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Let X() (0=#<o0) be the Brownian motion process. Concerning the
uniform continuity of X(#), there exists P. Lévy’s result. Before stating his
result, let us define the concept of upper class and lower class with regard
to the uniform continuity of X{(#) (0=¢=<1).

If there exists a positive number e such that |#—¢| = ¢ implies the rela-
tion
1) ' [F@)—ry =g’ -2,
where g(#) is a non-negative, continuous, non-decreasing function defined in
some finite interval (0, 7') and vanishing with #, then we say that f(f) satisfies

Lipschitz’s condition relative to g(f). Putting tp(t)zy’f(%)'\/t_, if X0=t¢
= 1) satisfies Lipschitz’s condition relative to ¢(¢f) with probability 1 we say
that (f) belongs to the upper class. If X(#) (0=¢=1) does not satisfy Lip-

schitz’s condition relative to ¢(f) with probability 1 we say that y(¢) belongs
to the lower class. P. Lévy [1] proved that the function

V(&)= c@log O
belongs to the upper class for ¢ >1 and belongs to the lower class for ¢ <L
Following his method, T. Sirao [2] improved the result as follows: The
function
W(t) = @ log t+c log log #)*

belongs to the upper class for ¢>5 and belongs to the lower class for ¢ <—1.
In this paper we shall prove the following theorems.

TueoreMm 1. A non-negative, continuous and monotone non-decveasing func-
tion U(f) belongs to the upper or lower class according as the integral

@ [¥eetvea

is convergent or divergent.
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Tueorem 2. The function (1) defined by
(3) Yit) = (2 1og 145 log 742 log -+ +2 loguopt+c¢ logmd},
where log it denoles the n-times ilerated logarithm, belongs to the upper class
for ¢ >2 and to the lower class for ¢ =2.

These theorems were quoted by P. Lévy [3] without proof. They give
a difinitive solution to the problem of uniform continuity of Brownian mo-
tion X(f) and are comparable to A. Kolmogorov’s criterion in the theory of
iterated logarithm for X(#) at time point oo.

Theorem 2 is a simple corollary of Theorem 1. Hence we prove only
Theorem 1.

Lemma 1. Without loss of generality, we may assume that

) (2log #—10log log t)ig ¥ () = (2 log ¢4-10 log log t)% .

Proor. We show that if Theorem 1 holds under the assumption (4),
then it holds without (4). Let us denotes the first member in (4) by ¥,()
and the last member in (4) by (8.

Define 1:&(:) as follows:

5) Y() = min(max (¥ @), Y1), ¥o@) -

Then the convergence of the integral (2) for v+(#) implies the same for V(7).
In fact, let us assume the convergence of (2) for y(#). If the set of # on
which Yr(#) is less than v¥,(#) is not bounded, there exists an increasing sequ-
ence {#,} such that vr(£,) = (£,) and {, tends to infinity with ». Since ¥~(#)
is a non-negative and non-decreasing function, we have

ry’r?‘(t)e'%f”“} dr> J' " se-te 0 g
Ly by
> Pt et et

= c(log £,)*

where ¢ is a positive constant. Since log#, tends to infinity with #, the
integral for ¥~(¢¥) is divergent. This contradicts our assumption and there-
fore 4/r,(#) must be smaller than () for large £. On the other hand the
integral for vr,(f) is convergent. These facts prove our assertion. Now we
assume that the integral for (£} is convergent and Theorem 1 valid under
the condition (4). Then the integral for +»(# is convergent and therefore
¥(7) belongs to the upper class. But by what has just been shown (1) < ¥ (f)
for large t. So we have &(k) < ¢(h) for small # where &@) is defined by vr(#)
as @) is by (¢) and therefore v(¢) belongs to the upper class. Thus Lem-
ma 1 is proved in the convergent case.
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Secondly let us assume that the integral for y(#) is divergent. If the
set of # on which y(¢) is less than v~ (¢) is bounded, then it follows that 55{:)

is less than (¥ for large ¢ and accordingly the integral for ¥+(f) must be
divergent. On the contrary, if there exists an increasing sequence {f,} having

the property

(6) Yit,) <y(t), t,— oo asn—ooo,
then we have
©) Vita) =) -

By the monotony of rﬁ(t), we have

) : "PDe 0 Odt = Yt )e 1 8, —1)

®
=¥ (e Wit —t) .

Since the last term in (8) tends to infinity with », the integral for {’r(t) is
divergent in our case. Now, by the result in [2], ¥,(#) belongs to the upper
class and therefore, for almost all sample point w, there exists ¢ such that

&) [ X, 0)—X(t, o) | < @(1#'—2])  for [£'—t|<e,

where ¢.(f) is defined by r.(2) in the same way as () is by ¥#). On the
other hand, since by assumption +,(#) belongs to the lower class, for almost

all @ we can choose a sequence {{f,,#,")} having the following properties
[ X)) —X(t) | > €1t —1al) s
|2, =2, 1—0 as n—oo.

(10)

From (9) and (10), we have

(11) @(ttn’_tn|)<q)2(ltn#_tn])'
(11) shows that ¢(#) is at last equal to ¢(f) at t=[¢,—#,|. This fact and (10)
show that (#) belongs to the lower class. Q.E.D.

We now proceed to prove Theorem 1.

1) Proof of the convergent case.

First of all we remark that it suffices to prove, for almost all o, the
existence of a positive & such that

X', 0)—X(t, 0) = (|t —1]) for |¢/'—¢|<e.

In fact, let us assume that this assertion holds. Then it follows from the
symmetry of Brownian motion that the probability of the existence of a
positive ¢ satisfying the inequality

—¢(|t' —t]) = X, 0)— X, w) for |#—ti<e”
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is equal to 1. Taking & for the minimum of ¢ and ¢/, we have Theorem 1.
Therefore we may consider the difference X(#')— X(#) instead of its absolute
value.

For each triple (p, %, /), let E#; be the event

12 x(ED)-x(5)ze(4), k=012,

1=1,22.

A simple computation shows that
PEE~e W) [entv(5)
for large p. Summing up P(EP) for p=1,2,, £=1,2,--,27, [= [%],

]:-g-]+1,---,p, we have

¥

> 5 % P(.Ega=0(1)§‘: > i e_“’(z‘?)/ ¥(7)

=t £ o]

Applying Lemma 1, we obtain

o oP » &W (EP
5> & P(Es:;)—ou)z 2 (2
p=1l k=1 g-[ =1

(13)
=0 e ¥ Oat < +ca.

Next, for each triple (p, %, ), let Fi?, be the event

k+l 2¢
as o X)X/ 5 ¥ (15)
k=01,2,-,27,
[=1,2,-,p.

For convenience' sake, we consider the F#, only such that the time parame-
ters ¢! of X() which appear in the above definition are positive and less
than 1. It is well known that

P(max X >a)=2PXH >a),

==t

where ¢ is any real number. Since the Brownian motion is an additive
process, we have
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Pz s Plmax (X(EEL4r)-x(EE))+ (x(EED) - x(£))

0§t§§;—,
s (x(4) (4= )|

[EL =

1s)

<4P{X(k+t¢1)-X( k—}—l)_l_X k+£) X(_zi%_)
+X(2i") 4/21» l+2

kil
=4P(X(F ) - x/zr’ z+2

By Lemma 1 we have, for large p and /

L (2
PRR)S — 35 ¢ T i
e (45y)

~aP(ER) 1D

Therefore, if [ is an integer existing between [%:l and p, there exists a

positive constant ¢ such that
(16) P(F2) < cPEP).
Combining (13) and (16), we obtain

il ap
an 22 2 P(Fg) <+oo.

=L
According to Borel-Cantelli’s lemma in the convergent case, (17) shows that
the events F#, appearing in (17) occur “omly finitely many times” with pro-
bability 1. Or, in other words, there exists a positive ¢ with probability 1
such that if 2—;2(,— is smaller than ¢, F?, does not occur for any pair (%, /)
appearing in the summation of (17).

Now, for any pair of (¢,¢') satisfing the condition |#'—¢| <e¢, we choose p

as follows:

1
18) ‘g;';l <|¥—t| = —2% < 2es

If we define k& and / by the following inequalities

(19) el 1) = o < EEL <maxg, 0y < ALEL
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it follows that [—}::.—] <[=p and therefore we obtain

X(t)—X(t) = max (X(k—;!——i—t)—X(—;——s))

A1
llﬁt,:sw

I\Y /o0
=(z) ¥(752)
=e(r'—1))
with probability 1.
Thus Theorem 1 is proved in the convergent case.
2) Proof of the divergent case.

Let E3®, be the event defined by (12). By the monotony of ¥(#) and Lem-
ma 1, we have

o aP P S2P
S 5 pEn-onY S Y e_M:)/’!#’(%)

p=i el 1-[3] p=1 k=1 £=[§]+1

=

©0) — o) & gwa(zpﬂ)e-ir&’(e_ﬁt’)
P ?

p=1
=0() [P0 e dt =t oo

It is sufficient to show that EZ, occur “infinitely often” with probability 1.
For this purpose, we use the following Lemma given in [4].

Levma 2. Let {E} be a sequence of events satisfying the following condi-
tions.

) fj P(Ey) =+oo.
(i1} For every pair of positive integers h, n with n = h, there exist c(h) and H(n, k)
>n such that for every m = H(n, k) we have

P(Em/'Efc”"" En’) > c(k)P(Em) ]

where P(F/E) denotes the conditional probability of F on the hypothesis E and
E' denotes the complement of E.

(iii) There exist two absolute constants ¢, and c, with the following property:
to each E; there corresponds a set of events Ej,, -, E;, belonging to {E:} such that

@ 2 PEE,) < PEy)

and if k>3 but Ey is not among the E;; 1 Zi=s) then
(b) P(E}Ek) < CgP(E;)P(Eg) .
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Then the probability that the events E, occur “infinitely often” is equal to one.

We rearrange EZ; and denotes it by £, so that we may apply Lemma 2
in our case. The rule of ordering is given by the following. If E,=Ep,
.= EZ,, then n <m if and only if one of the following three conditions
holds :

(c) p<y,
() p=p and >0,
{r) =, =t and k<k.

Now we prove that the sequence {E,} satisfies the conditions of Lemma 2.
(i) is a consequence of (20). For (ii), we use the characteristic property of

Gaussian distribution. Let E,=E# and put U, = (k_H—)—-X(EIi-). For
every pair (4, ») with n=#, if we define U,, U,+,, -, U, similarly then
EU)=0 (G=hht]l,,n), E(Un)=0
(2D
BUUNS 55 =hhtlon),

where E(U') denotes the expectation of U7. Since E{,— tends to zero as p

increases, (21) shows that for each i (#=i{=wu) the correlation coefficient of
U; and U, tends to zero as m increases. In other words, I, is asymptotically
independent of the joint variable (U,, Uysy+-, U,). Therefore we have

©2) lim DEn/Ey EY) _ i

P(Eh,fs En-_l-ll"‘" Enszm)_ =1
m—roe P(Em) M —soe P(Eh.;) Eh-f-l!;"') En;) :

This shows that (ii) holds in our case. For the justification of (iii), we need
some lemmas.

Lemma 3. Let U and V be two random variables whose joinl distribution is
Gaussian and each of them has a standard Gaussian distribution. Let the cor-
relation coefficient of U and V be p, then there exists a positive constant ¢, such
that
(23) PU>a, V>b=c,PU>a)P(V>b) for p< 'al—b'

Proos. 1f p is negative or if ¢ or b is small, (23) holds trivially. There-
fore it is sufficient to prove Lemma 3 for sufficiently large @, 6 and positive
o. Without loss of generality, we may assume ¢ =». Then we have

Lzt —2pxy +¥%)

PU>a,V>b) = — --—j j Te N gudy
2:"'(1 ,o=)*
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oy

. 1 5 'gﬁ;—t% 3
- ol MK dady

2r(l—p
(24)
-py)’ I
fom _*_j'J' Tad-ey dxdy
27!(1 0% i
_lz=ppr Nk
3, iII Tat1-p%) dxdy.
2z(1—p0%)

The first term on the right side is estimated as follows:

_le=p)r i

T ati-py) gw-ihdxdy
2m(l— )i rj
_G=vmr g
(25) é * ‘[%rn 2(1=ps) e 2dxdy
2z (1 PZ)

< P{U> (@a—2/a)/1—- ) PV > b)
— OPWU> )P(V>b).

On the other hand, for sufficiently large @, the second and third term on the
right side of (24) are trivially smaller than the right side of (23) replaced
¢, by 1. These estimates assure the validity of Lemma 3. Q.E.D.

LemMma 4. Let U and V be random variables as in Lemma 3. If the corre-
Jation coefficient of U and V is less than 1 /25 and 0<a <b then there exist two
positive constants ¢, and 8, satisfying the following inequality

(26) PU>a, V>bZce®™PU>a).

Proor. Let & be a positive constant which is less than 1 and let o be
the correlation coefficient of U/ and V. It suffices to prove Lemma 4 for
sufficiently large ¢ and positive p. Then we have

E )
PU>a V>b= . %II 21-p1) dxdy
—%)
27)
3y e EPY_yr
(1+¢g)
aimr s i Il bJ‘ e MPY g 2 ey
2r(1—
o _lz-pnt _yr
= e X0 ) gady

27(1— 10)% ‘[(H:) b-f
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¥
{Irz}i'b E-0+e/D7¥

201=-p%) T2 d Xd1

X .‘. J.

A

23(1 pz)

= -
+__ _l_ij . i e !dy
(23.) (I+g)<b

il 0(1){9—(1-{1-1-:/2)& }=b'!2_{_e—=}£bl}P(U> a) ”

If we take the minimum of (1—(1+e/2%2/2 and ¢/2 for 8, then Lemma 4
follows from (27) immediately. Q.E.D.
Lemva 5. Let U and V be random variables as in Lemma 3. Denoting the

correlation coefficient of U and V by p, there exist two positive constants c; and
8, such that
(28 PU>a, V>a)=ce M P(U>a) for a>0C.

Proor. By the definition of Gaussian distribution, we have

(zi =20y +y")

PU>a, V>ad)= ——é I J'"e‘ 20-0% " gy
2z(1—p%
Rotating the axes by z/4, we obtain
3 _U-@ar+ iyt
{z+24a)
T T 201=0%) .
PU>aq,V>a) = —— 2)% L#-f aba® dvdx
=, = <t
= (27:)% j‘(m-tp)%ae a3
sdef 4 oW
=0)e aarm” e 2
-
= 0(1) e 201+mE P(U> a) _
If we take 1/8 for d,, Lemma 5 follows from (31). Q.E.D.

Now we prove that the condition (iii) of Lemma 2 is satisfed by our
sequence {E,}. For given Ej, recalling that %; has another expression EZ,
we choose a sequence {Ej;;i=1,2,--,s} of events with the properties that
ji> 17, the corresponding superscript p’ is less than (p+5log p) and E;, is not
independent of E,. If E, is independent of E; then (b) of (ii) holds trivially
for c;=1. On the other hand, if E, is not independent of E;, we use Lemma
3. Let E;=Ef and E,=EZ,. If m is not one of the j’s then it follows
from the definition of {E;} that (p+5logp)<p’. Considering only the case

of /> —‘2—, we have by Lemma 1 and for large p,
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(x 2?(2;’(‘27)) _ (X(_z‘;(;)}:( 57 ) . (_?_’_)gf( 2;“ )i

a9

£

(30)

v v ()

Since the joint distribution of the two random variables appearing in (30) is
a Gaussian distribution in 2.dimension’s, we may use Lemma 3. Thus there
exists a positive constant ¢ such that

| PeEm=r () () o), X)) o(4)
= CcPE)PE,).
If we take the maximum of ¢ and 1 for ¢, in (b) of (iii) then (b) holds.
In order to verify (a) of (iii), we use the other expressions of the Ejs.
Let us denote E; by E# and each one of E;, by E2. Dividing the sum
of P(E;E;) according to the magnitude of the correlation coefficient of

(x(“5) - 3(3p)) ana (x(F55) - %(55)) we have

32 3 PESE,) = £/ P(EE)+ S PEE,),

where 3’ denotes the summation over #’s such that the correlation coefficient

of the corresponding random variables is larger than :}—; and 3" denotes

the summation of the remainder. Since the correlation is at most

AR B
min( g, 55 )(21"?')
and since #2°% </2-? by the limitation on the ranges of { and //, we see that
the largest superscript of Ej’s appearing in 3}/ is at most p+2. Moreover,
without loss of generality, we may assume in the computation of P(E;E;) that
B _F k+l - B+

op = 9p" = oW

k1 X (55 kﬂ;,H’ -X —k; Pt
P(EE;) =P —-—-21—-—--(2 ) >v(%), ol 2 G }W(z})

) &)
AT -x(E) oy xCE-x()

B e = Y

o 9P

, we have

33
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The inequality follows from the definition of ordering and the fact that the
correlation coefficient of two random variables appearing in the last term of
(33) is larger than that of the second term. Since p’=p-+2, we obtain by
Lemma 1 and Lemma 5 that

& -l?ip!_p

P
= Jor (% )P(Ef)

PEE;)=ce”’
(34)

—& (k=P "Dy

=ce PE),

where ¢, & and & are positive constants. Here we remark that the number
of E; appearing in the present case is less than (&' —k27?) for fixed pair

(', k') because .;—;, = 2!1, . Similarly, for the case of k 2% 2k,., we have

B o it
(35) PEE)<ce ™ T PE).
P
Considering the same situation for ‘2%:')2}27’ we have

EL+¢)*”' L , il
SPEFE) S 2PE) 2 { (k2 e —ka?’ = 7
kr=ka? T

(36) ’
(ol =p -
+ 3 (2rr_[)eaie? p_;,)}
r=1

= aP(E)‘) H
where a is an absolute constant.
For the computation of P(E;E;) where E;, appears in the summation of

37 we apply Lemma 4 Using the same expression for E; and E;, as before,

k k+1 _K+U

for the case of 5, = zp, e 55 =50 —» We have

Ry Ry ’

remgr[ 7 z; (), v (7): (w kE;)> )

@ ) o
gc-w(")P(E)

=ce "' P(E))

where ¢, ¢’, 5 and &’ are positive constants. Similarly, for the case of %

i
< %< k:,'ltl = kzt! , we obtain the same result. Combining all the cases,
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v pilogy IR pf— —gior
2 P(EER) = cP(E) p’E P2 P[gmd'P

=p

ilo,
38) = cP(E) ”;2” P
=-p
=BP(Ey,
where 2 is an absolute constant. (32), (36) and (38) establish the validity

of (ilia). Therefore we may aplly Lemma 2 in our case and Theorem 1 is
proved completely. Q.E.D.

Syracuse University, Technion, Israel,
and Shizuoka University.
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