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On the structure of inner set mappings
By P . ERDŐS in Haifa, G . FODOR in Szeged, and A. HAJNAL in Budapest

Let S be a given set of power m, I, and 1> two arbitrary classes of
subsets of S. A function G(X) is called a set mapping if G(X) is defined on
I, and such that, for each X E I, , G(X)Eh. We say that G (X) is an inner
set mapping if, for each X E I,, G(X) c X. Let further Xo E 12 , we define the
inverse of Xó in two different ways, first as the set

U X-X0 1
G(X)=Xo

and second as the set
{X : G(X)-Xo}-Xó -i

The set of all subsets of power n and the set of all subsets of power
< n of S are denoted by [S]" and [S]"', respectively . If 1, _ [S]" or h, [S] - ",
then a set mapping defined on I, - [Sforh, [S]` is called a set mapping
of type n or type < n, respectively . If for a set mapping G(X) is 12 = [S]"
or 12- [S] ", then G(X) is called a set mapping of range n or range < n,
respectively .

We introduce now the symbols ((m, p, q)), r and ((m, p, q))* r. These
symbols indicate that for every set mapping of the type q and range p, defined
on the set S of power m, there exists an element Xo E [S]° for which Xo'= r

or X(, - ` =r, respectively. The symbol ((m, <p, q)) r has an analogous
meaning. The same symbols, with replaced by indicate the negation of
the corresponding statement .

It is obvious, that we have to suppose in

	

p. We prove in this
paper the following results

a) negative results (q - No)
1) if mq - q°, then ((m,1), q)) --> q+ and ((m, p, q))* --> 2,
2) if p = q, then ((m, v, q)) -, q+ and ((m, p, q))* -~~ 2 .

b) positive results (q

	

No)
1) ((m, P, q))- m if q}' < m*,
2) ((m, p, q))* -• mq if q}' < (mq)* and W = mq .

A6
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These results make possible with the aid of the generalized continuum
hypothesis, the discussion in almost every case. We can obviously assume,
that p < q and q~' < no . Thus we can state

c) ((m, p, q))

	

m and ((nt, }t, q))* - nt',', if q° + in* or q -- m* . Thus the
only open question is the following

Is it true, that ((m, }), q)), m or ((m, ~i, q))* > in`' if nt = Ma, a is of
second kind,

	

cf(a)- I is of second kind and P _ M *3 with
j > c f (c f (a)- I)? ; for instance in the simplest case

M", X.)), M"'.+1 ?
or

d) if 0 < k < 1 < ~, then ((N.+,;, k,1))
if 0 < k < l < ~, then

	

k,1))
e) Finally we deal with the symbol ((nt, < p, q)) _- ij . If p < q, then the

validity of the symbol ((m, }), (1)) r implies the validity of ((m, < V, q)) r .
This holds in the case too, if 1) -- q and q = ;4,r has an index of first kind .
If q is regular, q -- X,,, and L" < ut* for every r < q and 1t < q, then
((m, < q, q)) m ; thus in particular ((m, < N), in . The simplest unsol-
ved problem with respect to the symbol ((m, < h, q))

	

r is the following

((N(o+'2, < Nw, „w))

	

X,+1 or N o,2 ?
Set mappings of type I and range n or < n have been investigated

previously in [1], [2], [3], [4] .
N o t a t i o n s a n d d e f i n i t i o n s . Throughout this paper, the symbols

S and d denote the cardinal number of S and the ordinal number ~, res-
pectively. For any cardinal number r(=X,) we denote by ck,, the initial
number of r, by r* the smallest cardinal number for which r is the sum
of r* cardinal numbers each of which is smaller than r, by cf (cc) the index
of the initial number (op of r*, by L+ the cardinal number immediately fol-
lowing r .

I .

We prove now negative results with respect to the symbols ((m, p, q)) , r
and ((nt, ~i, (1))*, r. First we prove the following

Theorem 1 . Let h, q and m be cardinal numbers such that
m

	

q > q

	

ho. If

	

then ((nt,1~, q)) - q+

P r o of . Let S m. We define on S a one to one set mapping G(X)
of type q and range p which shows that the theorem is true . By the hypothesis

[S]" = i .
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XO , XI, . . ., X., X.,i, . . . , X~ ' . . .

	

G < il)
be a well-ordering of the set [Sf' of the type dl_ . We define G(X) by trans-
finite induction as follows. Let G(X)) be an arbitrary subset of Xo of power
p, and v a given ordinal number, 0 < v < <p, . Suppose that all sets G (X„),
where 0 - u < v, have been already defined such that

1) G(Xµ ) _ p, for tr < v,
2) G(X,,) c X, for « < v,
3) G(X,,,) -~- G(X u ,) for «, < Ii., < v.

Since the power of the set [X1,1 1 is r too, there exists a subset of X,, of
power p which is distinct from each G(X„) with index I t< v, because
v < T, . Let G (X,.) be such a subset of X, . Then G (X,,) = p, G(X, .) e,X„
and G(X,) / G (X„) for ,« < v. Thus G(X) is defined for every element of
[S] ' and it is a one to one inner set mapping of type q and range p . The
theorem is proved .

Corollary 1 . If 2"P=~ +, for every (3, then ((~ u a+1 , f\a,

	

)) - „w~+1 •

It follows from the proof of Theorem 1 also the following

T h e o r e m 2. Let ~i, q and m be cardinal numbers such that
m q -_ p - No. If mo -

	

then ((m, p, a))* --> 2 .

T h e o r e m 3 . If q

	

Rio , then ((m, (1, (1)) -1-, q+ for every cardinal num-
ber in > q .

Instead of Theorem 3 we prove the following stronger result

T h e o r e m 4 . Let S be a set of power nt > q . There exists a function
G (X) defined on [S]' with the following properties

(1) G (X) e X and X-G (X) + 0 for every X E [S]'
(2) G (X) E [S]' for every X E [S]' ;
(3) G(X)+G(Y) if X and Y are two distinct elements of [S] ° ;
(4) for every Y E [S]' there exists an element X E [S]' such that Y= G (X).')

P r o o f . Let E be a set of power n - q ; we prove that there exists a
a function F(X) defined on [E]' which satisfies the conditions (1), (2),
and (3) .

We consider two cases : (i) E _- q, and (ü) E > q .
Ad (i) . Let

XI X1, . . .,XW, . . .,X~, . . .

	

(~<d1)

1) For the proof of Theorem 1 it is sufficient that G(X) satisfy the conditions (1),
(2), and (3) . ThiS theorem is proved in [5] .
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be a well-ordering of [E]`' of the type T, where r=2' . We define F(X) by
transfinite induction as follows . Let F(X( ,) be an arbitrary proper subset of
X) of power q, and a given ordinal number, 0 < R < cp l . Suppose that all
sets F(_), where 0 ~ < t3, have been already defined such that the condi-
tions (1), (2), (3) are satisfied . Since the power of the set [X,3]' is 2', and
,3 < 2', there is a subset Y of Xp, of power q, such that Xp-Y-~- 0 and Y
is distinct from each F(X~) with index ~ < ,3 . Let F (Xp) - Y. Thus F(X) is
defined for every element of [E]" such that the conditions (1), (2), and (3)
are satisfied .

Ad (ü) Consider the set M of allsubsets M of [E]' such that if X and
Y are two distinct elements of M then X nY < q. By ZORN'S Lemma there is
a maximal element M~, of M. Let

Z,,,Z,, . . .,Z«,Z,,>+I, . . .,Z~, . . .

	

( <Ti)
be a well-ordering of A of the type cp„ - where i = Mo . Since Z~ = q for
every g < (p i , there exists a function FjZ) on [Z6]' which satisfies the con-
ditions (1), (2), and (3) . Let now XE[E]'. By the definition of Mo there
is a smallest ordinal number v v (X) for which X n Z, . q. Let

F(x) --F„(x) (Xn Z,, ; x ,) u (X-Z,,,-,,) .

It is obvious that F(X) satisfies the conditions (1) and (2) . For the proof
of (3) let Y X be another element of [E]" Then

F(Y) =F,, ( ,-) (Yn Z,,( ,- )) u (Y- Z,,(3-)) .

There are two cases : 1) v(X) 	r(Y), 2) v(X)

	

i, (Y).
Ad 1 . If X n Z,,(x) -f-- Y n Z, .(-v), then by the definition of F, .(-v)

F„(x)(X n Z,.(,-,)+F .(x,(Yn Z,, (x)) . We may assume that F,,(t ,) ( Yn Z,., x))
does not contain F, .(x) (X n Z,, (x)) . Let xo E F, . ( ,- ) (X n Z, . ( , )) such that
xo~F„ Ixl(Y n Z,,,x>) . By the condition F,,( x) (Z) e Z, we have that x o E X n Z, . (x) .
It follows that xo~ Y- Z,, ( -v , ; consequently xot F,,l xl (Yn Z, . (x) ) U (Y-Z,. (x) ) i .e .
F(X) + F(Y) .

If X n Z, .( ,- ) = Y n Z,,( ,- ) , then, since X+ Y, X-Z,.(x ,

	

Y-7-,, (x) ; con-
sequently, by the definition of F, F(X)

	

F(Y).
Ad 2 . We may suppose that v (X) < i, (Y) . By the definition of Mo,

Z„,x ) n Z, .,,- ) < q, i . e . (Xn Z,,(x) ) n (Y n Z,,( ,- )) < q consequently F(X) + F(Y) .
Thus F(X) statisfies the condition (3) too .

Let now F be a set of power r > q. It is easy see that there exists a
function H (X) on [F]' such that

a) XcH(X) and H(X)-X 0,
b) H(X)=q,
c) H(X)f H(Y) if X+ Y.
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We apply now the following theorem of BANACH [6] : If the function cp
maps the set A one to one onto a subset of B and the function maps
the set B one to one onto a subset of A, then there exists a decomposition
A = A, U A2 of A and a decomposition B - B, U B2 of B such that A, n A2 =
B, n B2 - 0, T(A,)=B,'and tp(B~,)=A-, .

Let now A = B= [S]" (S= m > q) . Let further T be a function on [S] '
such that the conditions (1), (2), (3), and ip a function on [S]' such that the
conditions a), b), c) hold respectively . Then there exist two decompositions
[S]" = A' U A, B, U B such that A, n A•2 = B, U B 2 = 0, cp(A,) - B, and
tp(B)--A_, . We define G(X) on [S]" as follows . Let

G (X) 	V~ (X), if XE A 2 .

Obviously G(X) satisfies the conditions (1), (2), (3) and (4) .
The proof of Theorem 4 gives also the following

T h e o r e m 5 . If q = M,,, then ((m, (1, q))* -~- 2.

Ii.

We assume in this chapter that p < q, q

	

No and qr < ml and prove

T h e o r e m 6 . If qa < m*, then ((in, p, (1))

	

m.

Proof. Suppose that the theorem is not true, i .e. for every subset P
of power p

By the condition,
U Q<»t,

U(Q)=P

U U Q<m
P-P 6(Q)=P'

for every subset P of S of power p .
We define now by transfinite induction a sequence of the

type cp,, + cf,, + of the subsets of S of power p as follows . Let Po be an
arbitrary subset of S of power p and j a given ordinal number, 0 < ~ < rr,, + cpu+-

Suppose that all sets Ps, where 0 ~', < ~,, have been already defined, and
let A, = U P~ . Since # < cp, + cf, and P~ - p < q we have A# q. It follows

by the hypothesis q }' < m* that

U U Q < m.
Psap G(Q)=P

We define the set Pp as a subset of power p, of the set

S-UPe- U U Q.
~ Q

	

PCAQ r(())=P
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Put
(1)

	

H= U P, .

It is obvious that H=q . It follows that there exists a subset P of H of
power fl such that G(H) = P. Since p+ is regular there exists an ordinal
number ;3 < T, +,f ,,+ such that

P C UP,, = Ap .
S

But then clearly by the definition of P,3 , Pj d_ H, which contradicts (1) .
C o r o I I a r y 2 . If 2'~ , = Rr., for every ;3, then

T h e o r e m 7 . If p < q* and r" < III* for every r < i1, then ((III, h, q))

	

m.

The proof of Theorem 7 is similar to the proof of Theorem 6 .

R e m a r k. If q < III*, then ql' < III*, because if q --_ ~a with index a of
second kind or ;\ n+l - q, then

r< 4

	

T - - 9

respectively, i . e. in this case Theorem 7 is a particular case of Theorem 6 .

C o r o I I a r y 2. If 11= III* and r" < in* for every r < (1, then ((In, p, q))

	

III .

C o r o 11 a r y 3 . If 2'r = ~+ for every ;Y, III* = q = á n , 1 and f) < (stn)*,
then (ni, r, (1) , m.

T h e o r e m 8 . Let 11, q and nl be cardinal numbers such that III

	

q .
If In = III,' and (1 ° < (III`]) * , then ((III, 11, q))* --i In" .

P r o o f. The proof of this theorem is similar to the proof of Theorem 6 .
Suppose that the theorem is not true, i . C . for every subset P of S of
power 1), the power of the set

P*- '-fQ :G (Q)-Pi
is smaller than in . Let T(P) be the set of all sets P' E [S]° for which there
exists a set Q E [S]" such that G(Q) = Po for some Po - P and P' e Q . Then by
the condition

/'(P) < In"

for every subset P of S of power t) .
We define now by transfinite induction a sequence fPJ6 of the

type cp, +- (p, of the sets E[S]' as follows. Let Po be an arbitrary element
of [S]° and 3 a given ordinal number, 0 < ,,~ < ({,,+([,, . Suppose that all sets
P£, where 0 4 < j3, have been already defined, and let A# = U Ps . Since

5 0
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A~ < cf,, + cp,,+ and P~

	

< q, we have Ag q. It follows by the hypothesis
qu < (no)* that

U T(P) < mq .
PI-Ap

We define the set PR as a subset of power p, of the set

[S]''-{P~} <~- U F(P).
PEA #

Since nt' = ra', there exists such an element of [S]" . Put

(2)

	

H - U PC .

It is obvious that H ~ q . It follows that there exists a subset P of H of
power p such that G(H) = P. Since p+ is regular there exists an ordinal
number R < <r,, + cp,,+ such that

P- UPS=A~ .

But then clearly, by the definition of P;, P~ c'!= H, which contradicts (2) .

We assume in this chapter that p < q, qu < m ,} and the generalized con-
tinuum hypothesis holds, i . e . 2`,° _

	

+1 for every ordinal number cc .

L e m m a . If ((m, p, q)) , m, then ((m, p, q))* - m. We omit the proof.

T h e o r e m 9 . If qu + m* or q - m*, then ((m, p, q))* , in ,' and
(lth p~ q)) --> m .

P r o o f . Suppose first, that qP/ m*. Thus if qu < m*, then ((m, p, q)) , m
by Theorem 6 and (tit, p, q))* m ,' by the Lemma and Theorem 6, because in
this case m"=- m .

If q° > m*, then we consider two cases : a) p < m* and b) p i m* .
Ad a . We have in this case that q - m*. It follow s that m = tit" < in ,'	M+;

therefore there exists a set Po in [S] ' for which P,; -1 = m° and consequently
P„-1 = in .

Ad b. We have in this case that q - m* ; consequently m}'-nit, =m. It
follows that mg _ (m9)* . Since the assumptions of Theorem 8 hold, there

exists a set Po in [S]" such that Po" = m+ i . e. Po' - m.
Finally if qu= m*, then q - tit* by the assumption, and if in this case

p < m*, then the proof is the same as in the case a) while if p - m*, then
our statement follows from Theorem 8 .
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IV.

We assume now that p and g are finite cardinal numbers and we prove

T h e o r e m 10 . If k and 1 are two natural numbers such that 0< k< l,
then (("a+,,., k, l)), iota for every ordinal number (c .

P r o o f. We use induction with respect to k. Let k = 1 and I > 1 .
Suppose that the theorem is false, i . e., for every element

(3)

	

U P < Mme .
('(P ) -f 1. 1

Let F be a subset of S of the power Xa and omit from the set the elements
of the set

'H= U U P.
xEF C(P) -- 1 ,;

Since F= Xa , it follows from (3) that S-H= M,,, . Let x o be an arbitrary
element of S-H. If ixo, y1, . . ., y,-,} is a set of I elements such that
{y,, y 2 , . . ., y_,} (-_ F, then G(.(xo, y,, . . ., y,_,)} =jxo}, for if not then
G({xo,y,, . . .,y,._,})- ;y„} for some n, 1 n l-1 . In this case x,,EH

which is a contradiction . Thus, since H= Na ,

U P=stn,
(-4(P) 4' .41

which contradicts (3) . The theorem is proved in the case k = 1 .
Suppose now that k > 1 and the theorem is true for k- l . Let F be a

subset of S, of power M,+k 1 . Let ~~ be the set of all subsets L of S, of 1
elements, such that

L n (S-F)1 .
We have two cases

1)

	

has a subset ' of power

	

such that G (L) (-- F for every L E r ' .

2) For every subset L of [F]á -1 the power of the set of the elements
x E S-F for which G(L U (x)) c F, is smaller than

Ad 1 . Since the power of the set [F]i -1 is Ka+k _, there exists an ele-
ment Lo of [F]1-1 and a subset B of S-F of power iota+,, such that

G(Lo u (x}) c Lo

for every x E B. It follows that there exists a subset KO of k elements and a
subset B' of B of power Ya+,, such that

G(Lo U {x}) = Ko

for every xo E B' . But then

U L -
V(L)-K~
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Ad 2. Since fit«+1; is regular S-F has an element xo such that
xoE G(L u (xo})

for every element L of [F]' - ' . We define now an inner set mapping F(X) on
[F] 1-1 into [F]h - ' as follows . Let

F(L) =G(L U (x0})-(xo}

for every L E [F] 1-1 . It is obvious that F(L) e L . By the induction hypothesis
for k-1 the theorem is true, i . e. there is an element K of [F]l - t such that

U L
r(Li=x

It follows from the definition of F(X) that

U L-N, .

a(L)-=hU{TO}

which proves the theorem .
Next we show that Theorem 5 cannot be improved .

Theorem 11 . If k and 1 natural numbers, 0 < k < l, then (( ;tt jk, k,1))-j-

-I- rid+i .

P r o o f. Let S be a set of power stn+k and
(4)

	

Xo, X,, . . ., Xm, X(,) 4-1 e . . ., X~, . . .

	

G. < wd+1;)

a well-ordering of S of type wQ+g . We define now an inner set mapping
G(X) of type k and range I as follows . Let L be an arbitrary element of
[S] 1 , and xc, the greatest element of L in the series (4) . Let further

(5)

	

X() , Xi" . . ., XW;, . . ., Xm+1 r . . ., Xc , . . .,

	

V < (0 ( 1))

be a well-ordering of the set (xj ,6„ where w(~,) is the initial number of
ti . Let now x6 ; be the greatest element of L- (x£ } in the series (5) and let
(x6" 6'}~be a well-ordering of the subset (x6'}6 .,£, of (5), where (1)(92) is
the initial number of

	

Suppose that the element x6,, " s "- ' and the

define G(L) as the set {x~,, x1 21 . . ., X~ k

	

It is easy to see that for every
element of [S]' the inverse has power

	

M., which proves Theorem 9 .

V.

We deal in this chapter with the symbol ((m, < p, q)) K .
T h e o r e m 12 . Let q and m be two cardinal numbers such that q is

regular and q - No . If r" < m for every r < q and n < q, then ((m, < q, q)) m .

series Ixs" are defined for every n, 1 < n -- m < k. We define now
the element x6,á C2, ~m as the greatest element of L- (x£1 , x~'„ x~" , . . ., x~?„ €,".-1}

in the series (x }~ .-_„ (6 ~, where w( ,n ) is the initial number of We
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The proof of Theorem 12 is similar to the proof of Theorem 6 .
C o r o 11 a r y 4 . If q

	

or q > X,, is strongly inaccessible and q -- m*,
then ((m, < q, q)) , nl .

C or o 11 a r y 5. Let 2sP _ Np+ , for every (I. If Na is regular and either
m = Na or \a < nl * , then ((nn, < N, Na)) --s nl .

We can not prove that ((m, < N., N.)) n for some m, if n > K. . If
the generalized continuum hypothesis is true, then ((Kw+r, <
(this is a consequence of Theorem 1) .

Furthermore we are as yet notable to prove if ((Nw+2) < '4r,, "co))

	

Nco+I
or if even ((N,,,+-' ~ < No, Nw)) __* Xw+,?
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