurable
ergodic non-singular transformation of X on to itself and that if T is
measure preserving then so is S. 8 is called the transformation induced
on X by 7. (X, 8) will be called an induced system of (Y, 7).

1.2. We can reverse the process and start with a measure space (X, 8, m)
and a measurable non-singular transformation § of X on to itself. Let
{4,} be a finite or infinite sequence of mutually disjoint measurable sets of
positive measure such that X = lﬁ] A,. Let I denote the set of non-

negative integers and let &(k) be a sequence of positive integers. Let ¥ be

hik) ~1
the subset of X x I defined by Y = lg U 4, xi. X xIbecomesameasure

1= 0
space by the following procedure: Let my = m, m; ~m, ¢ =1, 2,... . Let
B, be the o-ring of sets of the form Axi, Aef, i =0,1,... If Cep, ie.
C = Axi, 4 ep, put p(C) = m;(4). Let o be the smallest o-ring of sub-
sets of X x I containing B;, ¢ = 0, 1,... . Then there is a unique measure m
defined on « coinciding with p on 8;. Then (X x I, «, m) is a measure space.
Let (Y, y, m) be the restriction of (X X I, «, m) to Y. With no loss of gen-
erality X X 0 can be identified with X and (X, 8, m) can be considered as a
sub-measure space of (¥, y,m). (Y, y, m)is a o-finite measure space and it is

nk)
finite if and only if Eiz my(A,) < 0. Let y = (z,1), x e 4,
E i=0

0 < ¢ < hk)—1.

Let Ty = (x,i+41) if ¢ << h(k)—1 and Ty = (S=»,0) if i = h(k)—1. Then
T is a 1:1 measurable, non-singular transformation of ¥ on to itself. If §
is ergodic then sois 7. If m; = m, ¢ = 1, 2,... and S is measure preserving
thensois 7. T will be called the lifted transformation of Son ¥ and (¥, T)
will be called a lifted system of (X,S8). If m; =m, i =1, 2,..., T is com-
pletely determined by {X, B, m, 8, 4;, k(k)}. Thus if (X, 8, m) and § are
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given, various lifted systems of (X, §) can be obtained by varying {4,}
and (k). It is clear that S is the transformation induced by 7 on X. And

¥ = lJ:Jsl;’o TA,.

2. Finite measure spaces
2.1. Consider the ordinary Lebesgue measure space (X, 8, m) where
=[0,1). Let S be defined in X by putting

Se=2+43 if 0<2<},
St =04—— . —1, if 2(1)1 x<2 (3

2h+1

This transformation is known to be ergodic, measure preserving and to have
the property that every dyadic interval [k/2*, (k4-1)/2"), k = 0, 1,..., 2",
is a periodic set of period 2*, n = 1, 2,... . We shall refer to this transforma-
tion as the dyadic transformation on [0, 1) and will denote it by D.

2.2, Let X = [0,1) and let S be an e.m.p. transformation of X on to
itself. Let B, be a decreasing sequence of measurable subsets of X such

that ;o\ B, = @. Let f(n,z) be defined as the first non-negative integer j
n=1

such that Sz € B,. Then

Lemma 2.1. There exists a sequence of integers f(n) such that for almost
every z€[0,1), f(n,x) < f(n)—1 if n > N = N(x) where N(z) is some
integer depending on x.

Proof. E}J 8-B, = X—Z, where m(Z,) = 0,n =1, 2,.. . Let

i=0
r—1
¢, ~ U s-3,
i=0
and let f(n) be an integer satisfying Cy,y > 1—(3)*. Then

m( A\ Crw) > 1—(3)

and hence if R =klj ;0\ Crtny
then m(R) = 1. Let x € R then 3 an integer N = N(x) such that z € Oy,
for all n > N. But z€ 0y, = Sze B, for some i, 0 <i < f(n)—1.
Hence f(n,z) < f(n)—1.

Lumma 2.2. Let m(B,) =b,, n =1, 2,..., and let 2 b, < oo. Then for
almost all x € [0, 1) there exists an integer N = N(x) sw:h tkai fln,z) > n—1.
Jor n > N.
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r—1
Proof. Let C,=|J 8-'B,. Then
=0

00 = G S™By

Hence m(nijCn) < km(By)+ ﬂ_$+lm(-8n) = kby+ f: by

n=k+1

But R:bk-l-n:%ﬂbn —> 0 since b, |» 0 and Z b, < oo. Thusif Z = k]\l “UkC

thenm(Z) = 0. Letz ¢ Z, then there e}nsts an integer N = N(x) such that
2¢C,ifn>N. Buta¢C, = Siz¢ B,,for0 <i <n—1,1ie,

fln, &) > n—1,

ExampLE 1. LEMma 2.3, Let by = 1, {b,,} a strictly decreasing sequence of
positive numbers such that b, — 0 and let B, = [1—b,, 1). Let f(n) be an
increasing sequence of positive integers. Then there exisis an e.m.p. trans-
Jormation T of [0, 1) on to itself such that for almost all x € [0, 1), f(n, z) > f(n)
if n > N = N(x) where N (z) is some integer depending on .

Proof. Let {a,} be a sequence of positive numbers such that

Ekf(n)a'n — bk’ k= | E. L

. @ k—1 k
Let X =[O’n§f”‘)’ iy = [nglan,ﬂglan), k=2, 3,. A =[0,a)

Let S be any e.m.p. transformation of X’ on to itself. Let (¥, 7") be the
lifted conservative system determined by X', 8, 4,, and h(k) = f(k).
Let L be a 1:1 measure preserving transformation of ¥ on to [0, 1)

. fm-1 . b1 k
defined by mapping |J 7%4, in a natural way on LZ fna,, > f(n)an).
i=0 =1 n=1
w f(kl—1 —1 0
U 7%4,is mapped by Lon B, = [”z ), > f(k)a, = 1) and thus
k=n i=0 k=1 k=1
B,=[1-b,1),n=1,2,.. . Clearly T'= L-17"Lis a 1:1 e.m.p. trans-
formation of [0, 1) on to itself. Moreover T’ has the required properties.
(n)— Jn)—
Indeed let C, = U T-fB Then U C, = U U T-*B,. Thus

i=0 n=k i=

m(nUkCn_) < 292’6_)"(1&)&'@,L = 2b,,.

Hence if ¢ = limsupC, then m(C) =0. Let ze[0,1)—C then 2¢C,

=0

foralln > N = N(z). Butz ¢ C, = Tix¢ B, fort =0, 1,..., f(n)—1 and
hence f(n,z) > f(n)—1.
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2.3. Let X, 8, {B,} and f(n, ) be as in 2.2.

Lemwma 2.4, Let k, be a sequence of integers satisfying k, — oo as n — o0,
then f(n,x)[k, +> 1 as n - o a.e.

Proof. Let C, = {x| 3k, < f(n,x) < 1}k,} andlet D, = {& | f(n,2) = k}.
Then T*D, < B,, T'D A B, = o for i =0, 1,..., k—1. Hence T%D,,
t =0, 1,..., k—1 are mutually disjoint and m(D;) << 1/(k+1). It follows
that m(C,) < 1/(,,+1)+1/(1,+2)4...4+1/(l;+s) where [; is the largest
integer in $k, while I, +s is the largest integer in $£,,. Thus m(C,) < §ifn
is large enough. Let C = {x| f(x,n)/k, - 1asn —oo}. Then C = lj ﬁ C,

k=1n=£k
and hence m(C) < %4. C however is invariant since

Sfn, Sa)fk, = (f(n,2)—1)/k,
if » is large enough. Since § is ergodic we obtain m(C) = 0.
CoroLLARY 2.5. m{y | f(n,y)/f(n,x) = 1 as n — oo} = 0 for every x € X.
Proof. Let x€ X and f(n,z) = k,, then %k, -0 as n—>o0 and the
required result follows directly from Lemma 2.4,
Lemma 2.6, Let f(—n,x) = f(T, —n,x) denote the first mon-negative
integer j satisfying T-x e B, and let r(n,x) = f(n,2)/[f(—n,x). Then

r(n,z) + lasn—> o0 ae in X.

Proof. Let 1 be a fixed integer and let By, [0, 1) and E,, play the roles of

X, Y, and E, respectively in 1.1. Then discarding a set of measure zero we

) ©» h—1 —

have B, = {J Fpand [0,1) = U 'U 7B, Letx e T, thenr(t,2) — "=
A=1 h=1i=0

if 0 < ¢ < h and we make the convention that r(l,x) = 0 if ¢ = 0. Let

Dy = {z|r(l,%) < 2}. D;= B;UCywhere C; = |J T"Ey,, where the union is

taken over all pairs (¢, ) such that 0 << i << & and ?ii:—z < 2 (i.e. ¢ > h[3).

Now
w (B3]
m(Y—D;) = m(Y—(B,U C)) > m[h[:_!; u T'iBy)

8 h-1
> (Y — U U TEy) > 4{1—3m(B)]
Hence m(Y—D;) > & if I is large enough. Let D = liminfD;, then

]

m(D) < & But D= [:c | lim supr(l, ) < .‘2] and can be shown to be in-
—x

variant (possibly discarding a set of measure zero) and hence since 7' is
ergodic m(D) = 0. This completes the proof of Lemma 2.6.

Remark. We notice that any positive constant K can be substituted for
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2 in the above proof and hence one can prove that limsupr(n,z) =

n—rx

Since 7' and T-! play symmetric roles in Lemma 2.6 it would follow that

liminfr(n,z) = 0.

2.4. LeMma 2.7. Let S be an em.p. transformation of [0,1) on to itself.
Then for every € > 0 and N there exists a set A such that A, S4,..., SN-'4
are mutually disjoint and m(4) = (1—e)[N.

Proof. Let Bbeameasurableset with 0 << m(B) < ¢/N. Let B,[0,1) and

A, play the roles of X, Y, and 4, in 1.1. Then discarding a set of measure

Rk ~1
zero, we have X = IIJ U TiA,, B = U A;. Let (k) be the largest non-

negative integral mu]t.lple of N in h(k) a,nd let p be the smallest integer k
for which I(k) > 0. Let

— U [4,U S¥A, U S2¥4, U ..U SIB-N4,].

k=p
Then clearly 4’, S4’,..., S¥-1A’ are mutually disjoint and
( U SfA') S T N (B > Toe,
i=0
ie.m(A’) > (1—e)/N. Since m is non-atomic 4’ contains a measurable set
A with m(A4) = (1—e)/N. Clearly 4, SA,..., S84 are mutually disjoint.

Levma 2.8, Let g(x) and f(x) be two measurable functions on X with
m(X) < o and let |g(x)| > K a.e. Then for every integer 1 there exists a
constant o, + < o <1, such that |ag(x)+f(x)| > K[4l on a set A with
m(4) > (1—1/)m(X).

Proof. Let a; = 4+13/21,¢ =0, 1,..., I. Then

|oy g()+f (@) — oy (@) —f ()| = I(az:—ij g(x)| = (1/2D)|g(x)| > K/2 a.e.
Let A; = {x|;g(x)+f(2) < K[#},i =0, 1,.... Then ;A A4; =g if i #j.
Hence for some i, 0 <@ <, m(4;) < (Iﬂ—{—l)-m(X),

|0 9(2)+f ()| > K[4l
in X—A4,; and m(X—A4,) > (1—1/)m(X).

ExayvprE 2. Lemya 2.9. Let (X, S) be a conservative ergodic system,
X =[0,1), and let {c;} be a sequence of non-negative numbers satisfying

f ¢; = 00. Then there exists @ bounded measurable function f(z) on X such
=1

that f flx)y=0 cmdﬁ ¢; f(S'x) does not converge in measure on any subset of X
i=1

of positive measure.
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Proof. We assume that ¢; - 0; otherwise the result is trivial. Let n;
be a sequence of positive integers with n, divisible by k and with n; tending

to o so rapidly that n, > 2n,_, and i’ci > 2%n¢_, where m;, = n,/k.
i=1
Then we have (n,/k) - % and i (1n;) < 2fng.y.
i=k+1

By Lemma 2.7 there is a sequence {4} of sets such that, for each k,
A, S4,,..., Sw14, are mutually disjoint and m(4,) = (1—27%)/n,.

Let filx) =2*if x € B, = U Sid, and f, = —(1—2-%) if 2 X—B,.
fm

Then clearly [ f(x) = 0. Let o, be a sequence of numbers with } <o; <1,
and satisfying additional conditions to be stated below. Let r; = w;fn; 4

and let f(z) = ﬁ r;f:(@). For each k we can write f(z) as the sum of three
functions, f(x) = f,(x)+f3(x)+f.(x) where

fa(x) Zkztrifi(x): fb(x) = kak(x)! fc(m) =i_$+1r£fi(x)'

Writing again m, = n,/k we have
mE " © o
| Sesisa| <( 3 ) 3e< 3 am) Se < @bm) 3o
i=1 J=k+1 i=k
which since c; 5 0, will tend to zero as k - co. Let D}, = [:] StA4,, where
i=0
l, = (1—1/k)n,. Then m(D,) = (1—1/k)(1—2-%). For each zeDy,
Jy(Six) = 7,27k for ¢ = 0, 1,..., my, and therefore
mE : mk
glcifb(six) = ()71 27F _Zlﬂi-
Writing g,(x) = {2%,‘_1)"1?72“ ¢; we have
i=1

(2) :“g‘leifb(S*x) = w0 gul®) > M2

We write h,(2) = ﬁ ¢.f,(Six) and observe that ki, (z) depends on oy,...,2_y-
=1

Then, by Lemma 2.8, «;, can be chosen so that

(3) |otg Fu(@) +-Pop(®)| > myp—y [8K

on a subset of D,, of measure bigger than (1—1/k)ym(D,). (If ; = 1, then
{ay} are thus defined by induction.) Thus since n;/k — co it follows from
(1) and (3) that 3 ¢, f(Siz) does not converge in measure on any subset of X
of positive measure.
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CororLarRY. With the same notation and conditions as in Lemma 2.9 we
have that 3 ¢, f(Sx)

(i) diverges a.e. in X, and

(ii) does not converge in L, for p > 1.

3. Infinite measure spaces

3.1. Let X =[0,1) and D be the dyadic transformation on X. Let
A, = [1—1/26-1, 1-1/2¥) and B, = [1—1/2%, 1), k = 1, 2,.... Let h(k)
be an increasing sequence of integers and let (¥, 7T') be the conservative
gystem determined by X, D, 4, and h(k) (cf. 1.2).

Lemma 3.1, Let fx(x) be the characteristic function of X. Then

m—1

iEOfx(T‘x) =n
implies that, for almost all x, m < nh(n) for n > N(x).

Proof. By Lemma 2.1 there exists an N(z) for almost all z such that if

n > N(z) then Dz ¢ B, for j = 0, 1,...,n—1. For such x then Diz ¢ 4, for
j=0,1,..,n—1and I > n. Hence as z is iterated by D in X = times,
it enters only the sets A with the number k() of layers above them
not exceeding k(n) and hence z is iterated by 7' in Y at most nh(n)
times; 1.e. m = miz,n) < nhin).

—1
Lisnova 3.2. Let (¥, T) be as in Lemma 3.1, then S fx(T'z) = 2% implies
i=0
that m = hin—1).
Proof. Let x € X and let | < n. Then thereexistsa j, 0 < j << 2", such

that Diz € A,, i.e. as X is iterated by D 2" times in X, it entersevery one of
the sets 4,1 = 1, 2,..., n, at least once. Hence if D*"z € 4, then

m="S ki) > hin—1).
i=1

QOtherwise m = h(n) > h(n—1).

3.2. Let (Y, T) be as defined above in Lemmas 3.1 and 3.2 and let ¥ have
infinite measure. Let L be a measure preserving transformation from ¥
on to [0,c0) defined by mapping X X0 on to X naturally ((z,0) X ),
ordering the sets By x i, k =1, 2,..., i = 1, 2,..., h(k)—1, in a sequence and
mapping these sets in a natural way one after the other on consecutive
intervals congruent to B, along the line [0,00). Let 7" = L~*T'L. Then
it is clear that 7" is an e.m.p. transformation of [0,c0) on to itself, and
moreover we have that

S e Ti) =S fionl TH0).
i=0 i=0
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In Lemmas 3.3, 3.4, and below we shall assume that (¥, 7) is already
defined on [0, c0) as described.

3.3. ExamprE 3. LEMMA 3.3. Let T}, ¢ = 1, 2, be e.m.p. transformations
of [0,00) on to itself as defined above with h(k) = 24,1 = 1, 2, where I, = k
and I, = 22", Let

m—1 i m—1
M(X, T, T y) = 3 [x(Tiy)] 3 fx(T39).
Then liminf M, (X, T, T,, ) = 0 a.e. in ¥,

M~—>0

Proof. Let x be outside the exceptional set of Lemma 3.1 and N(z) as in

Lemma 3.1. Let m = m(x, %) be such thatmile(Tix} = 2", Then by
<o
Ml —1 2
Lemma 3.2 m > hy(n—1) = 2. If 'S fx(Tia) = r, then
<0

m < rhy(r) = r. 27 < 2%,
Thus 2r = 2°""" and hence
M (X, T3, To, ) < 274125
which approaches zero as # — cc. But m = m(x,n) — o0 as n — co and the
lemma is proved for almost all z € X. But since 7}, is ergodic and hence has
no wandering sets of measure > 0 we have il fx(Tiy) = o0 a.e. inY and
is

hence liminf M, (X, 7},7,,y) is invariant in ¥ which completes the proof.

T3

Exampre 4. Levma 3.4, Let T be an e.m.p. transformation of [0, 00) on to
itself defined by X = [0,1), D, A, and h(k) = 2% as described in 3.1 and 3.2.

Write My(X, 7, T-1,9) ="S fx(T%)["S (T-%). Then
i=0 i=0
M (X, T, T y)+> 1
asn—>wa.e in Y.

Proof. By Lemma 2.6 f(n,z)/f(—n,x) 4> 1 as n —> 00, x € X—Z where
m(Z) = 0 and f(n,z) = f(D,n,z), f(—n,z) = f(D, —n,z). Let xe X—2Z.
We prove that given n > N(x) there exists an m = m(n,x) such that

M (X,T,T,2) = (f(n,2)+1)[f(—n,2).
Indeed write n, = f(n,z), ny, = f(—n,x), m; (= my(n,z)) = the first
positive integer j such that 771w € A, and m, = m,(n, x) = the first j such
that 7-U-Vx € 4, X (h(k)—1) for some k > n. Then n, < 2*, n, < 2", the

i1
induced transformation of 7' on X is D3, mz fx(Tz) = ny+1, and
i=0

iz fx(T-%) = n,.
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Then clearly m; < n;.h(n) < 27.2%"7, i = 1, 2. By the construction of

my+i—=1
(Y, T) we have that > fx(7T%) = n,+1 for 0 <! < 2*" and
i=0

mg+r
Y fx(T%)=mn, for 0<Lr<< 2%
=0
Hence there exist two integers », and I, such that 1 <r, I, << 2% and

my+l,—1 = my+ry. Let m (= min,x)) = m+1;,—1, then
M\(X, T, T, 2) = (f(n,)+1){f(—n, ).
Since m(n, z) - o and f(—n,z) - o as n — o0, by Lemma 2.6
M(X,T,T1a)+ 1
asm —ooa.e in X. Asin Lemma 3.3 it can easily be seen that
]_1:‘13;113 M(X,T,TYy)
is invariant in ¥ and hence M, (X, T, T, y)+> 1 asm - o0 a.e.in ¥,
Remark. It follows from the remark following Lemma 2.6 that

limsup M, (X,7,T-1,y) =0 ae. in Y.

T+ o

m—1
Let us write M (T, A,z) = (1/m) _gﬂfI(fo).

Exampre 5. Lemma 3.5. Let 1) be an e.m.p. transformation of [0, c0)
on, to itself deﬁned by X = [0,1), D, A, and h(k) = 2(k) where I(k) = 2%,
o Ukl —

Let A—=\) U Tid, Let T, be defined by putting Ty(y) = Trl(y) if

k=1 i=0

y¢ X and Tyy = (Dz, 2l(k)—1) if y = (x,0), x € A;. Then
liminf M, (T, 4,y) =

A—rco

while liminf M, (T, 4,y) = 0 a.e. in Y.

Proof. Let g, m be respectively the first non-negative integers such that
D% e By, TTx € By. Then 0 <¢q¢ <2V and if D'xe 4, with 0 <n <g¢
then s <N and hence h(s) < 2.22". Hence 0 << m < 2¥+1,22%, Let
Trxe Ay, then k > 1. Let p = m+h(N-+k). Then

M (TI’A x) < ( 22i\+k) -1 (2’“’1 92"_{_22“.&] <%+2£\,+1 22}7)_1.
Now p — o0 as N — oo and hence liminf M, (7}. 4, z) < £. On the other

T oo
hand, let m be any integer and let j be the largest integer < m such that
TixeX. Then Ti(z) € A, for some integer r. Now clearly m—j < A(r)s
If m—j = i(r) then

M(Ty, A, 2) = (JH+R0))((G2)+Ur) = G+Hh)T.(G+R()[2 = 3.
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If m—j < I(r) then
Moy, A,2) > (1m). (/2 m—]) = (j+20m—)/2(j-+m—3)
= i+ m—j)im > }.
Thus liminf M, (T}, 4,x) = }.

]

As for T, we have for the same 2z
Myiaoesn(Top A, 2) < 241287 (m4-227) 1
which approaches zero as N — oo. Hence liminf M, (T}, 4,2) = 0. Clearly
liminf M (T}, 4,y) is invariant a.e. in ¥ for ¢ = 1, 2. This completes the
TH—+0
proof of the lemma.
Remark. By the same method employed in Lemma 3.5 we obtain
{ P oaf i=1
: if 4=2
Remark. Notice that the induced transformations on X of both T}
and 7} in examples 3 and 5 coincide and equal D. It should also be remarked
here that with the help of Lemma 2.1 it is possible to construct an example

satisfying the results of Lemma 3.5 substituting for D above any measure
preserving transformation S of X on to itself.

limsup M, (T, A,y) = a.e in Y.

M=o

TeroreM 1. Let T) and T, be two e.m.p. transformations of a o-finite
measure space (Y, y, m) on to itself and let f(y) and g(y) be integrable functions

onYwa'th_[f.—,éO,fg;&O. Let
R (T T f. 9, 9) = M1 T, T, ) [ M9, T, T ),

where M(f, Ty, Ty y) = 3 F(T50)[ 'S ((T59) and Mg, Ty Ty y) is defined
analogously. Then R (T},Ty,f,9.y) > 1 as m - w0 a.e. in Y,

Proof. We apply Hopf’s theorem ((cf. 10)) to each of 7} and 7} and obtain
;ZT;’(T} y)/T;lg(f}"’ y) = fi(y)a.e.in Y where j = 1, 2,and f}(y) is a constant

a.e. which is equal to f f / J' g. But

B(1,Tf,9.9) = [ 2 /@30S 90| o759 1(T50)]

and hence R (7%,7%.f,¢,4)—1 as n—o00 a.e. in Y. Combining now
Lemmas 3.3 and 3.4, the remark following Lemma 3.4 and Theorem 1 we
obtain
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THEOREM 2. There exist two e.m.p. transformations of [0,00) on to ilself
such that (with the same notation as in Theorem 1)

lim sup M, (f, T}, T, y) = ©

M—> 0

for all integrable functions f with f f 5~ 0 and almost all y. Moreover T, can
be chosen to be T'71.

Notice that it follows from Theorem 1 that limsup M, (f, T}, 75, ) and

M0

lim inf M, (f, T}, Ty, %) arve independent of f and g within the required restric-

m—+ o

tions and hence are functions of 7} and 7} only.

4. A counter example to a conjecture of W. Hurewicz
Let (Y,y,m) be a measure space with m(Y) = 1. Let T be an ergodic
transformation of ¥ on to itself. Let us recollect our notation

n—1 . n—1 ;
M (T, mq,my, A) =£Zom1(T1A)/i=z’;m2(T3A)

n—1
and M, (T,m,A) = (1/n) > m(T"A) where m;, m,, and m are measures
i=0

defined on y.

Examrere 6. Lumma 4.1, Let the ergodic transformation T be such that
there exists no finite invariant measure p ~ m. Then there exist two normal-
ized measures p, and p, such that p; ~ p, ~ m and a set B €y such that
M(T, puy, po, B) +> 1 as n — 0.

Proof. Under the conditions stated above there exists a set X €y such
that m(X) > 0 and M, (7T,m,X)—-0 as n > 00 (cf. (5)). Let X and ¥
be decomposed as in 1.1. Then, with the same notation as in 1.1 and
discarding a set of measure zero we have X = |J 4; and ¥ = |FI By,

k
Rk -1
where B,_, = |J 7%4;. Lety, be the measure determined ony by putting
i=0
pa(A) = [m(A)[m(TA,)]. (2HO+R@ +hle—D+i+1)-1
for every Aey, A < T"4;, 0 <i < hk), k=1, 2,.... It is clear that
gy ~ m and that p,(Y) = 1. Moreover M, (7, j1;, X) - 0 as n — o0 (cf. (4),

Theorem 5). Hence we also have jIn(T,pl,pUITiX) -0 as n—>o0 for
i=0
any finite integer p.
fa—1
Let B = |J D,_, where D, , = |J T%d,,, where {, = t(s) = [h(k(s))/2]
s i=0

and k(s) is a sequence of positive integers chosen as follows:
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Let £(1) = 1 and let C; = U T‘A1 D,. Suppose k(1), k(2),..., k(s)

=0

are defined and let C; = U D; ;. NowC < U T:X and hence there exists
an integer N(s) such thab l!r (T, 14, C) < 2—1008 for every n > N{(s).

Let k(s+1) be any integer satisfying

(i) k(s+1) > 2N(s), and (ii) 2-F6+D <L 2-1006+D,

Thus the sequence {k(s)} is defined by induction.

Let p, be the measure defined on y by putting

g(A) = (30).[m(A)fm( T A0)] . hH0, 2-6-D

for every measurable set A such that 4 < T4y, 0 <4 < h(k(s)),
s=1, 2,..., where M = |J Byy_1 and uy,(d) = m{4) if 4 €y and
&

AN lsJ Byy1 =9
For every s > 1, B=(C, ;UD,_,UF, ; where C,_; and D, , have been
defined and F,_, = ) U JDj _1- Now

=g-1
My(T, ps B) = My T, s Cy)+ Myl T, 11, D)+ Migo(T', g, Foy)-
Since h(k(s)) = k(s), s > 1 we have
My (T, g5 C5) < 2- Mo,
My Ty pis Dy U Fyy) < (D1 U Fyy)

< % (3)2Girln e hbtey+) — 2~ChachFkto)

< 2~ L 2K - 910061},
on the other hand

Myo(T, po, B) = Myo(T's o, Ds_4)

= . |

= LS L owniyseeviny
l‘-(&') “ sh(k(g?)) _"EM = %Wd.

8
< . 299D

and since t(s) - o0 as § — oo we obtain lminf My (7T, py, pe, B) = 0.

Thus Mo(T, gy, o, B)
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