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In our joint paper [1]' published recently, we have proved among other
results the following

THeOREM 2. If f(2) is an arbitrary entire function, 'M(r) = Max |f(2)|,
|zl=r
and x = H(y) denotes the inverse function of y—log M(r), then we have
) tim inf 2@ D HE) 0
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Here Ni(f(2),1) denotes the number of zeros of f*(z) in the unit circle.
The aim of the present note is to prove an improvement of this theorem
for entire functions of finite order = 1, contained in the following

THEOREM A. If f(2) is an arbifrary entire function of ffﬁfte order alr_=: 1,
M(r)y=Max |f(2)|, and x= H(y) denotes the inverse function of y—Ilog M(x),

|lgf=r
further if Ni(f(2), 1) denotes the number of zeros of f*)(2) in the unit circle,
then we have

(2) tm jur RUEL D HE o b i
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1 We use this occasion to point out that the condition
..o log M(r)
IT. c::nf_ﬂﬁ_ <1
in Theorem 2 of [1] can be replaced by the somewhat weaker condition: there exists a
sequence r, — - ~ such that log M (r,) = g(r,). It is clear from the proof that only this
is actually used. Thus the following assertion is true:

Tueorem B. Let g(r) denote an arbifrary increasing function, defined in 0 < r < + =,
tending to -+ oo for r — - o<. Let x = h(y) denote the inverse function of y= g(x). Let
us suppose that f(z) is an entire function for which, putting M(r)= i!ﬁr‘l.ax |f(2)l, we have

Jl=r

logM(r,)=g(r,) (n=1,2...)
where r, is some sequence of positive numbers, tending to -+ > for n— . Then we have
N, (f@, ) h(k)
J =e

lim inf
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Proor. It has been shown in [1] (formula (30), p. 132) that if »(r)
denotes the central index of the power series of f(z) for |z|=r, then

3) Ny (f(2), 1) = (»(r) +-1) log

1
e
2

It follows from (3) that

4) ]irg’iup %{2’1)—" =e.

Now we may suppose without loss of generality that f(0)=1. In that case
if u(r) denotes the absolute value of the maximal term of the power series
of f(2) on the circle |z|=r, the following well-known formula is valid (see [2],
Vol. II, p. 5, Problem IV. 33):

(5) log p(r) =fL:) dt.

It follows from (5) that if ¢ > 1, taking into account that »(f) is non-
decreasing (see [2], Vol. I, p. 21, Problem 1. 120), we have

{6) log u(re)—log u(r) =J1§t_) dt = »(r) logec.

On the other hand, it is known (see [2], Vol. I, p. 9, Problem IV. 60) that
o iz W) .

(7 ]t:!ll;if Tog i) = a@.

Thus to any &> 0 there can be found a sequence r, (n=1,2,...) for which

Irw— oo and »(r,) = (e+ &) log u(r.). Applying (6) for r=r, we obtain

1
(8) v(rs) (Iog ¢+ a—f—s] = log u(r.c).
1
Choosing c—e @+, it follows that

1
{9) v(r,) = log #(fuel‘&T;J.
As u(r) = M(r), (9) implies

1
(10) v(r.) = log M (re )
and thus

n Hr(r) = r“e“'-“l*-.
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As by (4)

- Nooa(f(2), 1) 10 _
(12) hT-—bscEp T(ru) =0
and with respect to (11), we obtain

. Ny (f(2), 1) Ho(r)) _ 2
- im sup VoS DHCED _ gz
But (13) clearly implies
5 1
(14) i inf LA D IO o 2o,
k-»m

As (14) is valid for any &£ >0, the assertion of Theorem A is proved.
Especially* we have for entire functions of exponential type, with type A,

(15) lim inf Nu(f(2), 1) = Ae.
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2 Let W (Whitraker's constant) denote the greatest number such that if f(z) is of
exponential type A4 << W, then an infinity of derivatives of f(z) have no zeros in the unit

1
circle. The exact value of W is not known. It follows from (15) that — = W. This esti-

mate is, however, much weaker than the estimate 0,7259 = W, proved by Sueia Scort Mac-

ivtyRe [3]. (In footnote * of [1] we mentioned only the weaker estimate 0,7199 = W, due to

N. Levinson [4]) It has been shown also by S. S. Macintyge [5], that W = 0,7378.
2

(lt has been conjectured (see [4]) that W=?.]
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