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On the structure of inner set mappings

By P. ERDOS in Haifa, G. FODOR in Szeged, and A. HAJNAL in Budapest

Let S be a given set of power m, /; and /, two arbitrary classes of
subsets of S. A function G(X) is called a set mapping if G(X) is defined on
I and such that, for each X¢/,, G(X)€lh. We say that G(X) is an inner
set mapping if, for each X€l,, G(X)c X. Let further X,€ /b, we define the
inverse of Xj in two different ways, first as the set

X=X
G(X)=X,
and second as the set
(X:GX)=Xo} = X3 .

The set of all subsets of power n and the set of all subsets of power
<n of § are denoted by [S]" and [S] ", respectively. If ;, =[S]" or ,=[S] ™",
then a set mapping defined on /;=[S]"or/;=[S]™ " is called a set mapping
of type n or type < n, respectively. If for a set mapping G(X) is /L=[S]"
or ;=|[S] ", then G(X) is called a set mapping of range n or range <n,
respectively.

We introduce now the symbols ((m, p,q))—r and ((m, p,q))* — r. These
symbols indicate that for every set mapping of the type q and range p, defined
on the set S of power m, there exists an element Xo€[S]® for which X;'=r
or X3' =n, respectively. The symbol ((m,<p,q))—v has an analogous
meaning. The same symbols, with — replaced by -|», indicate the negation of
the corresponding statement.

It is obvious, that we have to suppose m = q=p. We prove in this
paper the following results:

a) negative results (q = No):

1) if m'=q*, then ((m,p,q))->q+ and ((m,p,q))" -2,

2) if p=g, then ((m,p, q))->q* and ((m,p,q))* -|>2.
b) positive results (q3 = No):

1) ((m, p,q)) - m if ¢ <m",

2) ((m, p,q))" —>m if ¢" < (m%)* and m’= m".

A6
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These results make possible with the aid of the generalized continuum
hypothesis, the discussion in almost every case. We can obviously assume,
that p< g and g* < m?. Thus we can state:

¢) ((m,p,g))—m and ((m, p,q))*—m", if ¢"==m" or q=m*". Thus the
only open question is the following :

Is it true, that ((m,p, q))—m or ((m, p,q))" — m if m=N., « is of
second kind, q=N.w-1, cf(€)—1 is of second kind and p=N; with
B=cf(cf(e)—1)?; for instance in the simplest case :

((x“‘{-)_rl ’ R'U s"’)) — & Rﬁ’(,,.g_l ?
or
(1o N, No)) = NE2 =N, ?
d) if 0<k<l< oo, then (Naws, £, 1)) — Na;
if 0<k<l< oo, then (Nawk, & 1)) -|> Rt

e) Finally we deal with the symbol ((m, <y, q))—1r. If p<q, then the
validity of the symbol ((m,, q)) —r implies the validity of ((m, <y, q)) — 1.
This holds in the case too, if p=q and q=N. has an index of first kind.
If q is regular, 0 =Ny, and " <m* for every r<q and n<gq, then
((m, < g, q)) — m; thus in particular ((m, <N,, N))) — m. The simplest unsol-
ved problem with respect to the symbol ((m, <p,q))—r is the following :

((Nmz, < No, xr.o)) — Noi 0r N ?

Set mappings of type 1 and range n or <n have been investigated
previously in [1], [2], [3], [4].

Notations and definitions. Throughout this paper, the symbols
S and g denote the cardinal number of § and the ordinal number 3, res-
pectively. For any cardinal number v(—N.) we denote by ¢. the initial
number of r, by v* the smallest cardinal number for which v is the sum
of v* cardinal numbers each of which is smaller than r, by ¢f(«) the index 2
of the initial number wmg of v, by r* the cardinal number immediately fol-

lowing r.
I.

We prove now negative results with respect to the symbols ((m, p, q)) -t
and ((m, p, q))*—r. First we prove the following:

Theorem 1. Let p, q and m be cardinal numbers such that
m=qg=p=No. If m'=q*=r, then ((m,v,q))-|>q*.

Proof. Let S—m. We define on S a one to one set mapping G(X)
of type q and range p which shows that the theorem is true. By the hypothesis

[bT"- =,
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Let

M],X],...,X(U,Xw.',],-..,XE,_.. (E<ql)
be a well-ordering of the set [S]' of the type ¢.. We define G(X) by trans-
finite induction as follows. Let G(X.) be an arbitrary subset of X; of power
p, and » a given ordinal number, 0 < » < .. Suppose that all sets G(X,),
where 0 = u < », have been already defined such that

1) G(X,)=p, for u<v,

2) G(X)c X, for u<r,

3) G(X,.)+#G(X.) for wy<ps<v.
Since the power of the set [X,]" is v too, there exists a subset of X, of
power p which is distinct from each G(X,) with index u < », because
v<¢.. Let G(X,) be such a subset of X,. Then G(X,)=1p, G(X,)cX,
and G(X,)+ G(X,) for w<r. Thus G(X) is defined for every element of
[S]" and it is a one to one inner set mapping of type q and range p. The
theorem is proved.

Corollary 1. If 2% =N for every 3, then (Nu i1, Na, No)) - * Nos1-
It follows from the proof of Theorem 1 also the following

Theorem 2. Let p, q and wm be cardinal numbers such that
m=qg=p=No. If mm=q", then ((m,p, q))" |»2.
Theorem 3. If 0= Ny, then ((m,q,q)) 0o for every cardinal num-
ber m > q.
Instead of Theorem 3 we prove the following stronger result:
Theorem 4. Let S be a set of power m > q. There exists a function
G (X) defined on [S]" with the following properties :
(1) G(X)c X and X—G (X)=+#0 for every X¢[S]
(2) G(X)€[ST' for every X€[S]';
(3) G(X)s=G(Y) if X and Y are two distinct elements of [S]’;
(4) for every Y €[S]' there exists an element X €[S]" such that Y = G (X).")
Proof. Let E be a set of power n= q; we prove that there exists a
a function F(X) defined on [E]" which satisfies the conditions (1), (2),
and (3). B
We consider two cases: (i) £=q, and (ii) E> q.

Ad (i). Let
AXH;X],---,X.),---,XE,... (_E<(FL)

1) For the proof of Theorem 1 it is sufficient that G (X) satisfy the conditions (1),
(2), and (3). This theorem is proved in [5].
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be a well-ordering of [E]" of the type ¢, where r=2%. We define F(X) by
transfinite induction as follows. Let F(X.) be an arbitrary proper subset of
X, of power g, and # a given ordinal number, 0 < 8< ¢.. Suppose that all
sets F(X:), where 0 = £ < &, have been already defined such that the condi-
tions (1), (2), (3) are satisfied. Since the power of the set [X;]" is 2°, and
8 < 2" there is a subset Y of Xz, of power g, such that Xp—Y =0 and V
is distinct from each F(X:) with index &< 3. Let F(Xp) =Y. Thus F(X) is
defined for every element of [E]" such that the conditions (1), (2), and (3)
are satisfied. '

Ad (ii) Consider the set M of all subsets M of [E]’ such that if X and
Y are two distinct elements of M then Xn VY < g. By ZorN's Lemma there is
a maximal element M, of M. Let

Zr,Z1,...,Z,-.,,Z,,.,,l,...,Zg,... (E<§f[)

be a well-ordering of M, of the type ¢;, where i— M. Since Z;—q for
every &< ¢, there exists a function F:(Z) on [Z]" which satisfies the con-
ditions (1), (2), and (3). Let now X€[E]. By the definition of M, there

is a smallest ordinal number »—= »(X) for which Xn Z,—q. Let

F(X) == Fx'(X}(Xn Zm.\'l) u (X"'_Zm.\'>)-
It is obvious that F(X) satisfies the conditions (1) and (2). For the proof
of (3) let Y= X be another element of [E]" Then

F(Y)=F.mn(YnZm)u (Y—Z.v))-

There are two cases: 1) »(X)=»(Y), 2) »(X)Fr(Y).

Ad 1. f XnZuyy7=Y N Zyx), then by the definition of Fy,
Foxy(X N Zux)) # Fr (YN Zyx)). We may assume that Fox, (Y0 Zyx))
does not contain F,y (XN Zyuv). Let Xo€F,\)(XnZyx)) such that
xo& Fooy(Y 0 Zy(xy)- By the condition Fx(Z£)c Z, we have that xe€ X n Zx)-
It follows that xo§ Y— Zyx,; consequently Xo@ Fugx)(Y N Zyx)) U(Y—Z,x)) e
F(X) 5= F(Y).

If XnZy=Yn Zyx), then, since XY, X—Z,,5=Y—2Z,x); con-
sequently, by the definition of F, F(X)= F(Y).

Ad 2. We may suppose that »(X)<»(Y). By the definition of M,
Zwxy N Zuiyy < 0, i.e. (XN Zux) N (YN Zyyy) <a consequently F(X)= F(Y).
Thus F(X) statisfies the condition (3) too.

Let now F be a set of power v >q. It is easy see that there exists a
function H(X) on [F]’ such that

a) Xc H(X) and H(X)— X0,

b) H(X)=q,

c) HX)s=H(Y) if XY
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We apply now the following theorem of BANAcH [6]: If the function ¢
maps the set A one to one onto a subset of B and the function v maps
the set B one to one onto a subset of A, then there exists a decomposition
A=A UA; of A and a decomposition B= B, U B> of B such that AinAd=
BinB:=0, (P(Al)—Bl and U)(B )=As.

Let now A=B=|[S]" (§=m>q). Let further ¢ be a function on [S]’
such that the conditions (1), (2), (3), and v a function on [S]" such that the
conditions a), b), ¢) hold respectively. Then there exist two decompositions
[S]" — Ay AQZ B{ U B: such that A] n Ag :Bl U Bg == 0, !}'J(Aj) == Bl and
w(B:) = A:. We define G(X) on [S]" as follows. Let

)'f(X), if XeA,
Ly '(X), if X€As.
Obviously G(X) satisfies the conditions (1), (2), (3) and (4).
The proof of Theorem 4 gives also the following

Theorem 5. If 9 = No, then ((m, g, 0))* |2

G(X)=|

1I.

We assume in this chapter that p<g, g = No and ¢*<m? and prove:
Theorem 6. If ¢° <m", then ((m,p,q))— m.

Proof. Suppose that the theorem is not true, i.e. for every subset P
of power p

U Q<m.

G(Q)=P

T U Q<m

P'EP G(Q)=P"

By the condition,

for every subset P of § of power p.

We define now by transfinite induction a sequence {Pg}e.-_%wﬁ of the
type ¢, +¢,. of the subsets of S of powerp as follows. Let P, be an
arbitrary subset of S of powerpand # a given ordinal number, 0 < & < ¢, + @y..
Suppose that all sets P;, where 0 =& < 5, have been already defined, and
let A;}ZCU P;. Since @< ¢, +¢,. and P:=p<q we have Az= q. It follows

£ g
by the hypothesis q* < m" that

U U Q<m
Pg,lﬁ Q=P
We define the set Py as a subset of power p, of the set
S— U P:—
& B PCAg G(Q)=P
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Put
(1) H= U P.

s
It is obvious that H—=q. It follows that there exists a subset P of H of
power p such that G(H)= P. Since p- is regular there exists an ordinal
number < ¢, ¢,, such that

PEUP=4.
)

But then clearly by the definition of P;, P;c= H, which contradicts (1).
Corollary 2. If 2%=Ng. for every 3, then ((No,-2,Na, No,)) —
—’Nm‘,-;—z-
Theorem 7. If p<q® and v <m" for every v <q, then ((m,p, q)) — m.
The proof of Theorem 7 is similar to the proof of Theorem 6.

Remark. If g<m® then g" < m® because if g—= N. with index e« of
second kind or N.. =1q, then

D er—q® or D r'—=Ns,

e
—

r<q <4

respectively, i.e. in this case Theorem 7 is a particular case of Theorem 6.
Corollary 2. Ifa=m"and v* < m" for every v < q, then ((m,p,q))—m.

Corollary 3. If 2% — N, forevery 3, m* — q— Na:1 and p < (Na)',
then (m, p,q) —m.

Theorem 8. Let p, q and m be cardinal numbers such that m = q.
If ma=m" and o < (m7)*, then ((m,p,q))" — m.

Proof. The proof of this theorem is similar to the proof of Theorem 6.
Suppose that the theorem is not true, i.e. for every subset P of § of
power p, the power of the set

P —(Q:G(Q—P)
is smaller than m. Let I'(P) be the set of all sets P'¢[S]" for which there
exists a set Q¢ [S]" such that G(Q) = P, for some P,S P and P'c Q. Then by
the condition !
I'(P) <md
for every subset P of S of power p.

We define now by transfinite induction a sequence {P¢j¢ ¢ +q,, Of the
type ¢, ¢.- of the sets €[S]" as follows. Let P, be an arbitrary element
of [S]’ and # a given ordinal number, 0 < #< ¢, -+ ¢,.. Suppose that all sets
P:, where 0 = &< g, have been already defined, and let Ay ———fqg P;. Since
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8< gq+ ¢y and P;=1yp< g, we have Aq =g. It follows by the hypothesis
q* < (m9)* that
(P) <md.,

We define the set Pz as a subset of power p, of the set
[SI"—{Pe}ecs— U I'(P).
PSAg

Since m’ = m’, there exists such an element of [S]'. Put
(2 H= U P.

<@gt Ppy

It is obvious that H == q. It follows that there exists asubset P of H of
power p such that G(H)=P. Since p* is regular there exists an ordinal
number &< ¢, ¢, such that
PC |J P:=
[ ]

But then clearly, by the definition of P, P;C= H, which contradicts (2).

IIL

We assume in this chapter that p <q, ¢ < m? and the generalized con-
tinuum hypothesis holds, i.e. 2% = N for every ordinal number .

Lemma. If ((m,p,q))—m, then ((m,p,q))"—m. We omit the proof.

Theorem 9. If ¢°s=m* or q=m", then ((m, p,0) —m' and
(u, p, q)) —m.

Proof. Suppose first, that ¢° <= m*. Thus if ¢* < m* then ((m, p, g)) —»m
by Theorem 6 and (m,p,))* —m? by the Lemma and Theorem 6, because in
this case m?=—nm.

If g* >m*, then we consider two cases: a) p<m* and b) p= m".

Ad a. We have in this case that g = m". It follows that m=m"<mi=m?;
therefore there exists a set Py in [S]” for which P; ' — m® and consequently

1
'—m

Ad b. We have in this case that ¢ = m*; consequently m*=—m®=m. It
follows that m?=(m?)*. Since the assumptions of Theorem 8 hold, there
exists a set P, in [S]’ such that P} ' =m* i.e. Py'=m.

Finally if g°=m", then g = m" by the assumption, and if in this case
p<m*, then the proof is the same as in the case a) while if p =m", then
our statement follows from Theorem 8.
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IVv.

We assume now that p and q are finite cardinal numbers and we prove

Theorem 10. If k and [ are two natural numbers such that 0 <k <l|,
then ((Naix, k, [))— N for every ordinal number «.

Proof. We use induction with respect to k. Let k=1 and /> 1.
Suppose that the theorem is false, i.e., for every element

(3) U P<N.

GP)—{r}

Let F be a subset of S of the power N, and omit from the set the elements

of the set
H=U U P
r€F G(P)={=}
Since F— N, it follows from (3) that S—H = N..1. Let x; be an arbitrary
element of S—H. If {xo,y1,...,1} is a set of [ elements such that
,y2,..., yaycF, then G({xo, Y1,..., V-1)} ={xo}, for if not then
G({X0, Y1, -, V1)) ={ya} for some n, 1=n=I[—1.1In this case x)¢H
which is a contradiction. Thus, since H = N.,
U P=N.,
G(P)={ux,}

which contradicts (3). The theorem is proved in the case k= 1.

Suppose now that k> 1 and the theorem is true for k—1. Let F be a
subset of S, of power N.:i.-1. Let € be the set of all subsets L of S, of /
elements, such that o

Ln(S—F)=1.
We have two cases:

1) € has a subset £ of power Na., such that G(L) = F for every L€g'.

2) For every subset L of [F]~' the power of the set of the elements
x€S—F for which G(L U {x})cF, is smaller than Nq.

Ad 1. Since the power of the set [F]'-' is N1 there exists an ele-
ment Ly of [F]'! and a subset B of S—F of power N..: such that

G(Lou {x})c Lo

for every x€B. It follows that there exists a subset K, of k elements and a
subset B’ of B of power Ng.. such that

G(LoU {x})= Ko
for every x,€B’. But then
) U__E — xu-.?.‘ .
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Ad 2. Since N, is regular S—F has an element x, such that
for every element L of [F]''. We define now an inner set mapping F(X) on
[F]-! into [F]*! as follows. Let
F(L)= G (L U {xo})—{x0}
for every LE[F]"'. It is obvious that F(L)c L. By the induction hypothesis
for k—1 the theorem is true, i.e. there is an element K of [F]*! such that

J L: Nu-
FL)=K
It follows from the definition of F(X) that
U_- Lzz Nu.
G(L)= Ku{r..}

which proves the theorem.

Next we show that Theorem 5 cannot be improved.

Theorem 11. If k and [ natural numbers, 0 < k < I, then ((Na:x, k, 1)) -
‘I‘” N1

Proof. Let S be a set of power N... and
4) X0 X1 o Xy Xty v'0.05.XE s 500 (5 < masr)
a well-ordering of S of type ma... We define now an inner set mapping
G(X) of type k and range [ as follows. Let L be an arbitrary element of
[S], and x;, the greatest element of L in the series (4). Let further
(5) XEU <oy e o B s M ARy E <o)
be a well-ordering of the set {x.}.-¢,, where ®(&) is the initial number of
E. Let now x;, be the greatest element of L— {x¢ } in the series (5) and let

{5, wi¢y De a well-ordering of the subset {xfYe e, of (5), where o(&) is

the initial number of E£,. Suppose that the element xg! “En~1 and the
series 'xél """ "}5 ~u(¢, are defined forevery n, 1 <n=m< k We define now
the element x5! % *m as the greatest element of L — {x;,, xE5, xEV®, ..., xf -1}
in the series {x: E" ""’“}; m,_m., where m(&,) is the initial number of £.. We

define G(L) as the set {x;, xg,, ...,xﬁi“"‘;‘"'}. It is easy to see that for every
element of [S]* the inverse has power = N., which proves Theorem 9.

V.

We deal in this chapter with the symbol ((m, < p,g))—1.

Theorem 12. Let g and m be two cardinal numbers such that q is
regular and q = No. If v <m for every r <q and n <q, then ((m, <g, q))— m.
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The proof of Theorem 12 is similar to the proof of Theorem 6.

Corollary 4. If 9= No or q > N is strongly inaccessible and § = m”,
then ((m, <g, q))— m.

Corollary 5. Let 2% — Ng.y for every . If N« is regular and either
m=Na 0r Ne < m", then ((m, < Na, Na)) —m.

We can not prove that ((m, < N., No))—n for some m, if n>N,. If
the generalized continuum hypothesis is true, then (Noi1, < No, No)) 1> Nou
(this is a consequence of Theorem 1).

Furthermore we are as yet not able to prove if (Noi2, < No, No)) = Not
or if even ((Nui2, < Nu, Nu)) = Noa?
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