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In the preceding paper Miss Jankowska puts the following two
problems: I. Whether there exist infinitely many pairs of integers a and b
satistying (a, b) =1, ¢(a) = p(b), o(a)= o(b), d(a) = d(b), where ¢(n)
is Euler’s ¢ function, o(n) is the sum of divisors of n and d(n) is the
number of divisors of n. II. Whether for every & there exists a sequence
of distinct integers a,, @y, ..., a; satisfying

pla;) = glag), ola)=o0(a;) and d(a;) = d(ay)

for all 1 <¢<j <k

Using the methods of one of my earlier papers [1] I am going to
solve these problems and also state a few further problems.

First we need three lemmas: )

LeMMA 1. The number of integers not exvceeding x all whose prime
factors do not exceed logx is o (x°) for every e = 0.

LEMMA 2. The number of squarefree integers not exceeding z com-

(logx)ite

t Togloga

posed of ¢ arbitrarily given primes not exceeding (logax)+c is gre-

; il 2 e
ater than cyae, where a is any constant satisfying 0 < a < 32
2

Lemmas 1 and 2 are proved in [1] on pp. 211 and 212.

Lemnpa 3. We ean find a constant ¢, so small that for a certain ¢, > 0
(in fact we only have to assume o, < 1) there are more than ¢ (logx)ite
primes p not exceeding (logr)t*+e such that both p—1 and p 1 are composed
of primes not exceeding logaw.

On p. 212-213 of [1] I proved an analogous lemma, where I requi-
red only that all prime factors of p —1 be less than loga, but it is clear
that the method used there (Brun's method) gives a proof of our Lemma 3.

Now we are ready to solve the problems of Miss Jankowska. Denote
by u; < uy < ... < wy the squarefree integers composed of primes all whose
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prime factors p do not exceed (loga)'*te and such that all prime factors
of p+41 and p—1 are less than logz. By Lemmas 2 and 3 we obtain that,
for sufficiently large x, I > x%* On the other hand, all prime factors
of p(u;) and o(u;), 1 <¢ <1 are smaller than logez. Thus, by Lemma 1,
there are only o(«*) different values of g (u;) and o(u;) 1 < ¢ < 1. The same
holds for d(u;) since it is well known that d{n) = o(n¢) for every e > 0.
Thus, there are o(x%) choices for the triplet

{plw), o(w), d(ug)}y, 1<i<l,

or there exist » integers w;, s, ..., #;, satisfying
E E:-:—Ss »
rz-g et 0 glu) = ey) = =), 0(ug) = o= o(ug,);

d(uy) = ... = d(uy,),

which completes the solution of the second problem of Jankowska.
It is clear that by the same method we can prove that for every r
there exist k squarefree integers ay, 4., ..., a; satisfying

dia) =d(a,) =...=d(az) and

of [0 ) =a Jfrs 2= =an [ [+

pla lag

for every —r <j <, js 0. The only change in the proof is that in
Lemma 3 we have to require that all prime factors of p+j, —r <j <,
j # 0 be smaller than logw.

To solve the first problem of Jankowska let a;, b; 1 <4 <k satisfy

(1) (ai, bi) =1,  @la) =), ola)=0o(b).

Our proof will be complete if we succeed in finding another solution
@1, brsq Of (1). But this is, indeed, easy. Let v, < v, <..< v, <@ be
the squarefree integers composed of the primes p of Lemma 3, where

k

we further require that p + [[ a;b;. Since the last condition disqualifies
i=1

only a bounded number of primes we obtain, by Lemma 2, that k > a%/¢
and we obtain, just as in the previous proof, two integers »; and v; sa-
tisfying

d(v) = d(vy), @) =g¢(;), olv)=oc(v)

k
and no prime factor of wo;v; divides [[a;b;. Put (v;,v;) =1. Then
i=1

akﬂ:%—?, b;..,,,_1=%f clearly satisfies (1), and thus the first conjecture

of Jankowska is proved.
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I conjecture that, for every %, there exists a sequence a4y, 1 <i <k
of distinet integers satisfying

(@iyzs) =1, 1<t <j<k; o@lo) =.. =@, o(®)=..= o)
A(@) = ... = d(z) ,
but I have not yet been able to prove this.
Denote by A4(n) the number of solutions of g(x)= n. Heilbronn
proved (in a letter to Davenport about 25 years ago) that

k
]r: lim Z A¥n) = oco.

n=1

k
I believe that > A(n)*> 2*~°. I have conjectured for a long time

n=1
that for every &> 0 and infinitely many »n, 4(n) > n'-% but in [1]
I could prove only that, for a certain ¢ >0 and infinitely many n,
A(n) > ne.
It is easy to see that if

(@) (m,e)=1, 1<i<j<k and g(@)=gp@)=..=g@) =n

then %k < d(n) < ne/lglogn  gince all prime factors of the x; must be of
the form {+1, tjn. On the other hand it can be deduced from results
of Prachar [2] and myself that for infinitely many » we can have in (2)
k> pellloglogn)

Another problem would be to try to estimate the number of solu-
tions in pairs of integers @ and b of
(3) (a,b)=1, a<b<n, g¢gla)=e¢b).

It seems probable that the number of solutions is >mn2—¢ for every
e >0 if n > ngle).

Perhaps I may be permitted to mention the following problem of
a different nature:

Can one find for every ¢ > 0 a sequence of consecutive integers n -1,
1 <i<nl~ sgatisfying ¢(n+i) # @(n+i,) for all 0<i <ip<nl~
I have not succeeded in solving this problem, not even with ¢ >1—4§
for any 6 > 0.
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