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In a previous paper [2] we proved that almost all Brownian paths in the plane have
points of arbitrary high finite multiplicity. In the present paper this result is streng-
thened by establishing the following:

THEOREM. Almost all Brownian paths in the plane have points of multiplicity .

Here € is the power of the continuum and a path z(r; ), 0 < 1 < oo, is said to
have a point of multiplicity ¢ if thereexista point { and a set T of positive numbers
having the power of the continuum such that z(¢; @) = { for all e T.

This result, combined with those of the previous papers [1] and [3], completely
settles the question of points of highest multiplicity of Brownian paths in m-dimen-
sional space. Thus the following holds with probability 1: For m = 4 the path
contains only simple points, for m = 3 it contains double but no triple points, while
for m = 2 (and also, of course, for m = 1) it contains points of multiplicity €.

We shall not repeat here the definition of Brownian motion in the plane. Suffice it
to say that we are considering a probability space (2, E, P) such that with every
w = (2 there is associated a function z(t; w) = [x(l; w), y(¢; w)] from 0 << r < oo into
the plane, where the components x and y represent ordinary independent one-
dimensional Brownian motions. A fuller description may be found in [2]. We recall,
however, that the process is assumed separable, i.e. z{f; @) is, with probability 1,
continuous. Also the normalizations z(0; @) = 0and ¢ = 1 in Exz(t; w)=Fy 2(t; )
— ¢t are assumed; these have, of course, no bearing on the validity of the The-
orem, but are used in the estimates leading to its proof.

We shall use vector notation in the plane, in particular | £ — £’| denotes the
distance of the two points £ and {". For 0 << @ < b <C oo we shall write L(a.b; o) for
the set of points z(f;m),a <<t b P {} stands for the probability of the event
in the braces. while ¢1, ¢z, ¢3 are absolute positive constants.
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The proof will be achieved in stages. We start with:
(A). Let p > 0and a, B, B2 be points in the plane satisfying
|a] < 1/100, eo < | pr — B2| <lieo < | i —a| <1 (i= 1,2).
Denote by A; (i = 1,2) the event: there exist t, ' with
0<r<1, 12 =g 1,
satisfying
la+2(t;0) — Bi| < o |a+2;0) — B < o
Then we have
P{di} > ei/log(1/o), (1)
P{d; 0 A2} < 21+ log(1/| B — B2 ) ] /log*(1/0). )
These estimates result immediately from the inequalities preceding (27) and (28)
in [2] with k = 2 (the ¢'s in the present paper are not, of course, the same as in [2]).

(B). Let k be a positive integer and let m,, w1, ..., wg be chosen independently in £2.
Let n be a sufficiently large positive integer.

Put
v=0m —Dun+r, Wm=12,...,nt=12) (3)

and let C, denote the point.
o= [(1/5) + (12, (1/5) + (2/2m)], (v = 1,..., 7). )

Let aj, (j=1,...,k) be points satisfying | «s| < 1/100 and denote by B the event:
there exist, for all j = 1,2, ..., k, numbers t;, t'; with

for which
lag +z(tis o) — & <@ |ag 425500 — & <o (6)
Then, if
g VA H = (c2fer) * (20k)°, )
we have
P { V] Bv} > ca(k), where cs(k) = (c‘;,rk)”c 8)
y=1

Indeed, due to the independence assumption, we have from (1):

P {B)} >cf log™*p )
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while, since by (4) | £, — L/ < 27'” we have from (2):

P{B,A B/} < f (Slog|& — &|)¥log™* o (v#v). (10)
Substituting (9) and (10) in
ﬂz "2
P{uB}=2XZP{B}— = P{B,NnB ),
y=1 y=1 IS v<v'sg n?
we obtain
" k k
P{u B} > net log ™% — (S?Q)klog_mg 3 log4k| Lo — |, (1)
v=1 15 v vl
Now by (4)
4k . 2 2 4k 2 2 4k
L log |&—&l<nZlog |lu—g|<n X (2v—Dlog | — G
1< w=v'= n? y=2 v=2

— 2% @ —Dlog 200 — 1)]

v

<M T v—1)log [2n/(v — 1)]
=32

M=

~ 31 max [u log 4k(2nfu’)]
1< un

— 6n'(4k/e)*".
From this, (7), and (11) we have:

2
—4k

P{ OBy >cf H ™ —6(5c) (akfe)* H ™,
=1
which, in view of (7), yields (8) and completes the proof of (B).

Next we deduce:

(C). Let wi, . ..,wy be chosen independently and let the points aj, (j=1,...,k)
satisfy | aj | < 1/100, then there exist, with probability not less than c%, a point ¢ and
numbers t;, t'; (j = 1,. ... k) satisfying (5) such that

aj +z(tpw)=a+z(t'no)=2¢, (G=1,...,k\.
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To see this, let
k

g ..o =inf X [[aj+2(t0) = §| + | a5 + 2500 — L[], (12)
=

the inf being taken over all #;, t; satisfying (5) and all points { in the plane. Define
gnlwy, . . ., wy) similarly, except that instead of letting the inf in (12) be taken over
all points, let it be taken only over { = {, given by (4); clearly g << gn, and it is
easily seen that g and g, are random variables. From (B) it follows that P{g, <
2k} > c, (k) for sufficiently large n. Since, by (7), ¢ > 0 as n— oo, it follows
that P{g = 0} > Ca(k)' This is precisely the required result.

From (C) we conclude that independent Brownian paths have a common double
point, or formulated more explicitly:

(D). Let wy, . .., wi be chosen independently. Then there exists, with probability 1,
a common double point for all the paths L(0,00; w;), (j=1,...,k).

Indeed, due to the well-known ergodic character of Brownian paths in the plane
(e.g. see [4]), there exist with probability 1 sequences Tj,m (j = 1,..., k; m=0,1,2...),
satisfying Tj,o =0 and Timer = Tjom + 2 such that | z(Tjms w5)| < 1/100.
Let Cp(m = 0,1, ...) denote the event: there exist for all j = 1,..., &k numbers
t5, t;" satisfying (5) for which all 2k points z(Tj,m -+ t;; wy), 2(Tj,m + 1'4; wy) coincide.
By the Markovian character of the Brownian process the events Cy; are independent,
while, by (C), P{Cw} = c,(k) for all m. An application of the Borel lemma gives
P{ 61 Cw} = 1, thus proving (D).

m=

From the homogeneity property of the Brownian process (invariance in respect to
simultaneous change of the space scale by a factor A and of the time scale by a factor
7%, it follows that the probability that the k paths L(O,f; ) have a common double
point is independent of 2’. This permits strengthening (D) to:

(E). Let wy,...,wr be chosen independently and let e > O be arbitrary. Then
there exists, with probability 1, a common double point of the k paths L (0, €; wy).

A straightforward application of Fubini’s theorem yields the following result
about conditional probabilities:

(F). Let Q denote the event described in (E), then
P{O|2(s0)=25(j=1,..., K} =i

for almost all points zi, . . ., Z.
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Here the bar denotes conditional probability and the ““almost all” may be
understood in the usual Lebesque sense. Next we prove:

(G). With probability 1 there exist numbers tu(j), (n=0,1,...:j=1,...2"
satisfying to(1) = 0, and

tn(j) < ths1(Zi — 1) <tns1(2) < ta(j + 1)
tair @QN— ta (N 27"
(with ta(j — 1) replaced by 1 for j = 2"), for which
z[ta(1); 0]= z[ta(D); @] = ... = z [1a(2"); @]. (13)

Assume the existence of the sets 1x(j), (j=1,.. .,2")for m < n has already been
established. Let a, denote the common point (13) and put

e=2""min [ta(j+ 1) — ta(j)]
I gy 2

where again we understand 7,,(2"+ 1) = 1. Since the paths L{tz(j), ta()) + &5 @],
(j=1,...,2")are transformed, on substracting a, from them, by a measure preserving
transformation into independent paths L(0, £; wjy), subject to the conditions z(; w;)
= z[ta(j) + &; @] — an, it follows from (F) that, with probability 1, there exists
a common double point of the 2# paths L(fa(j), f2(j) + &; @). Thus we have established
the existence, with probability 1, of the set f,41(j), (j=1,2,..., 2’”1}, and (G)
follows by induction.

We are now in a position to complete the proof of our Theorem. Let @ be such
that z(¢; w) is continuous and that there exist for it 74(j) as described in (G). Let
ay again denote the 2" -tuple point (13). Obviously a, € L(0,1; ), and since L(0,1;w)
is bounded, there exists a sub-sequence aup(p = 1,2, ...) converging to a limit «.

Let the set of non-negative numbers 7" be defined by

T=A O {tn(hi=1...,2"%,

(the bar denoting closure). Then 7 is a perfect set and for every f e T there exists a
sequence n(m) increasing to infinity and integers jm Wwith 1 < jm < 2" for
which #ngmy(jm)— ¢ as m—>co . From the continuity of the path it follows that z(; w)
— a for every t e T. Since T is of the power of the continuum, the required result
follows from (G). Q.E.D.

From the homogeneity of the Brownian process we immediately deduce:

COROLLARY 1. For every 0 << a < b <C oo the points of multiplicityC of L(a, b; w)
are, with probability 1, everywhere dense in L(a, b; o).
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Taking account of the ergodic character of Brownian paths in the plane, we have,
in particular:

COROLLARY 2. For almost all Brownian paths the set of points of multiplicity ¢
is everywhere dense in the entire plane.
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