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Introduction 

THE purpose of this paper is to give some counter examples in ergodic 
theory. Some of the examples answer questions raised previously by some 
authors, some are counter examples to published theorems later withdrawn 
and some answer questions entertained privat,ely by the authors of this note. 

Let Y be an abstract space, y a a-field of subsets of Y and m a measure 
defined on y. We shall assume throughout that (Y, y, m) is a o-finite, non- 
atomic measure space. Let T be a 1: 1, ergodic measure preserving trans- 
formation of Y on to itself. 

Examples 1 and 2 deal with the case where (Y, y, a) is a finite measure 
space (in fact it is t,he ordinary line segment [O, 1). Example 1 shows that 
one cannot generalize theorems in Diophantine approximation t,heory like 
Theorem 2 (12, 76) to arbitrary ergodic conservative systems on [0, 1). 

Example 2 answers completely the questions raised by Halmos (7) and 
more recently by St’andish (13) concerning non-homogeneous ergodic 
theorems. 

We put 

and 

where fa(y) is the characteristic function of A. 
Examples 3, 4, and 5 and Theorems 1 and 2 deal with the case where 

m(Y) is infinite and study the relative behaviour of two ergodic measure 
preserving transformations T1 and T2. Example 3 shows that contrary to 
some expectations (1,2) the sequence 

-K(A, % $9 Y) = JfAG 4 Y)/~,(~, 4 Y) 

need not converge p.p. for sets of finite measure A. 
Example 4 and the remark following it show that &$(A, T,, T,, y) need 

not converge p,p. even if.Ts = T, l. Thus the past and future of infinite 
conservative ergodic systems are relatively independent of one another. 
It is known however (10,53) that lim M,(T,, A, y) = lim H,(T,, A, y) = 0 
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for every set A of finite measure but example 5 shows that 

need not converge to zero for every measurable set A. 
Theorem 1 shows that despite the possible wildness of behaviour of 

&&(A, T,, T2, y), this behaviour is independent of the set of finite measure A 
and depends only on Tl and T2. Theorem 2 disproves Theorem 3 of (1). 

We now change our assumptions about T by not only dropping the 

assumption that T is measure preserving but assuming T to be a measur- 
able, non-singular, and ergodic transformation of Y on t#o itself which 
preserves noJinite measure equivalent to m. Example 6 studies the relative 

behaviour of two normalized equivalent measures m, and m2 {both equiva- 
lent to m). W. Hurewicz conjectured that 

It is known (4) that ll&(T, m2, A)-J&(X, m,, d) z 0. Example 6 shows 

that Hurewicz’s conjecture is not true. 
The unifying idea in the construction of most of the examples is the 

observation that every ergodic system can be represented as a system ‘lifted’ 
from an induced system in a subset by means of a skyscraper structure. 
This representation is inspired by ideas introduced by Bakutani (11) and 
used previously by various authors (e.g. (3, 6, 14)). The various ergodic 
sys-tems needed for the various examples are obt,ained by means of varying 
the heights of the ‘storeys’ in the skyscrapers, the transformations in the 
base and the measures in the Moreys’. 

All transformat,ions considered are assumed to be 1: 1 and an ergodic 
measure preserving transformation will be denoted by ‘e.m.p. transforma- 
tion’. The reader may consult (8) for further definitions. 

1. Induced and lifted transformations 
1.1. Let (Y, y, m) be a measure space, T a measurable ergodic non- 

singular transformation of Y on to itself and X a measurable subset of Y 
of positive measure. Then X and Y can be decomposed as follows: let 

231 = {x 1 x E x, xx E LX], 

Eh = {x ( x E X, Xhx E X, Tix $ X, i = l,..., h-l), 

h = 2, 3,... . Then (EJ is a sequence of mutually disjoint measurable 
sets and 

X=(jE,UZ,, m h-l 

h=l 
Y = U U TiEh u Z,, 

h=l i=o 
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where m(.Z,) = m(2,) = 0 and all the sets appearing in the double union 
above are mutually disjoint. (Cf. (ll), (3).) 

Some of the sets in the sequence (Eh) may be zero sets. Let {h(k)) be the 
subsequence of those integers satisfying m,(E,& > 0. Let 2 be the smallest 
invariant set containing Z,, all sets of the sequence Eh which are zero set,s 
and all points XEX such that T%$X for i = -1, -2,... . Let 

A, = E,,,-2. 

Then (1) X = U A, U 2 A X and (2) Y = U “k&l !PA, U 2 where all sets 
k k i=O 

appearing in each of the unions (1) and (2) are mutually disjoint. 
Let S be defined on X by putting Sx = T’@)x if x E A, and S, = x 

if x E ZA X. Then it is known (cf. (ll), (3)) that S is a 1: 1 measurable 
ergo&c non-singular transformation of X on to itself and that if T is 
measure preserving then so is S. S is called the transformation induced 
on X by T. (X, S) will be called an induced system of (Y, T). 

1.2. We can reverse the process and start with a measure space (X, /?, m) 
and a measurable non-singular transformation S of X on to itself. Let 
(Ak) be a tite or infinite sequence of mutually disjoint measurable sets of 
positive measure such that X = v A,. Let 1 denote the set of non- 

negative integers and let h(k) be a sequence of positive integers. Let Y be 

the subset of X x I defined by Y = U h(k&1 A, x i. X x I becomes a measure 
k i=O 

space by the following procedure: Let m. = m, mi N m, i = 1, 2,... . Let 
pi be the u-ring of sets of the form A x i, A E /I, i = 0, l,... . If C E ,&, i.e. 
C = A x i, A E /3, put p(C) = mJA). Let 1~. be the smallest a-ring of sub- 
sets of X x 1 containing ,&, i = 0, l,.. I . Then there is a unique measure m 
defined on a! coinciding with p on &. Then (Xx I, 01, m) is a measure space. 
Let (Y, y, m) be the restriction of (Xx I, d, m) to Y. With no loss of gen- 
erality X x 0 can be identified with X and (X, /3, m) can be considered as a 
sub-measure space of (Y, y, m). (Y, y, m) is a a-finite measure space and it is 

finite if and only if 1’9 m,(A,) < co. Let y = (x,i), 2 E A,, 
k i=O 

0 < i < h(k)-1. 

Let Ty = (x,i+l) if i < h(k)-1 and Ty = (Sz,O) if i = k(k)-1. Then 
T is a 1: 1 measurable, non-singular transformation of Y on to itself. If S 
is ergodic then so is T. If m, = m, i = 1, 2,... and S is measure preserving 
then so is T. T will be called the Zi&d transformation of S on Y and (Y, T) 
will be called a lifted system of (X, S). If m, = m, i = 1, 2 ,..., T is com- 
pletely determined by {X, /3, m, S, A,, h(k)). Thus if (X, /3, m) and S are 
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given, various lifted systems of (X, S) can be obtained by varying (Ak} 
and h(k). It is clear that S is the transformation induced by T on X. And 

y = y p. T%c- 

2, Finite measure spaces 
2.1. Consider the ordinary Lebesgue measure space (X, is, in) where 

X = [0, 1). Let S be defined in X by putting 

Sx=x++, if O<x<<, 

This transformation is known to be ergodic, measure preserving and to have 
the property that every dyadic interval [k/P, (k+l)/2”), k = 0, l,..., 2”-l, 
is a periodic set of period 2n, n = 1,2 ,... . We shall refer to this transforma- 
tion as the dyudic transformation on [0, 1) and will denote it by D. 

2.2, Let X = [0, 1) and let S be an e.m.p. transformation of X on to 
itself. Let B, be a decreasing sequence of measurable subsets of X such 

that K B, = o. Let $(n, x) be defined as the first non-negative integer j 
n=1 

such that Sjx E B,,. Then 

LEMMA 2.1. There exists a sequence of integers f(n) such that for almost 
every z E [O, l), f(n, x) <f(n)--1 if n > N = N(s) where N(x) is Some 
integer depending on x. 

Proof. fi S-SB, = X-2, where m(2,) = 0, n = 1, 2,.. . Let 
i=o 

C, = r&-Q?n 
i=O 

and let f(n) be an integer satisfying Cfcn, > 1- (3)“. Then 

m( &h) > l-(GYP-l 

and hence if 

then m(R) = 1. Let x E R then 3 an integer W = N(x) such that x E CYtti., 
for all n > N, But xgCfcnj + Six E B, for some i, 0 <i <f(n)-1. 
Hence f(n, 2) < f(n) - 1. 

LEMMA 2.2, Let m(B,) = b,, n = 1, 2 ,..., and let 2 b, < 00. Then for 
n=1 

almost all x E [0, 1) there exists an integer N = N(x) such that f (n, z) > n- 1. 
for n > N. 
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Proof. Let C, = rolS-iB,. Then 
i=O 

231 

Hence m(n$kcn) < k-m(Bk)+ 2 m(B,) = kbk+n=$+lb,* 
b=k+l 

Butkb,+ 2 b,-Osinceb,SnOand~b,<co. ThusifZ=A fiCn 
n=k+l n=1 k=ln=k 

then m(Z) = 0. Let x $2, then there exists an integer N = N(x) such that 
x$C,ifn>iV. Butx$C, Z- Six C$ B,, for 0 & i < n-l, i.e. 

f(n,x) > n-l. 

EXAMPLE 1. LEMMA 2.3. Let b, = 1, {b,) a strictly decreasing sequence of 
podive numbers such that b, -+ 0 and let B, = [l-b,, 1). Let f(n) be an 
increasing sequence of positive integers. Then there exists an e.m.p. trans- 
formation T of [0, 1) on to itselfsuch thatfor almost all x E [0, I), f (n, x) > f(n) 
ifn > N = N(x) where i’?(x) is some integer depending on x. 

Proof. Let (a%} b e a sequence of positive numbers such that 

m$kf(n)a, = b,, k = 1, 2 ,... . 

Let X’ = [O,,zp), A, = [~‘~an,e$lq-$ k = 2, 3,..., Al = [O,aJ. 

Let S be any e.m.p. transformation of X’ on to itself. Let (Y, T’) be the 
lifted conservative system determined by X’, S, A,, and h(k) = f(k). 

Let L be a 1: 1 measure preserving transformation of Y on to [0, 1) 

defined by mapping ‘Toj’T”A, in a natural way on [zzf (n)an,niIf (n)a,). 

ke::bol TiA, is mapped by L on B, = @lf(k)a,, ,zlf (k)a, = 1) and thus 

B, = [l-b,, l), n = 1, 2 ,... . Clearly T = L-lT’L is a 1: 1 e.m.p. trans- 
formation of [0, 1) on to itself. Moreover T has the required properties. 

Indeed let C, = f’n&lPiB,. 
i=o 

Then fi C, = fi “%bl T-iBB,. Thus 
n=k n=k i=O 

Hence if C = limsupC, then m(C) = 0. Let x E [O, l)- C then x $ C, 
n-m 

for all n > N = N(x). But x $ C, * Tix $ B, for i = 0, I,..., f(n)-1 and 
hencef(n,x) > f(n)-1. 
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2.3. Let X, X, (B,} and f(n, x) be as in 2.2. 

LE~MMA 2.4. Let k, be a sequence of integers satisfying k, --f co as n -+ 00, 
then f (n, x)/l& -t+ 1 as n --f 00 a.e. 

Proof. Let C, = (x [ $7Cn < f(n, x) < l$kJ and let D, = {x 1 f(n, x) = k}. 
Then TkDks B,, TiD,n B, = o for i = 0, l,,.., k-l. Hence TiDk, 
i = 0, l,..., k-l are mutually disjoint and m(D,) < 1/(7c+ 1). It follows 
that m(C,) < 1/(4+1)+1/(4+2)+...+1/(4+.9) where Ii is the largest 
integer in @, while .Z,+s is the largest integer in +&. Thus nz(C,) < g if n 

is large enough. Let C = {x 1 f(x, n)/k, --f 1 as n -+ co}. Then C E fi fi C, 
k=l n=k 

and hence m(C) < 3. C however is invariant since 

fh fWl& = (fh 4 -1)/h 

if n is large enough. Since S is ergodic we obtain m(C) = 0. 

COROLLARY 2.65. m{y 1 f(n, y)/f( n x --z , ) 1 as n--f co} = 0 for every x E X. 

Proof. Let x E X and f (n, x) = kn, then k, --f co as n + co and the 
required result follows directly from Lemma 2.4. 

LEMMA 2.6. Let f(-n, x) = f(T, -n,x) denote the first non-negative 
integer j satisfying T-ix E B, and let r(n, x) = f (n, x)/f (-n, x). Then 
r(n,x)*lasn-+cOa.e.inX. 

Proof. Let I be a fixed integer and let B,, [0, 1) and Elh play the roles of 
X, Y, and Eh respectively in 1.1. Then discarding a set of measure zero we 

h-4 
have Bl = holElh and [0, 1) = ~~1~~~ TiE,,. Let x E TiElh then r(Z, x) = ~ 

i 
if 0 < i < h and we make the convention that r(Z,x) = 0 if i = 0. Let 
Dl = (x 1 r(Z, x) < 2). Dl = Bl U C, where C, = U TiElh, where the union is 

h--i 
taken over all pairs (i, h) such that 0 < i < h and __ 

i 
< 2 (i.e. i > h/3). 

2 $+-h~l jj;TiE,,) 3 t[1-3+$)1. 

Hence m(Y -4) > $ if Z is large enough. Let D = lim inf D,, then 
l+m 

m(D) < &, But D = [x 1 lir_smUpr(Z, x) < 2] and can be shown to be in- 

variant (possibly discarding a set of measure zero) and hence since T is 
ergodic m(D) = 0. This completes the proof of Lemma 2.6. 

Remark. We notice that any positive constant K can be substituted for 
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2 in the above proof and hence one can prove that lim sup r(n, x) = co. 
n-+m 

Since T and T-1 play symmetric roles in Lemma 2.6 it would follow that 

liminf r(n, Z) = 0. 
-n-+-m 

2.4. LEMMA 2.7. Let S be an e.m.p. transformation of [0, 1) on to itself. 
Then for every E > 0 and N there exists a set A such that A, SA,.. ., SN-IA 
we mutually disjoint and m(A) = (1+)/N. 

Proof. Let B be a measurable set with 0 < m(B) < E/N. Let B, [0, 1) and 
A, play the roles of X, Y, and A, in 1.1. Then discarding a set of measure 

zero, we have X = U 
h(k) -1 

U TiA,, B = U A,. Let Z(k) be the largest non- 
k i=o k 

negative integral multiple of N in h(k) and let p be the smallest integer k 
for which Z(k) > 0. Let 

A’ = fi [A, u WA, u ,FVAk u ,.. u SKk)-lVAk-j. 
k=p 

Then clearly A’, SA’,..., ,!F-lA are mutually disjoint and 

mrVulSiA’) > I-N.m(B) > I---E, 
i=o 

i.e. m(A’) > (l-6)/N. S ince m is non-atomic A’ contains a measurable set 
A withm(A) = (l-c)/N. Clearly A, SA,..., F-lA are mutually disjoint. 

LEMMA 2.8. Let g(s) and f(x) b e t wo measurable functions on X with 

m(X) < 00 and Zet Ig(x) j > K a.e. Then for every integer 1 there exists a 
constant 01, 8 < 01 < 1, such that lolg(x)+f(x)I > K/41 on a set A with 

m(A) > (l-l/Z)m(X). 

Proof. Let 01~ = &/-i/21, i = 0, l,.‘., 1. Then 

I~ig(x)+f(x)-~jg(x)-f(x)l = I(ai-4g(x)I 2 (VWg(4 > KW 8.e. 

Let Ai = (x 101~ g(x)+f(x) < K/U), i = 0, l,.,.. Then Ai A Aj = 0 if i # j. 
Hence for some i, 0 < i < I, m(AJ < (l/Z+ l)m(X), 

bi g(4 +f (x) I > KW 

in X-A, and m(X-Ai) > (1-l/Z)m(X). 

EXAMPLE 2. LEMMA 2.9. Let (X, S) be a conservative ergodic system, 
X = [0, l), and let (ci} b e a sequence of non-negative numbers satisfying 

&i = co. Then there exists a bounded measurable function f(x) on X such 

that / f (2) = 0 adixlcif(SC) du es not converge in measure on any subset of X 

of po5itive measure. 
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Proof. We assume that ci -+ 0; otherwise the result is trivial. Let nk 
be a sequence of positive integers with n, divisible by k and with nk tending 

to co so rapidly that nk > 2nkp1 and Eci > 2knj$-l where m,?$ = nk/k. 
i=l 

Then we have (n,/k) -+ co and 2 (l/nJ < 2/n,+,. 
i=k+l 

By Lemma 2.7 there is a sequence {Ak] of sets such that, for each k, 

A,, SAk,..., Snk-lAk are mutually disjoint and m(A,) = (1-2-k)/nk. 

Let fk(z) = 2-k if x E B, =nglSiAk and fk = -(1-2-k) if x E X-B,. 
i=o 

Then clearly 1 fk(x) = 0. L e t o~i be a sequence of numbers with i < 01~ < 1, 

and satisfying additional conditions to be stated below. Let ri = &+r 

and let f(x) = $l~Cf,(x). F or each k we can write f(x) as the sum of three 

functions, f(x) = fa(x)+fb(x)ff,(x) where 

k-l 

fcdx) = g&u4 .fb(‘) = rkfk(x), 

Writing again mk = n,/k we have 

b-1 
which since ci -f 0, will tend to zero as k + co. Let D, = U #A, where 

2, = (M,k)n,’ 
i=o 

Then m(D,) = (l-l/k)(l-2-k). For each x ED~, 
fa(Six) = rk 2-k for i = 0, l,..., mk, and therefore 

t~~,fdsix) = ak(nkml)-’ z-k y ci. 
i=l 

Writing gk(x) = (2”nkFl)-’ y Ci We have 
i=l 

(2) %&%fdsix) = akgk(x) > nk-l/2* 

we write hk(X) =tzlcif,(s ix ) and observe that j&(z) depends on c+...,cY~-~. 

Then, by Lemma 2.8, elk can be chosen so that 

(3) bkgk(x)+hk(X)I > nk-l/sk 

on a subset of D, of measure bigger than (l- l/k)m(Dk). (If 01~ = 1, then 
(ak) are thus defined by induction.) Thus since n,/k -+ co it follows from 
( 1) and (3) that 2 cif( Six) d oes not converge in measure on any subset of X 
of positive measure. 
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COROL~~ARY. With the same not&ion and conditions as in Lemma 2.9 we 
have that 21 ci f (Xix) 

(i) diverges a.e. in X, and 
(ii) does not converge in LP for p > 1. 

3. Infinite measure spaces 
3.1. Let X = [0, 1) and D be the dyadic transformation on X. Let 

A, = [1-l/2k-1, l-1/2”) and B, = [1-l/2k, l), k = 1, 2,... . Let h(k) 
be an increasing sequence of integers and let (Y, 2’) be the conservative 
system determined by X, D, A, and h(k) (cf. 1.2). 

LEMMA 3.1. Let f=(x) be the characteristic function of X. Then 
m-l 

i~ofxP") = n 

implies that, for almost all x, m < n h(n) for n > N(x). 

Proof. By Lemma 2.1 there exists an N(x) for almost all x such that if 
n>~N(x)thenD~x~.E?B,forj=O,l,...,n-l. ForsuchxthenDx$A,for 
j = 0, l,..., n- 1 and 1 > n. Hence as x is iterated by D in X n times, 
it enters only the sets A with the number h(1) of layers above them 
not exceeding h(n) and hence x is iterated by T in Y at most n h(n) 
times; i.e. 

m = m(x,n) < nh(n). 
m-1 

LEMMA 3.2. Let (Y, T) be as in Lemma 3.1, then 2 fx(Tix) = 2”implies 
i=o 

that m > h(n- 1). 

Proof. Let x E X and let 1 < n. Then there exists a j, 0 < j < 2”, such 
that Dx ES A,, i.e. as X is iterated by D 2” times in X, it enters every one of 
the sets A,, 1 = 1, 2 ,..., n, at least once. Hence if D2”x E A, then 

n-l 
m b&W) 3 h(n--1). 

Otherwise m >, h(n) > h(n-1). 

3.2. Let (Y, T) be as de&red above in Lemmas 3.1 and 3.2 and let Y have 
infinite measure. Let L be a measure preserving transformation from Y 

on to 10, co) defined by mapping Xx 0 on to X naturally ((x, 0) 2 x), 
ordering the sets Bk x i, k = 1, 2 ,..., i = 1, 2 ,..., h(E)- 1, in a sequence and 
mapping these sets in a natural way one after the other on consecutive 
intervals congruent to B, along the line [O,CO). Let T’ = L-‘TL. Then 
it is clear that T’ is an e.m.p. transformation of [0, co) on to itself, and 
moreover we have that 
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In Lemmas 3.3, 3.4, and below we shall assume that (Y, T) is already 
defined on [0, 00) as described. 

3.3. EXAMPLE 3. LEMMA 3.3. Let Ti, i = 1, 2, be e.m.p. transformations 
of [O,oo) on to itself as defined above with h(k) = 2ls, i = 1, 2, where I, = II: 
and 1, = 22”. Let 

J4nw, Tl:, T,, Y) =Qx(T$ Y)/ykT~ Y). 

Then liminfM,(X, !F!, T2, y) = 0 a.e. in Y. 
m-+-3 

Proof. Let z be outside the exceptional set of Lemma 3.1 and N(x) as in 
m-l 

Lemma 3.1. Let m = m(x, n) be such that 2 fx(Ti x) = 2”. Then by 
i=o 

Lemma 3.2 m > h,(n-1) = 22zn-1. If Wz1jx(7’i,x) = r, then 
i=o 

m < rh,(r) = r. 2T < 22T. 

Thus 2r > 22”-’ and hence 

iM,(X, T,, T,, x) < 2n+1/22n-1 

which approaches zero as n --f co. Butm=m(x,n)+coasn+coandthe 
lemma is proved for almost ah x E X. But since Tl is ergodic and hence has 

no wandering sets of measure > 0 we have 2 fx(Z’iy) = co a.e. in Y and 
i=l 

hence lim inf Mm(X, !Q,, T2, y) is invariant in Y which completes the proof. 
m-+m 

EXBMPLE 4. LENMA 3.4. Let T be an e.m.p. transformation of [0, 00) on to 
itself de$ned by X = [0, l), D, A,, and h(E) = 22’ as described in 3.1 and 3.2. 

Write M,(X, T, T-l, y) =Tzo>x( T22/)/Tgo1( T-(y). Then 

Mm@, T, T-l, Y) ++ 1 
as n + co a-e. in Y. 

Proof. By Lemma 2.6 f (n, x)/f (--n, x) ++ 1 as n -+ 00, x E X-Z where 
m(2) = 0 and f(n, x) = f(o, 72,x), f(-n,z) = f(D, -n,x). Let xEX--8. 
We prove that given n > N(x) there exists an m = m(n,x) such that 

Mm,(X, T, T-l,4 = (f(n,z)+l)lf(-n,x). 

Indeed write n, = f(n, x), n, = f(-n, x), m, (= m,(n,x)) = the first 
positive integer j such that Ti-kc E A, and m2 = m,( n, x) = the first j such 
that T-(j-lh E Ak x (h(k)- 1) for some k > n. Then n, < 2”, n2 < 2n, the 

induced transformation of T-l on X is D-l, izo fX(Tix) = nl+ 1, and 

,x f#‘-ix) = n2. 
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Then clearly mi < ni . h(n) < 2n, 22”--‘, i = 1, 2. By the construction of 

(Y, 2’) we have thatml’~-lf,(Tix) = n,+l for 0 < 2 -=c 22” and 
i=o 

rnzfr 
{Z, fx(T-ix) = n2 for 0 < ‘Y < 22”. 

Hence there exist two integers rl and I, such that 1 < rr, I, < 22” and 
m,+Z,--1 = m,+r,. Let m (= m(n, x)) = m,+Z,--1, then 

J&&K T, T-l, 4 = (f(n, x)+ 1)/A-n, 4. 

Since m(n, x) -f CG and f(-n, x) + co as n -f co, by Lemma 2.6 

M,(X, T, T-l, x) +-+ 1 

as m -+ ~3 a.e. in X. As in Lemma 3.3 it can easily be seen that 

lim sup J&(X, T, T-l, y) 
m+m 

is invariant in Y and hence M,(X, T, T-l, y) ++ 1 as m + co a.e. in Y. 

Remark. It follows from the remark following Lemma 2.6 that 

lim sup J!&(X, T, T-l, y) = co a.e. in Y. 
m-t* 

m-l 
Let us write UT, 4 4 = W4~ofsV’W- 

EXAMPLE 5. LEMMA 3.5. Let Tl be an e.m.p. transformation of [O,co) 
CIA to itself de$n& by X = [0, l), D, A, and h(lc) = 21(k) where I@) = 22k. 

Let A = (j J’k~wllll;~,. Let Tz be defined by putting T,(y) = T,l(y) if 
k=l i=o 

y # X and T, y = (Dx, 21(k)--1) if y = (x, 0), x E A,. Then 

liminf&(T1, A,y) = & 
n-+m 

while lim inf NJT,, A, y) = 0 ax. in Y. 
12-+m 

Proof. Let q, m be respectively the first non-negative integers such that 
Dqx E BAT,, Tyx E BAT. Then 0 <q < 2”andif DnxEA,with 0 <n< q 
then s ,( N and hence h(s) < 2. 22”. Hence 0 < m < 2N+1 .22N. Let 
TPx E Aiv+lc, then k >, 1. Let p = m+h(iV+k). Then 

Hp(Tl, A,x) < (2.22”+L)-1.(2 .N+1~22"+22"+*) < ~+2N+1(2a22y, 

Now p -+ co as N -+ co and hence liminfJ&(T,? A, x) < 9. On the other 
m+m 

hand, let m be any integer and let j be the largest integer < m such that 
T$x E X. Then Pi(x) E A, for some integer r. Now clearly m-j < h(r). 
Ifm-j 2 Z(r) then 

J&VL A, 4 >, (j+W)-l. ((j/2)+@)) 2 (j+W)-l. (j+W)P = Q. 
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If m-j < Z(r) then 

J&a(T,> A, 4 > O/m) * I(jP)+m-j) = ~j+wej)>p(j+~-j) 

= &+(m-j)/m > 4. 

Thus lim inf M,,(T,, A, 2) = 4. 
m-+m 

AB for T, we have for the same x 

M m+l(RT+k)(T2, A, x) < 2N+l. PN. (m+22N+‘)-1 

which approaches zero as N -+ co. Hence lim infJ&(T,, A, x) = 0. Clearly 
?n-+m 

liminfA&(Ti,d,y) is invariant a.e. in Y for i = 1, 2, This completes the 
m--m 

proof of the Iemma. 

Remark. By the same method employed in Lemma 3.5 we obtain 

a.e. in Y. 

Remark. Notice that the induced transformations on X of both T1 
and T9 in examples 3 and 5 coincide and equal D. It should also be remarked 
here that with the help of Lemma 2.1 it is possible to construct an example 
satisfying the results of Lemma 3.5 substituting for D above any measure 
preserving transformation S of X on to itself. 

TETEOREM 1. Let Tl and T2 be two e.m.p. transformations of a rr-jinite 
measure space (Y, y, m) on to itself and let f (y) and g(y) be integrabk functions 

onYuAhj-f#O,jg#O. Let 

-%G% T,,f, 9, Y) = %(fy Tip rr,, zWJ4rh Ir,, 5% iv>, 

where J&d.f, q, 5% Y) =yzO1f CT: z.d/~IOf(C y) and J&b, 21,, % Y) is deJin& 

analogously. Then R,( Tl, T,, f, g, y) + 1 as m + co a.e. in Y. 

Proof. We apply Hopf ‘s theorem ((cf. 10)) to each of Tl and T, and obtain 

~~>CT~Y)/~@‘M +-fi*(~) a.e. in Y wherej = 1,2, and f T(y) is a constant 

a.e. which is equal to if/j g. But 

and hence R,(Tl, TJ,g, y) + 1 as n -+ 00 a.e. in Y. Combining now 
Lemmas 3.3 and 3.4, the remark following Lemma 3.4 and Theorem 1 we 
obtain 
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THEOREM 2. There exist two e.m.p. transformations of [O,co) m to itself 
such that (with the same notation as in Theorem 1) 

for all integrable functions f with s f # 0 and almost all y. Moreover T2 can 
be chosen to be T<l. 

Notice that it follows from Theorem 1 that limsup&Jf, TI, T,, y) and 
?n+* 

~infJ4n(fJ+JL>~) are independent off and g within the required restric- 
m-*m 

tions and hence are functions of !F1 and T, only. 

4. A counter example to a conjecture of W. Hurewicz 
Let (Y, y,m) be a measure space with m(Y) = 1. Let T be an ergodic 

transformation of Y on to itself. Let us recollect our notation 

and M,(T, m, A) = (l/n)mzlm(TiA) where m,, myn2, and m are measures 
i=O 

defined on y. 

EXAMPLE 6. LEMMA 4.1. Let the ergo&c transformation T be such that 
there exists no jinite invariant measure p N m. Then there exist two normal- 

ized measures p1 and pz such that ptl N pa N m and a set B E y such that 

JUT, ply p2, 4 ++ 1 as .n -+ CO. 

Proof. Under the conditions stated above there exists a set X E y such 
that m(X) > 0 and M,(T, m, X) -f 0 as n -+ 00 (cf. (5)). Let X and Y 
be decomposed as in 1.1. Then, with the same not’ation as in 1.1 and 
discarding a set of measure zero we have X = U A, and Y = p Bkml 

k 

where B,-, =h(k&lT;Ak. Let PI. be the measure determined any byputting 
i=O 

pi(A) = [m,(A)/m( TiAJ]. (2h(l)+h(2)+...hIk-l)+i+l)-l 

for every A E y, A c TiA,, 0 < i < h(k), E = 1, 2,.., . It is clear that 
p1 N m and that pl(Y) = 1. Moreover H,(T, pL1, X) + 0 as n + co (cf. (4), 

Theorem 5). Hence we also have Mti( T, pl,~~~T”X) -f 0 as n --f 00 for 

any finite integer p. 
t, -1 

Let B = U D,-, where DSel = U T<A,,j, where t, = t(s) = [h@(s))/21 
8 i=o 

and k(s) is a sequence of positive integers chosen as follows: 
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h-1 
Let k(1) = 1 and let (7, = U PA, = II,. Suppose k(l), k(2),..., k(s) 

i=o 

are defmed and let C, = b DjW1, Now C, _c “$ TiX and hence there exis%s 
j=l i=o 

an integer N(s) such that A&( T, pl, C,) < 2-lOOs for every n > N(s). 
Let k(s+l) be any integer satisfying 

(i) k(s+l) > 2N(s), and (ii) 2-k(s+l) < 2-100(~*1). 

Thus the sequence {k(s)) is detied by induction. 
Let pLz be the measure detied on y by putting 

p2(d) = (&M) . [m(A)/m( TiAkc,,)] . k-k{@. 24-u 

for every measurable set A such that A c PA,+),, 0 < i < it(k(s)), 
s = 1, 2,..., where M = U Bk(sj-l and CL&~) = m(A) if A E y and 

S 

d A U BIE(S)--1 = 0. 
S 

For every s > 1, B = C,-, U Bsdl U F,-, where C,-, and Dsel have been 

defined and I$-, = fi pu’ow 
j=sil 

II,-,. 

4(s,(T,~1, W = M,dT, ~1, C,-,)+-%,(T, ~1, ~s-,)+J4dT, ~1, G--l)- 
Since h(k(s)) > k(s), s > 1 we have 

J%.dT, ~1, Cs-1) < 2- lOO(S-1) 
, 

J&AT, ~13 Ds-I ” E-J G PIP,-I ” %,I 

qow- 
vh+ha+...hr(s-l)+i) = 2-h+...hk(s-1)) 

f 2--hk(s-1) < 2-k(s-1) < 2-loO@-1). 
, 

on the other hand 

JftisiT, PD W 2 JGsiT> vz, os-1) 

1 
b-1 

c 

1 

= tIs) i=. %@c(s)) 
2-(S-l,$3f 2 2-b-u *jjf & 

Thus 
8 

M,SdT~Pl~ P23 B) < j/J 29g(s-l) 
. 

and since t(s) --f 00 as s -+ a3 we obtain liminf &f&T, pl, p2, B) = 0. 
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