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Some remarks on set theory. VI.

By P. ERDOS in Budapest and G. FODOR in Szeged)

Let E be a given non countable set of power ny and suppose that there
exigs ardation Rl between the elements of E. For any x 4 E] let R(x) denote
the set of the elements y 4 E for which xRy holds. Two distinct elements
of El x and y, are called independent, if X ¢ R(y) and y ¢] R(x). A subset F
of E iscdled free if F has only one element or if F has more elements and
any two of them being independent. Let B be a system of subsets of E;
then a non empty syssem | ¢ B is cdled a p-additive ideal, 1 = m, if the
sum of any system of power smaller than p; of elements of |, is again a set
of I, and if X¢ I, Y¢€B, Y X imply V¢l

We assume that {x}] ¢ B and {x} g4 | for every x g E, and one of the
following conditions holds for the sets R(x):

(A) There is a cardinal number w < m such that, for every x g E,
K(x) <1 n,

(B) E is a metric space and d(x, R(x)) > O, where d(x; R(x)) denotes
the distance of the point x from the set R(x).

We ded in this paper first with the following question :

(i) If A is a system OF sets of] B-l, does there exist a free subset E’
of E such that for every Xd A, X E’'d B-I?

This question has been studied previousy in the following specid
CaES

a) m is regular, condition (A) holds, B is the set of al subsets of E|
| isthe set of al subsets of E, of power less than nt, and A = 1 {then p = nt).
(Sed [1])

b) E= [0,1]] with the ordinary metric, condition (B) holds, B is the
set of al subsets of E, | is the set of all subsets of measure zero in the
Lebesgue sense, and Al = 1.

(The answer to this question is affirmative, see [2].)
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¢) The same hypotheses as in b), with the only difference that B is
the set of all subsets of [0,1] measurable in the Lebesgue sense.

(The answer to this question is generaly in the negative. The answer
is dfirmative if g(x) = d(x] R(X)) is a measurable function in the Lebesgue
sense, see [3]) [4].)

d) E= [0,1] with thel ordinary metric d| B is a Boolean o-algebra of
subsets of [0,1] containing dl subintervals of [0,1], and | is the set of the
sets X of B such that 4 (X) =0, where y is a measure on B.")

(If 4 is not identically zero and if there exists a function fmeasurable
with respect to B and such that 0 <1f(x) = g(x) = d(x, R(x)) for dl x 4[0,1],
then there exists a free set F in B such that «(F) > 0 (i] e F&I)] This
theorem is due to P. HALMOS.%))

In section 1 first we prove making use of a method of ULam [6] the fol-
lowing theorem (Theorem 1): If E is a set of power N, with N, greater
than N, and less than the first deph inaccessible in the wesk sense, | is
a proper N:..-additive ideal of subsets of E such that |x] 4 | for every
x¢ Eland F¢I, then F may be decomposed into the sum of a sequence
of the type ;.4 of mutually digoint subsets F; of E, such that F: ¢ 1]

We use this theorem in the proof of theorem 3.

In sections | and Il a number of results is given with respect to question
(). For instance we shall prove that the answer to the problem is affirmative
in the following cases.

1) If m > N is less than the first adeph inaccessible in the weak sense,
B is the set of . al subsets of E, | is a N,.; additive ided (N,.;1 = m),
A — §N,)and fAx) < N, for every x 4 El

2) If E is a metric space which contains a dense subset, the power of
which is less than the first adeph inaccessible in the weak sense, B is the
st of al Borel sets of E, | is the o-ided of al sets of u-measure zero of
B, where i isameasure on B, A = 1, the condition (B) is satisfied, and aso
the following condition (C) holds:

(C) there is a real number 1 > 0 such that the set {§: g(x) =1 ij con-

tans in B a subset of positive measure, where g(x) = d(x, R(X)).

If, for every x 4 E, the set Z2(x) is the complement of a sphere of E
whose center is at x, then the condition (C) is not only sufficient, but aso
necessary for the existence of a free subset of E in B.

Findly, in the section Ill, we ded with the following question :

(i) Lef K be a class of subsets of E. When does there exist a relation

1)} We use the terminology Of P. R| Haimos[11].
2l See his review of the paper [3] in Math. Reviews, 12 (1951)] p. 398.
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R for which the condition ( A) holds and there is no free subset X ¢ K with
respect to R? B

For instance we shall prove that if K—nl and every dement of K is
of power my then there exists a relation R, with R(x) =1 1 for every x ¢ E,
for which there is no free st in K.

This result shows that the answer to the problem (i) is dways negative

if B- =m and every eement of B-1 is of power tn.

Notation and definitions. Throughout this paper, the symbols £| and
# denote the cardina number of the st F and of the ordina number g
respectively. For any x € E, let R™'(x) ={y : X g R(y)). For any subset F of E let

RIF]=UR(X) and R'[F]=UR'x).
rEF reF

For any cardinal number v we denote by ¢ the initid number of y
by 11 the smdlest cardind number for which y is the sum of 1 cardina
numbers each of which is smaler than v; by +* the cardind number im-
mediately following r. We say that v is regular if +*=] r and sngular if
1] < riv=1 N > N, is called inaccessible in the weak sense, if 4 is a limit
number and n is regular,

We assume in this section that the sets R(x) satisfy condition (A) and
B is the set of all subsets of El We shdl use the following

L emma Let T be aset of power N..; (where ¢ is a given ordinal
number = 0). There exists a system ;Aa*‘f"""f‘J of subsets of T such that

----- TN ey
1) T= | A for every £<i .
0 gs
2) Ain Af=(], for &£ < mg and 4 < § < 0441
3) the power of the set T— |J A is =1 N, for every 5 <1 @aud (See
S.Utam [6] py143.) & o
We prove now the following

Theorem 1. Let E be a set of] power ¥,| with N,| greater than N/ and
less than the first alepH inaccessible in the weak sense, and let 1 be a proper
N..1-additive ideal of subsets of E such that {x} ¢ I for every x § El If B9 E
and B g 1, then there exists a sequence { Bgj¢-w,, , Of type .y , of subsets of
E, such that

(i) B{g1forevery §<q m;q,

(i) BinBf=0for § <J< @

(i) Bl= U B

£l oy
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Pr o of”). We use transfinite induction. First we prove that our theorem

is true for y=4-+1] Let E=Nha and B¢ |. It is obvious that B= N/

By the lemma (¢f =4 and T= B) there is a system {Af!f:’j of subsets

of B for which 1)} 2) and 3) hold. Since B¢ | and, by 3) B— J| 4§ q |
{etamwy

for every 1 < wy,1) there exists for every 5 < w;.q an ordind number &() < wy
such that AL ¢ 1. It follows that there is an ordinad number & < o and
a sequence { 1jy}r<w,,; Of type @a., of the ordina numbers g < @xuy such
that &(n,)= & and A2 ¢ for every ¥ < o Let A= {5 : g < @2 adl
= nyif n < o;af and

(AR U(U AY) for »==0,

Br . ‘ ned
ar: for 0< 7 < ws.

Obvioudy the set {B.},-w, | Satisfies the conditions (i), (ii) and (iii).

Let now 2 be a given ordina number, 8 > 4 + 1, such that N{ is less
than the first aeph inaccessible in the weak sense, and suppose that the
theorem is true for every @ < 8 Let E—=l N4 and B&1 (BEE).

If B <1 g/ then the theorem is true by the induction hypothesis. (Let /€1,
ifandonly if , = B n [,where | 1. Obvioudy Iiisan N..i-additivé idea
in B.)

If B—N;, then there are two possibilities :

a) 4 is an ordina number of the first kind, i. e/ 2= @ + 1,

b) 3 is an ordinal number of the second kind.

Case @). By the lemma (= @ 4 1 and T= B) there is a system

|A§|| i"’;ﬁ‘_‘;’;’;Hl of subsets of B for which 1)} 2) and 3) hold.

We have two subcases :
a) if B= {UJ C{ is an arbitrary decomposition of B into the sum of N«

subsets, then there id an ordinal number ] < wa such that Ce, & 1]

a,) B has a decomposition B = |J C{ into the sum of Nd subsets such
that, for every § < way C4 6 1. “loa

Subcase a,). For every 1 < mq.y there is an ordina number (7)) < @«
such that A5¢] 1. It follows that there is an ordind number & < ws and
a sequence {5x}r-w,,| Of type mq4 of ordina numbers g <1 a1y such that
E(n,) — & and Afi@ | for every n <0 wed Let A = {1} 5§ < @aa1 @nd 7 =H 3,

3 We make use of a method of Uraml [6])
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if n< e} and

U( J A%) for v=0,
'Agﬂ fOl‘ 0<r<am.
Subcasd a,). Let B= ) C{ be a decomposition of B into the sum of

Loj

Nd subsets such that C; nG _1 0 for & < & 9 w. and Ci ¢ | for every
1 < w,. Consider the set Il = {C¢}¢u,. We define an Ny, -additivel idedl |
in D as follows: Let F g I’ if and only if Fc D and |J C 4 |. Since

_ ce
D= Nd<aNjand D¢ I, there is, by the induction hypothesisf] a decompo-
sition D=y F

1wy
of D into the sum of N;.| subsets such that F,| n F,.== 0 if 5= 5y and
F, q I for every i <1 @14 Let

[af= W

Obvioudly B.|n B, = 0if 1, =H 1, B, €41 for every 5 < w41, and
= | B,.
B
Case b). Since N4 is less than the first aleph inaccessible in the weak
sense, B has a decomposition B = L.I C; into the sum of N, < X4 subsets

such that Nl < Ce <t N4 and Ce) n Cg34 0if & =H&.
if there is an ordina number & < , for which C, & I, then there is,
by the induction hypothesis, a decomposition

Co= U Di

I<cwp i
of Ce suchthat D; n D;,=0 for §,=H & and D1 for every { < m;.4 Let
!’DJ u (;,U C¢) for £ = 0
B ‘:’i el
D, for 0 < { < w14
Obvioudly the set {B;} ., | SAisfies the conditions (i), (i), and (iii).
The proof of the case, when (4 4 I for every § < 10,;, is Similar to that
of case a,). Theorem 1 is proved.

Corollary 1.If .1?== m > N]is ‘less than the first aleph inaccessible
in the weak sense, then every finite measure w," defined for all subsefsl of E
and vanishing for all one-point sets, vanishes identically] (See S. ULAM [6].)|

By==

4) We cdl a mesasure every extended red valued, non negative, countably additive
st function p(X) defined in a ring of subsets of E. A ring of sats is a non empty class
Rof ssssuchtha if AgRand FgR thenE || F§Rand E—FCR]
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Pr o of. The set of al subsets F of E for which u(F) = 0 is an
&additive ideal | containing al one-point subsets of E. If w4 is not identicaly
zero, then there exists a subset F of E such that «(F) =H O; i. e. | is-a proper
ideal. By Theorem 1 there exists a sequence {F¢): « Of type ey, of subsets
of E, satisfying the conditions (i)/ (ii), (iii). Let Hl be the set of the ordina

numbers § <1 w, for which y (F:) :_I (n=1,2], .. It follows that there is

a naurd number ny such that H.,— §,| Let {i!.. be an enumeration
of H,,. By the g-additivity] of 4 we have

% ¢ 1 5.1 5 . 1 ’
Ff-(‘}:J__lFi,;)—“gM(Fﬂn) ?:’ED"I' EnT L3 Ay e E:—i— TR
which is impossible since y is finite.
Corollary2 lfl 27" is less than the first alepH inaccessible in the

weak sense, then for every subsef F of the second category of the set of real
numbers E there is a sequence {Fg}¢.,,| of type m,, of mutually disjoint sub-
sets of E of the second category, such that

F= | Fel

Proof. The set | of al subsets of the first category of E is a n-ided
(i. e an &additive ided). (See W. SierpiNski [8] p. 176.)

Corollary 3. If 271 is less fhan the first alepH inaccessible in the
weak sense and u*(F) is an outer measure”) not identically zero on the set of
all subsets of the set E of real numbers such that u*({x}) =0 for every
x¢g E, then for every subset F of E for which x*(F) 4 O, there is a sequence
{Fefe<o] of the type @y of mutually disjoint subsets F¢ of E such that
@ (Fe) =5 0 and

5 ”—“g_uwfd

P roof. The set | of all subsets F of E for whichl #*(F) = 0 is a

n-ideal. {See W. SierriNski [8] p. 109, Proposition C;..)

Theorem 2. Let E— N, > NJ and suppose that there exists a rela-
tion R between the elements of E, such that for any x¢g E] the power of the
sef R(X) = {y: xRy} is smaller than w <1 nr. Let furthermore 1 be an n*-addid
tive proper ideal of E, such that {x} ¢ I for any x4 E. Then there exists a
free subset E’ of E, such that E'¢ I,

5 An outer measure is an extended red valued, NON negative, monotone and countd
ably subadditive set function #% on the -class of dl subsets of E, such that 5*(0) = O.
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P roof. By Theorem 1 of [5] E may be decomposed into the sum of
n or fewer free subsets Ef (£ < ¢n){
E= | E..
gy
Since | is an It'-additive proper ided it follows the statement of
Theorem 2.

Thaorem3. Lef E be a set of power ¥.] with ¥,/ greater than ¥ and
less than the first aleph inaccessible in the weak sense, and let R be a rela-
tion between the elements of E such that for any x g E the power of the set
R(x) is smaller than N,| Let furthermore | be an &,-additive proper ideal
of -subsets of E, such that {x} 4| for any xq E. If | E¢}:- .« is a sequence of
type m, of subsets of E, such that E:&1] for § < @, then there exists a free
subset £ of E for which E£1 n E{ ¢l for every & < o

Proof. First we define by finite induction a sequence {F:}: , of
subsets of E suchthat F:¢lfor § <5, F;, n F=0if §=4§&]and for every
g < mthereisa »(§) <y such that F.¢ a E;. Let E, = {J Eyl bea decomd

e e,
position of E, satisfying Theorem 1. Since £,/ n E,J = 0 for ;1 = u, for every
4 < @ there is a most one » = #(§) < m, such that E;— En.¢] <I. It follows
that there is an ordina number »1 < w, for which E:—E;, §l, for every
SE<wmiPut Fy = Es . Let 4 < m be agiven ordind number 3 > 0, and sup-
pose that dl sets F: , where 0 = § < 8] have been dready defined such that
F:¢1 for t¢<g and FenF:--0] Put Ef—cu_ngzNe Ez=p)l Let U=

= {E] #= § < @ and Negl}] If U=0, then we do not define £;) In this
case we put u=pg|If U=1, i.e. U={k}, thenlet Fp==N, and 5j=g-H 1. If
U>l 1] then we denote by g the first dement of U. Let N, = | N, be a

1'c.'_fal
decomposition of N, satisfying Theorem 1. Since N, 1 N, = 0 for »=H w
there isa i <1 ey such ‘that N; — N, &l for every &¢ U, Put F{ = N,
It follows from Theorem 2 that F{ has for every £< 5 a free subset
G4 such that G:¢I] We shall now prove that there is a sequence {H:}e.- II
of subsets of E suchthat H{ @ G, H:¢ 1 {§ < 3) and H{n (R[HJu R'[H])=
for § =4I The set £'= U 1HA obvioudy satisfies Theorem 2.

We define H| as follows. Let G| = U G be a decomposition of G

saisfying Theorem 1. There is an ordlnal number ¢ < @y such that
G: —R (Gu)4] 1. Inl the opposite case there would exist for every @ a
natural number &= &(e) such that Gew—R ™' [Goa]d 1. This would impIy the
existence of a natura number £] and a sequence {e¢;}r-» Such that & = &(e.)
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for every k q o, i. & Ge —R 1 [Gug] 41 fOr every k <. Then there would
exist an dement z ¢ Gz, for which 29 R [Gua,)| i. € R(2) n G =H O for every
k < @, which is a contradiction, because R(Z) < N, !

Put G: = G:—R'[Guw] (E=1, 2, .. ). Let G = U GiJ be a decom-

position of G satisfying Theorem 1. Further let ‘o

= P4

It is obvious that U.] A U, =0 for «] =H «.|

There is a natural number »] for which G —R'[U,]€1. For if
Giw— R '[U,]€1 for every n < w, then there would exist an dement 2¢ Go.
such that 24 R'[U,] (1{=0,1,2,.. .)i.e RNUIHO (=0,1,2]...)
which is impossible, because R(z) < .| Put H,.— G »—R'[U| It is
obvious that

N{=Gi—RIH]— R "[H]4I E=1,2:d

We define H, darting from N, in the same way as H| is defined
starting from the set G,. Obviously we can continue this process for every
¥ < 74 Thus we obtain the sequence {H.}. -, satisfying our requirement.
The theorem is proved.

Corollary 4. [f 27" is less than the first aleph inaccessible in the
weak sense, E is the set of the real numbers and R is a relation between the
elementsl of E such that for any ¥ 4 E the power of the set R(x) is smaller
than W], then there exists a free subset E’ of E, which is everywhere of the
second category.

Pro of. Let I be the set of the subsets of E of the first category, and
{E¢le-n @ sequence of type o, of dl intervas of E with rational endpoints,
and apply Theorem 3|

Corno 11 ary 5. Under the same hypotheses as in Corollary 4 fhere
exists a free subsefi E' of E such that

(0 b) H 0
for every interval [a, b] of E, «* denoting Lebesgue outer measure.

Proof. Let | be the set of al subsets of measure zero of E and
{E¢}: » a sequence of type ey of dl intervals of E with rationa endpoints,
and apply Theorem 3.
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We assume in this section that E is a metric space and condition
(B) holds.
First we prove the following

Theorem4. Let E be #he set of all real numbers and R a relation
between the elements of E such #hat] for any x4 E] the power of the set R(X)
is smaller than §,| Then there exists a free subsefl E1 of E such that E' is
everywhere of the second category.

Pro o f. Let (a, b) be an arbitrary interval of E and A’*’ " the set of
al subsets of (a, b) the complements of which are of the first category and
F,. Let further {C,},-| be a wellordering of the set

N1 F"
(n-znlijgﬁ_‘ '
of the type ¢, (where ¢ = 2%) and 7 the interval corresponding to the set
Cy.
" We consider the set H of all the series H— {ag}e. 5, Of elements with
the properties :

a) a;€C: or a;=0; E< g

b) if a4 =40, then a,=H 0 for » < §j

) if ag <=0 and a, =5 O, then ag =H a4 for § < »;

d) the set of the elements of the series is a free set.

For any H¢ H, let A denote the set of the elements of H]

We say that an dement HeH] is maxima with respect to the relation
R if »; is the smallest ordina number < ¢4 such that a,,— 0 and there is no
eement kg C,,— R[] such that k and the elements =0 of H are indepen-
dent or if a, =H O for every v < @.. We define the index of Hl in the first
case as »J and in the second case as ¢.4 Let H' be the set of the maximal
elements of H.

We say that two series HJ and HJ are mutualy exclusveif # n H,= 0.

Let {H,},] , be a sequence of type 1 < @,; of mutudly exclusive ele-
ments of H’ with indices d,. < ¢.. Then by the definition of H’, H,< c; con-

sequently @,ﬂ <o for every n <3y Since n < m,; by a well-known theorem
of J| Konig we have

UEHURMH <,

C"_LU,A(H” URIA)<c
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for every 9 <g. It follows that there is an eement H| of H' such that
H|==0and Hjn H| =0 forevery » <1

For every d < ¢, there is only a finite number of mutually exclusve
0 | elements of H' with the same index .

Let {H.}.. « be a sequence of type @, of mutudly exclusve eements
of H'. Suppose that the series H,|(d = 1, 2, . . .} have the same index 6. Then
the set Cﬁ,.—U_Hu—‘ UR[H,] is non empty and for every eement a of this set
R(z) =\, hold:, because R(zy n /4, =40 (2 =1,2,]. ), which is a contra-
diction.

Supposing that every element of H' has an index smaler than ¢.; we
can choose by (1) a sequence {H.}.,-», Of mutualy exclusve elements of
H' of type wy such that the indices g, of the series H,| are distinct. Corres-
ponding to every interva 7 we choose in 7] a subinterval /] with rationd

—

endpoints. Since {8, },-w, > No and {I/}, | . 5 Nol thereisan 13| and a subse-

quence {3,.},<4 o of type m, of Z= {3,}, 4 such tha | = 1 for every

k < @w. Obviously the complement of the set L., == NC, | is of the first cated
i el

gory with respect to /;,/ Consequently the power of L.| is c, thus
LT”.'.::.:U(S‘L{T'{I u R [ﬁl’glj =t
It follows that there is an | dement z @ L, —U(H, UR[H,,]) such that
k=

R)n H, =0 (k--1,2)..)i. e R(z) = N which is impossible, because
R(2)) <Nl Thus there is a free subset E' of El such that E' n C, =H O for every
y < ¢ Itisclear that E'is of the second category. The theorem is proved.

The ore m 5. Let E be the set Of all real numbers and R a relation
between the elements of E such that for any x g E the power of the set R(x) is
smaller than N¥,] Then there exists a free subset E’ of E such that the Lebes
gue outer measure p*(E’) of E1 in every interval (a, b) is b-a.

Proof . Let (a, b) be an arbitrary interva of E and B« » the set of
al subsets of (a, b) of postive measure > ;—I (b-a) and G;. Let further
{Dy}y | be a wellordering of the set

B »
(i 1

of type ¢., and [, the interva (a, b) corresponding to D, We can prove
completely analogoudy to the proof of the theorem 4 the existence of a free

set E1 such that EnDy=0 (¥ < g,
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if we sdect in every interva [, = (a, b) an intervad 1] = (&, b') with rationa
endpoints such that 4" —a’" > % (b—a). Obvioudy the outer measure of E1
in every interva (a, b) is b—al

It is easy to see by the method of the proofs of theorems 4 and 5 that
the following theorem is valid too.

Theoremb6 . Let E be the set of all real numbers and R a relation
between the elements of E such that for any x g E the power of the set R(x)
is smaller fhan N,| Then there exists a free subset E' of E such that E’ is
everywhere of the second category and the Lebesgue outer measure u(E')
of E in every interval (a, b) is b-a.

Theorem 7. Let E be an interval of the set of all real numbers
and suppose that there exists a relation R between the elements of E. Let fur-
ther B be a n-algebra of subsets of E containing all subintervals of E und g
a nof identically zero measure on B. /f g(X) = d (x, R(X)) >0 for every
x 4 E and if

(C) there exists a real number i > 0 such that the set {x: g(x) =f i} con-

tains in B a subset of positive Y-measure,
then there exists in B a free subset of E of positive EI-measure.

If, for every xd E]the set R(X) is the complement of an interval of E
whose center is at X, then the condition (C) is nof only sufficient, but also
necessary for the existence of a free subset, of positive u-measire, of E in B.

Pro of. Let A be a subset of {x: g(x) = i} satisfying the condition
(©). Let
X3 Xa ooy Xy ens
be an enumeration of the set of rationad numbers in E] For every eement
X g E and & > O there exists an element x,, of this sequence such that

d(x, x.) < & Forevery n=1) 2, ... let U(x,, i) be the open interva of length
i whose center is a x,. It is obvious that
UU(x), i) =E

Let A, =AnNU(x,, i) (n=1,2,..,). SincaU(x,|i)¢ Band A¢BJA, ¢B| Let
A=A, —UA| (n=1,2,...)] Since u is countably additive and u(4) > 0,
(LR

there exists an index n’ for which w (A7) > 0. It follows that g(A.-) > 0. The
set A, isfree because if xg A,- andy @ R(x), then d(x]y) > a(X) = i.

For every xg E, let U(x) be an interval whose center is a x and
R(x) = E-U(x). In this case condition ‘(C) is aso necessary for the exist-
ence of a free subset of postive u-measure in B, i. e if there isin B a



254 P. Erddd and G. Fodor

free subset A of E suchthat u(4) > O, then there exists a positive number i
for which the set {x :g(x)= i} contains in B a set of positive p-measure,
Suppose the contrary. Then B contains a free subset of positive p-measure,
but for every i > 0 the set {x:g(x) =l i} contains in B only such subsets F
for which u(F)=0] Let @ denote the diameter of the set A. Put

By ;x.: g(x)iz’g—%.
By the hypothesis E, contains in B only such subsets F, for which p(F) = 0.
Let F, = EJn Aand F,= Ed 1 (E-A}. Since A is free and R(X)= E—U(x)

for every x4 E, we have g(x) =2 for every xd A. Thus F] = A. By the de-

finition, Fj U Fl = E,] therefore A == F, a E,| Since A€ B, it follows that
p(A)= 0, which contradicts to u(A) > 0. The theorem is proved.

Remark 1. [d general the condition (C) is not necessary. Consider
the interva [0,1]] Let ¢* and g, denote the Lebesgue outer and inner meas-
ure, respectively. We can define the relation R such that the interva [0,1]
contains a free subset of positive Lebesgue measure and

u,({x 1 9(9-2i}) =0
for any i > 0, where g(xX) = d(x] R(x)). We shadl use the following theorem
(see [7])4 _ _

The set E of the real numbers has a subset E' with the following
properties

1. for every interve (a, by of E, u*(E’'n (a, b)) =b-a,

2. E can be decomposed into enumerable many sets E| (4= 1,2/ .. .)
without common points, which are al superposable by shifting the set E'.

It follows that [0,1] can be decomposed into the sum of enumerable
many sets S, (n=1,2,...) suchthat ¢*(S,)=1(n=1,2,...)

For every x€8S,) let K(x) be the open interva of length %I whose cen-

ter is a x. We define R as follows. Let N be the set of rational numbers and
R(X) = (E-K(x)) n N.
Obviously

g(x)=+ for x¢8,|
If i>1)then Vi={x:g(x)=i,=0/If i=1|then V,;EV | =S US U US
for some natura numbers 7 > 0. We have y,(l/’,-)=6|ﬂ because (V] 1) =
=@ (1= V4 )=0)

it
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It follows from the definition of g that the set )] of the irrational num-
bers of [0,1] is a free set. U] is measurable and w(U) = 1.

Remark 2. /fis easily seen that Theorem 7 remains true for a separ-
able metric space. The following counter-example shows that for non-separ-
able metric spaces this theorem i-s generdly not true.

Consider the following example of ALExANDROFF [9]] Let S be the plane
with the ordinary (euclidean) metric ¢ —d(x] y). We define now a new dis-
tance as follows. Let 0 be a given point of S, x and y two arbitrary points
of S and

" i d(x] y) if 0 lies on the line xy,
) :!g(xj 0) + d(y, 0) if O does not lie on the line xy.
Thus we obtain a new metric space S, which is not separable.

Let % be the ordinary Lebesgue outer measure for the subsets of S.
We define a relation R between the elements of $’ as follows. If x = 0, then
let R(x) = 0. If n==0]then let r be areal number for which 0 < r< d(x] 0),
E(X) = {y: d'(x]y) < rj and R(X) = S-E(x). It follows from the definition of
the distance d’ that if x, €81 (x== y) and 0 does not lie on the line xy,
then ether x4 R(y) or y 4§ R(x) i. e x and y are not independent, Hence
each free subset of S’ lies on aline containing 0. But for every line L, u*(L) = 0.
Thus for every free subset E’, u*(E’) —=0.

For non-separable metric spaces we state the following

Theo rem 8. Let E be a metric space. Suppose that E contains a
dense subset, the power of which is less than the first aleph inaccessible in
the weak sense. Let ¢ be a o-finite measure on the set B of all Borel subsets
which is not identically zero. Jf 9(x) = d(x] R(x)) > 0 for every xq E and if
condition (C) holds, then there exists in B a free subset of positive u-rneasure
of E.

If, for every x4 E, the set R(x) is the complement of an sphere of E
whose center is at x, then the condition (C) is not only sufficient, but also
necessary for the existence of a free subset of positive [c-measure of E in B.

Pro of. If y is a o-finite measure on the set of all Borel subsets of
E and E contains a dense subset, the power of which is less than the first
aleph inaccessible in the weak sense, then there exists a decomposition

E=NuM
of E into two mutualy digoint sets such that «(N) =0 and M is separable
(where N is the sum of all open subsets of {t-measure zero of E) (see [10]).
It is clear that » is not identically zero on M, since u(N) =0 and
#(N) Hu (M) =u(E)=H0.
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Let X be an arbitrary Borel subset of El Since Xn M = X—N is a

Borel subset of E|
#(X0 M) = u(X)—(N) = u(X)]

Let B’ be the set of al sets of the form X n M| where X¢B, and let
1(X)= u(X) for X¢B'| Hence, if the set {x: g(X) = i} contains in B a st
of positive u-measurej then it contains in B’ a set of positive u-measure too.
Since B'ESB, the converse of this statement is also true. Thus, it is suf-
ficient to prove the theorem for M| B’ and r, instead of E| B and u; Since
M is a separable metric space and B’ is a adgebra and » is not identi-
caly zero measure on B’, the theorem is true for M, B’ and »; Thus the
theorem is true for E, B and # too.

We ded in this section with the problem (ii).

Theorem 9. Lef E be a set of power m=f N, and K a class of power
i, of subsets of] E of power mi There exists a relation R between the ele-
ments of E such that for every xg E the power of the set R(x) is = 1 and
there is no free subset X in K with respect to R.

Proof. Let

By By Blaggrevven Bigpes GE<qgw)

be a wellordering of K of the type ¢, Since B{ == for every & < ¢,,, there
exist two sequences {x¢j¢| 5, and {ye}s. o, such that

1. x44 Bd and y4 4 B{ for every § < ¢uj

2. x:Fx:and y;+yffor E<l<q,)

3. x: =H y; for every & < gy

We define R as follows : let R(x;) = ly)| for every § < ¢,y and if
X = x4 (€ < ¢u), then let R(x) = {x,}. It is obvious that the sets B{ are not free.

Coroll ary 6, Let E be the set of all real numbers. Therd exists a

relation R between the elements of E such that for every xq E the power of
the set R(X) is =1 1 and there is no perfect free subset of E.

Corollary 7. Let E be the set of all real numbers. There exists a
relation R} between the elements of E such that for every x € E the power of
the set R(x) is = 1 and there is no free Borel subset of E of power 2%

Theorem 10 Let E be a set of power m = 8] and K a set of power
my of mutually disjoint non empty subsets of E. There exists a relation R
between the elements of K| such that, for every x¢ E the power of the set
R(x) is = 1 and there is no such free set which has non empty intersection
with every element of K.




Some remarks on set theory. VI. 257

Proof. Let
By,By,....,By,....Bi,... € <aqal
be a wellordering of K of the type ¢,. Let further
X, Xl Xy X (€ < pu)

be a wellordering of E of the type ¢, Obvioudy, we may assume that
x:¢B:. We define R as follows: let

R (x)=Bi.
Let F be a set which has non empty intersection with every element of K:

Fﬂ B,f :.:0| (*-:‘ < q’m).
Let xq F. There is an ordina number 5 < ¢, such that x=x,| Since
R-(x) = B,. we have b, Rx for every 4, €B, n F. It follows that x and
b (x=H &,) arel not independent, because x4 R(b,)] The theorem is proved.

Corollary 8% If E is the set of all real numbers, then there exists
a relation R between the elements Of £l suell that, for every x¢ E, the power
of the set R(x) is = 1 and there is no free subset, the complement of which
is totally imperfect.

Pro of. Let K be a set of power 2% of non empty mutualy digoint
perfect subsets of E| T a set the complement CT of which is totally imper-
fect, and K€K] Since the set CT does not contain K, Kn 7T==0, The
corollary is proved.

Finaly we prove

Theorem 11. Let E be a set of power m=NJ and K a class of
power g <1 m, of mutually exclusive subsets of power i of E. If R is a relation
between the elements x¢ E for which the condition (A) holds, i. e. R(x)<{ n< m
for every x4 E, then there exists a free subset E’ of E such that, for every
Kd¢K| _

Kn E =m!
Proof. Let
K!,Kn...,K:-,,Kmﬂ,...,}(ﬂ--- (.Ed‘l'n]
be a wellordering of K of the type ¢,y We assume first that m is regular.
We consider the set M of the matrices

(a1 @y - - - Qg . ..

o1 daa . .. Ggg...l
M=| ] | |

Oy Qs . .. . . .|

I .
B S. marcus has found independently the results of our corollaries 6 and 8.
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of elements with the properties:

lLaz:dKiorag=0 1n<gy and & < ¢y

2. if a,g ==0]then a,) 0 for n=nand x < &or n gy and u < ¢,

3.if @) -H 0 and a,, =H O, then a,, H a,, for n =H

4. the st of the elements of the matrix is a free set.

For any McM]let M denote the set of the elements of M

We say that an dement M ¢M is maximal with respect to the relation
R if u, and »{ are the smallest ordina numbers < ¢4 such that a,,, == 0 and
there is no dement k¢ K,,— R[M] such that k and the elements ==0 of the
metrix M are independent or if a,, =H O for every u < ¢4 and » < ¢4 We
define the index of M in the first case as #4 and in the second case as ¢,
Let M’ be the set of the maximal elements of M.

We say that two matrices M) and M, are mutualy exclusive if M, 11 My = 0.

Let {M.}, | be a sequence of type 5 < ¢uy of mutuadly exclusive elem-|
ents M, of M" with indices d,] < ¢,y Then by the definition of M’, M, <m|

consequently k[M,] < m for every » < ry because fAx) < < nu
Since m is regular,

Wﬂy_uR—[M ) <4m
=

K,— U OhURDL) <m

for every v < ¢, It follows that there is an dement M,/ ¢ M’ such that M, & 0
and M) n M, =0 for every » < 1y

\ For every d < ¢4 there are less than n mutualy exclusve dements
@} of M' with the same index 6.

Let {M,},.,, be a sequence of the type ¢.; of mutualy exclusive
eements M,) of M’ with the same index ¢ Then the set

Ko— U (M, uR[#])
TP

is non empty and, for every dement z of this set, R(z) = n because, by the
definition of M’, R(z) 1 M) H0 for »n < ¢,y which is a contradiction, Thus
(2) is proved.

Supposing that every element M of M’ has an index smaller than ¢,
we can now define by transfinite induction a sequence {M.,},.,| of mutualy
exclusive elements of M’ of the type ¢, Since g < mi and m is regular, there
exists a subset, of power my of M’ with the same index < ¢, which contra-|
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dicts to (2). Thus there exists a matrix of index «,; It is obvious that the
set of dements of this matrix satisfies the requirement of the theorem. Thus
the theorem is true, if m is regular.

Consider now the case when i is singular’). We assume that the gener-
alised continuum hypothesis is true. Let

m= > m
[

S P
be a decomposition of m such that
1) my is regular for every & < ¢ms/ 2) mg <myg for E<C< e,
Zm
3) mg > max {g] it, m*}) 4) 2¢<t ‘< mg forevery & < ¢pe.
Let further

K, = U K, ;
(YK (<9

be a decomposition of K, into mutualy exclusve subsets of K, such that

Ky:=my.
By the first part of the theorem, there exists a free subset L4 of E for

every § <1 guq such that
Lin K,|=my

for every n < ¢,y Omit for £ < 5 al the dements of R[Ls] from L,| Thus
we get the sets '

L L—qn R[L]]
By| 1) and 3)] }T??‘[’EH m,, thus the power of the set L; is m, and

Ly 0 K,,;, = my for ‘every » < ¢,y Obvioudy

Rin( Y z)=0

Ld=Liu Ky (v < gy £ p)]
We want to construct sets L.{ of power mg which satisfy

Let

(3) RILIn( xU, Ug L) —0.
But then Clwly e
5 [ 1’-":.ng ~PinH L;:ﬁ ] L [ J EJ éa}ﬂu* L:é] = 0’(

i.e.thesst Y| U L is free and satisfies the requirement of the

rapld Ly
theorem. Thus we on]}J! have to construct L;:| Consider the sets Lj4 and

5 The proof is due to A. Haac.
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L=y U Ld (§ < qus). Let N[L?] denote the set of al subsets of L

¥ P,

of the power < n. By 3) N[L{ < me4 It follows that there exists a subset H,
of power my of L;¢ and an eement N,4 of N[L:] such that Lt n R[H,¢] =
= Ny. Let
U= U U N
vy E<gmd
Obviously U =l ngm < mos Let Ly = H,e— Ul (v < ¢4 and & < ¢s)] These sets
obvioudy satisfy the condition (3). The theorem is proved.
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