SOME REMARKS ON A PAPER OF McCARTHY')
P. Erdos

(received March 3, 1958)

As usual we denote the number of integers not exceeding 5
n and relatively prime to n by Euler's ¢ function ¢(n). Lehmer )
calls the ¢ (n) integers

l=a;«< a; <« . .<a¢(n)=n— 1
the totatives of n.
Denote by ¢ (k, 4, n) the number of a's satisfying
nl/k <a; « nWd+ 1)/k n > k.

1fnl = 0 (mod k) or n(,t + 1) = 0 (mod k) then, sincen > k,
(nd/k, n) > 1and (n(L + 1)/k, n) >1 respectively. Thus
g(k, L, n) is the number of totatives of n satisfying

nd/k ea. & n(.8+ 1)/k.

1

f

(1) ik, L,n=¢m@/x, Ld=01,2,..., k-1
Lehmer ) says that the totatives are uniformly distributed with
respect to k. To shorten the notation we say that T(n, k) holds
in this case. Lehmer?) further calls n exceptional with respect
to k if either n is divisible by k“ or n has a prime factor of the
form kx + 1. He shows that for all exceptional n, T(n, k) holds.

In a recent note McCarthyl) proves that if k is a prime
then T(n, k) holds if and only if n is exceptional with respect to
k. However, if k is not squarefree there is an integer n » k
which is not exceptional and for which T(n, k) holds. He further
asks if the second half of his theorem remains true if k is not a
prime but is squarefree. We are going to prove this in this

note.
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It is clear that if T(n, k) holds then 45(11) = 0 (mod k).
We are going to show that if k # p or k # 2p, p odd, then this
condition is not sufficient, i.e. there exists an integer n for
which ¢@(n) = 0 (mod k) but T(n, k) does not hold. Lehmer?)
observes that n = 21, k = 4 show that ¢(n) = 0 (mod k) is not
sufficient that T(n, k) holds.

It would be of interest to determine all the integers n for
which T(n, k) holds but this problem we can solve only for very
special valuesof k.

THEOREM 1. Let k be any integer which is not a prime.
Then there are infinitely many n which are not exceptional and
for which T(n, k) holds.

First assume k = p* , o > 1. Then we can take n = Ap"'"”.

Assume next k # p* . Then k = ab where {a, b)=1,a > 1,
b > 1. By the well-known theorem of Dirichlet on primes in
arithmetic progressions, there are infinitely many primes p and
q such that -

p=1(moda), p = -1(modb); q = -1 {moda), q= 1{modb).

Clearly n = pq is not exceptional. Now we show that (1)
holds. It will be sufficient to show that for every A with 1l L< k
the number of integers m <& satisfying (m, n) = 1 equals

(2) Adm = Lp-1g-1 .
k k

The number of such integers clearly equals

(3) F_E_q . [!;E] - [Lq} + [_,é]= lo-1)g-1) -€, +E +E, €,
X k

k k

where
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We must show

(4) E; - €, - &€, + &, =0
When /£= k, El = & s = € g = 54 =0 and we are done.
Assume,z < k. Since pq = -1 (mod k), we have
€y ~ £Pq & [zpq:] = I_:__Af ) 54 = ,_Z
k k k k
or
€ = g, =1

Clearly 0 <« EZ“ 1 and 0 < &3 < 1. Hence 0< &2 + E3<. 2

and -1< & - & - & 4 E < 1l;but & -E, - E, + &

2 2 3 4 is

the difference of two integers and therefore itself an integer.
This proves (4) and completes the proof.

In McCarthy's paper the example k = 6, n = 9 is given.
Here 9 is a power of a prime, it is not exceptional with respect
to 6, and T(9, 6) holds. We now show that this situation can
occur if and only if

(5) k=p* b , p = 1(modb), n=p**' 6 j1gico
(iees  if b=1).

Clearly, if (5) is satisfied then n is not exceptional.
Furthermore we have in this case that the number of integers

m < n/k with {m, n) = 1 equals
[,E] L ]=,§¢(n) -8 +&, (1< x;
k
“but ¢ (n) = 0 (mod k) implies €, - EZ is an integer with
0<51<-1 3 Oquclsothat El- &2=0. Hence (5)

also implies that T(n, k) holds.

Suppose conversely thatn = pf , T(n, k) holds and n
is not exceptional with respect to k. Put k = p* b, (p, b) = 1.
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Ifb=1, clearly «> §#/2 (since n is not exceptional). Thus
we may assume b » 1. Since T(n, k) holds we must have

¢ = pP L (p-1)= 0 (mod p* b),
or & «p and p = 1 (mod b) as stated.

Suppose that k = 2p (p odd), n is not exceptional with respect
to k, and T(n, k) holds. First of all we must have ¢ (n) =0
(mod 2p). Furthermore n can have no prime factor= 1 (mod p);
for such a factor would have to be = 1 (mod 2p) and n would be
exceptional. Thus n= 0 (mod pz). Conversely, if n= 0 (mod
p-) and n$ 0 (mod 4) then T(n, k) holds and n is not exceptional.
Thus if k = 2p, (n) = 0 (mod k) is necessary and sufficient
for T(n, k) to hold. Now we prove

THEOREM 2. Ifk # p and k # 2p (p odd), then there
always exists an n for which (;b (n) = 0 (mod k) and T(n, k) does
not hold.

If k = 4 we can take n = 21 (this is Lehmer's example). If
k = 8 we can take n = 35. Every other k can be factored in the
form

k=ab , a»2 , b»2.

It is not difficult to see that for such k there exist infinitely many
primes p and q satisfying

(6) p=l(moda) , p=1(modb), pg= -1 (mod k),

E o |B L

E B o[
Put n = pq; clearly t,‘b (n) = 0 {(mod k) and n is not exceptional.
Now, as in (3),

¢(k,1,n}=('1-)k('1) -EI+EZ+E £

3 " T4
Since pq 2 -1 (mod k), 51 + &4 < 1. But bgthe second line
of (6), E2+ &3> 1;thus, since €] - €, - €3 + €, jgsan
integer, it must be -1 and

¢ a1, =lp=dazly
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Hence (1) is not satisfied and the p;:'oof of Theorem 2 is complete.
Let k be an integer, n = pg not exceptional with respect to
k and n#é -1 (mod k). I conjecture that T(n, k) does not hold,
but I have not been able to decide this question.
FOOTNOTES

1. Amer. Math. Monthly, 64 (1957), 585-586,

2. Canad. J. of Math, 7 (1955), 347-357,
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