ON THE GROWTH OF THE CYCLOTOMIC POLYNOMIAL

IN THE INTERVAL (0, 1)

by P. ERDÖS

(Received 16th November, 1956)

Let

$$F_n(x) = \prod_{\substack{d \mid n \\ d \mid n}} (x^{n/d} - 1)^{\mu(d)}$$

be the nth cyclotomic polynomial, and denote by A_n the absolute value of the largest coefficient of $F_n(x)$. Schur proved that

$$\lim_{n\to\infty}\sup A_n=\infty,$$

and Emma Lehmer [5] showed that $A_n > cn^{1/3}$ for infinitely many n; in fact she proved that a can be chosen as the product of three distinct primes. I proved [3] that there exists a positive constant c_1 such that, for infinitely many n,

$$A_n > \exp\{n^{c_1/\log\log n}\}, \dots (1)$$

and Bateman [1] proved very simply that, for every $\epsilon > 0$ and all $n > n_0(\epsilon)$,

$$A_{-} < \exp \left\{ n^{(1+\epsilon) \log 2 / \log \log n} \right\}.$$

My proof of (1) followed immediately from the fact that, for infinitely many n,

$$\max_{\|x\| \le 1} |F_n(x)| > \exp\{n^{c_n/\log \log n}\}.$$
 (2)

The proof of (2) was quite complicated.

Some time ago Kanold* asked me if I could estimate the growth of $|F_n(x)|$ in the interval (0, 1). I have now found a very simple proof that there exists a positive constant c_3 such that, for infinitely many n,

$$\max_{0 \leqslant s \leqslant 1} |F_n(x)| > \exp\{n^{c_s/\log\log n}\}, \qquad (3)$$

which, of course, implies (2) and therefore (1).

I conjecture that (3) is satisfied for every $c_2 < \log 2$, so that Bateman's result is best possible.

Proof of (3). It follows easily from the Prime Number Theorem, or from the more elementary result

$$\pi(x) > \frac{1}{2} \frac{x}{\log x}$$

that there are arbitrarily large integers t for which

$$\pi(t+t^{1/4}) - \pi(t) > \frac{1}{16}t^{1/4} \log t$$
.

Denote by $p_1, p_2, ..., p_k$, where $k > \frac{1}{10}t^{1/4}/\log t$, the primes in the interval $(t, t + t^{1/4})$ in ascending order of magnitude. Put $n = \prod_{i=1}^{k} p_i$, and

$$F_n(x) = F_n^{(1)}(x)F_n^{(2)}(x),$$
 (4)

where, in $F_n^{(l)}(x)$, d runs through the divisors of n satisfying $v(n/d) \leqslant l$. Here l is the greatest integer less than $\frac{1}{2}(k-2)$ which satisfies $l \not\equiv k \pmod{2}$, and v(d) denotes the number of distinct

· Oral communication.

prime factors of d. Put

$$x = 1 - p_1^{-l-1}.$$

Clearly, if v(n/d) > l, then $n/d > p_1^{l+1}$. Thus

$$|x^{n/d}-1| > 1 - (1-p_1^{-l-1})^{p_1^{l+1}} > 1 - \exp(-p_1^{1/2}).$$

Hence

$$|F_n^{(2)}(x)| > \{1 - \exp(-p_1^{1/2})\}^{2^k} > \frac{1}{2}, \dots (5)$$

since $\exp(p_1^{1/2}) > 2^k$ (because $p_1 > k^4$).

We now estimate $|F_n^{(1)}(x)|$. Assume that $v(n/d) = r \le l$. Then, clearly, since $r \le k \le p_1^{1/4}$,

$$p_1^r < \frac{n}{d} < p_k^r$$

30 that

$$p_1^{\rm r} < \frac{n}{d} < (p_1 + p_1^{1/4})^{\rm r} < p_1^{\rm r} (1 + 2p_1^{-1/2}).$$

Thus

$$1 - (1 - p_1^{-l-1})^{n/d} = \frac{n}{dp_1^{l+1}} + O\left(\frac{n^2}{d^2p_1^{2l+1}}\right) = \frac{1}{p_1^{l-r+\frac{1}{2}}} \{1 + O\left(p_1^{-\frac{1}{2}}\right)\}. \quad(6)$$

We therefore have, from (6) and the definition of $F_n^{(1)}(x)$,

$$|F_n^{(1)}(x)| > p_1^L \{1 + O(p_1^{-1/2})\}^{-2^k},$$
(7)

where

$$\begin{split} L &= -\sum_{r=0}^k \; (-1)^{k-l+r} (r+\tfrac{1}{2}) \binom{k}{l-r} \\ &= -\sum_{r=0}^k \; (-1)^{k-l+r} \, r \binom{k}{l-r} + \tfrac{1}{2} \sum_{r=0}^k \; (-1)^{k-l+r} \binom{k}{l-r} \\ &= \; (-1)^{k-l+1} \left\{ \binom{k-2}{l} - \tfrac{1}{2} \binom{k-1}{l} \right\}. \end{split}$$

Thus, from the definition of l and by a simple computation, we obtain

$$L > \frac{1}{2\bar{k}} {k-2 \choose l} > c_4 k^{-3/2} 2^{k}$$
.(8)

It follows from (7) and (8), since $p_1 > k^4$, that

$$|F_n^{(1)}(x)|> \exp \{c_4 k^{-3/2} 2^k \log p_1 - c_5 2^k p_1^{-1/2}\}> \exp (c_6 k^{-2/2} 2^k). \qquad (9)$$

Thus, from (4), (5) and (9),

$$|F_n(x)| > \frac{1}{4} \exp(c_6 k^{-3/2} 2^{\frac{1}{4}}).$$
 (10)

Now

$$n = p_1 p_2 ... p_k < (p_1 + p_1^{1/4})^k < 2p_1^k < 2 \exp(5k \log k),...$$
 (11)

since

$$p_1 < t + t^{1/4} < (\frac{1}{16}t^{1/4}/\log t)^5 < k^5$$
,

and (1) follows immediately from (10) and (11).

Denote by $\phi(n, k)$ the number of integers m such that $1 \le m \le k$ and (m, n) = 1. Clearly

$$\phi(n, k) = k \prod_{p \mid n} \left(1 - \frac{1}{p}\right) + \alpha 2^{\sigma(n)-1}, \text{ where } -1 < \alpha < 1.$$
 (12)

I have proved [2] that, for every n, there exists a k such that

$$\left|\phi(n,k)-k\prod_{p\nmid n}\left(1-\frac{1}{p}\right)\right|>c_{7}2^{\frac{1}{2}\phi(n)}/\log v(n),$$

and conjectured [2] that the error term in (12) is $o(2^{e(n)})$ for $v(n) \to \infty$. Vijayaraghavan [6] and Lehmer [4] disproved this conjecture, and in fact Vijayaraghavan proved that in (12) α can come as near as one wishes to both -1 or +1.

Now one can pose the following problem: Let $n \le x$; then, from

$$v(n) < (1+\epsilon) \log x/\log \log x$$

and (12), we obtain

$$\phi(n, k) = k \prod_{p|n} \left(1 - \frac{1}{p}\right) + O\left\{2^{(1+\epsilon)\log x/\log\log x}\right\}.$$
 (13)

I believe that the error term in (13) cannot be replaced by $O\left\{2^{(1-c_0)\log x \log \log x}\right\}$

If this could be proved it might enable one to show that (3) holds for every $c < \log 2$.

REFERENCES

- P. T. Bateman, Note on the coefficients of the cyclotomic polynomial, Bull. Amer. Math. Soc. 55 (1949), 1180-1181.
- P. Erdős, On the coefficients of the cyclotomic polynomial, Bull. Amer. Math. Soc., 52 (1946), 179-184.
- P. Erdös, On the coefficients of the cyclotomic polynomial, Portugalize Math., 8 (1949), 63-71.
 - D. H. Lehmer, The distribution of totatives, Canadian Math. J., 7 (1955), 347-357.
- Emma Lehmer, On the magnitude of the coefficients of the cyclotomic polynomial, Bull. Amer. Math. Soc. 42 (1936), 389-392.
- T. Vijayaraghavan, On a problem in elementary number theory, J. Indian Math. Soc. (S.S.), 15 (1951), 51-56.

DEPARTMENT OF MATREMATICS

THE UNIVERSITY

BIRMINOHAM