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Introduction

Let f(2) be regular in the circle |z| < R. Let us denote by Ni(f(2),7)
the number of zeros of the k-th derivative f®(2) of f(2) in the closed circle
|z| =r<R. In the present paper we shall investigate the asymptotic proper-
ties of the sequence Ni(f(2),r) (k=1,2,...).

In this direction several results have been obtained by G. POLYA (see
[1]). One of the results of POLYA is the following: If f(2) is an entire function
of finite order 4 =1, then for any r >0 we have

..o log Ni(f(2),r) __ 4A—1
1) h,?l;nf e ==

Let us denote by OU(f(2),/) the number of zeros of f®(z) in the real
closed interval /. Further results of POLYA are as follows: If f(2) is real on
the real axis, and it is analytic in the closed interval /, we have

N,
@ lim inf ‘_"‘g,?(?)’«])<+w,
k—>
if f(z) is an entire function, we have
®) tim inf SEC@0) o,
k>

finally, that if f(2) is an entire function of exponential type, we have
Ch) lim inf 9. (f(2), 1) < + oo.
k-

Recently, M. A. YEVGRAFOV [2] proved the following general result:' Let
f(2)= D a.2" be an entire function, the coefficients of which satisfy the
n=—0

inequality
MA"
|= (n—
q9(1)q(2)...q(n)

1 The authors are indebted to R. P. Boas, Jr. who kindly called their attention to
this result.

|a, 9

Acta Mathematica VII/2



126 P. ERDOS AND A. RENYI

where q(x) is positive and increasing for x = 1, further q'(x) exists and

lim x‘f]((;))zg where 0 =90 = 1. Then we have
®) lim inf Nk(f(z)lé naw _,
k>

In § 2 of the present paper we shall prove that the theorem of YEv-
GRAFOV is a consequence of the following simpler and more general theorem:

If Max |f(2)|=M(r)=¢e%", further if x= H(y) denotes the inverse
|z|=r
function of y==G(x), we have

(6) lim inf U (Z)l;’ MR s
k>
We shall show also that (6) can be replaced by
k—>

(Theorem 2’). As a matter of fact, we shall prove more, namely we obtain a

theorem (Theorem 2) which is much stronger than YEVGRAFOV’s theorem.

Our theorem states that if f(2) is an entire function, M(r)= Max |f(z)| and
|ef=r

if we suppose only

... log M(r)
8 lim inf —=——~-~
® )

where g(r) is an arbitrary continuous and monotonically increasing function
for which 1im g(r)= - oo, then we have

>0

9) lim inf M(f(?)/;l)h(k) —g

k—>o

<1

where x = h(y) denotes the inverse function of y— g(x).

The results (1), (3) and (4) are included in YEVGRAFOV’s theorem and
in our Theorem 2, respectively. In § 1 we prove a theorem on functions
analytic in a circle. In § 3 we prove some results on the sequence r,=
=|z| (k=1,2,...) where 2, denotes that root of f® (z) which is nearest to
the origin; we generalize thereby some previous results, e. g. theorems of
ALANDER [3] and ERWE [8].
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§ 1. Functions regular in a circle

We begin by proving

THEOREM 1. If f(2) is regular in the circle |z <1 and 0 <r <1, we have

(10) lim inf N'”(f(z) LN K(r)
k>
where K= K(r) is the only positive root of the transcendental equation
(11) P
1=
(1 JI_ K) K

Theorem 1 can also be written in the following equivalent form:
1
A+K)

THEOREM 1. If f(2) is regular in the circle |z < .

(K>0),

we have

(12) lim inf - ’(f(z) Dk

k>

Let us mention the following special case of Theorem 1" (12) is valid
with K=1 if f(z) is regular in the circle |z| < 4.

Theorem 17 implies that if f(2) is an entire function, we have

lim inf Nelf @)1 0
Io»c /{
for any r > 0.

The proofs of the above theorems are based on the well-known theorem
of _]ENSEN (see e.g. [4]): If g(2) is regular in a circle z| <R, g(0) =0 and
21, 29, .., 20 are the zeros of g(2) in the circle |z = o < R, then we have
o’ [ lgem) |

g
’ I ON

If Ny(g(2),r) denotes the number of zeros of g(2) in the circle z =r<o,
it follows from (12) that

S RPARPA RN I

(13) N(g(2), ) log - = Max log | 2 £

We shall always use JENSEN's theorem in z‘he fozm (13).
Some simple inequalities, which will be frequently used in this paper
are collected in the following

1*
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LEMMA. If f(z) = > av2" is regular in |z| <R and for some value of
k=0
A=1 and B >0 we have
Aia;
B

(14) | |@esy| < [f=1,2..}

then for |z|=—0 <R

f“’(Z) - 1
o _B_)
and thus
Me__ A
(16) f(/\-)(o) - (1 0 )Ml 2
B
Proor. (14) implies |a;| >0 and
*) O Qs (K4 1)(k+2 ) .
(17) fa>§8 _{_% a ( +1)( “T;') (k+])z,_
Taking into account that
L D) (k)
( x)k+1 7771 j'

for |x| <1, (15) and from this (16) follows.
PROOF OoF THEOREM 1’. Let us suppose that the radius of convergence

of the power series f(2) = Z a,2" is finite and equal to R >1. In this case

n=0

we have lim V|a,21:%. Thus if I<B<R<C, we can find an infinity of
—> Q0 ]+‘/
values of k for which ] ay| >% and J]ayy] <§ (j=1,2,...) and thus
/C k
(5]l
(18) la’-'“hfl = Bj (/ — 1: 2) )

On the other hand, if R=oc, then }/|a.| —0 and thus we can find for
any B >0 an infinity of values of & for which

a :
19 }ak+.f|§% (=1,2,...)
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no kN
As a matter of fact, if max)]a,|= |]a | <% (which will be true for all
n=N ‘

sufficiently large values of N), then k= ky satisfies (19).
The inequalities (18) and (19) can be combined, and it follows that if

f(z)= X a.z" is regular in the circle |z| < R (R>1) (but may be regular
=0

also in a larger circle or in the whole plane), then for any ¢ >1 and B<R
we can find an infinity of values of & such that

k‘a; .
(20) || ;‘-727." (=12 e
It follows from our Lemma that for [2|—¢ (1< o< R)
ARG q"
(21) F5(0) 2

- k41
e
(1 B)

and thus, applying (13) with r=1 and g(2)=f®(z), we obtain

-1
klogq-l—(k+1)log(1—%)

(22) Ni(f(2), 1) = logo :

which implies, as ¢ may be chosen arbitrarily near to 1 and B to R, that

-1
oc(1— ]

log o

(23) tim inf 20 1)

k=

for 1<o<R.

Now let us choose the value of ¢ so as to minimize the right hand
1
side of (23), that is, let ¢ be equal to (14 K)¥ where K is the positive root
1 :

1+ K)1+7t:

K
Thus we have proved Theorem 1’, and therefore Theorem 1, too.

We do not know whether the bound in (10) is best possible or not.
The estimation (10) is, however, best possible in the following sense: it is clear
from the proof of Theorem 1’ that we considered only such values of k for
which f®(0)==0; thus we have obtained slightly more than is expressed by
(10), namely we proved

of the equation R= which has a unique solution for any R >1.

(10) ity jaf A L
k>
) ©)=£0

Ni(f(2), 1) _
i = K(r).
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Now (10°) is a best possible estimation; this can be shown by considering
the function

(24 gz, K)= 2, 20+
n=0

where K is the only positive root of the equation (10) and [x] denotes the
integer part of x. Let us put k,=[(1+K)"] and consider g+ (z, K). We
have clearly

gz, K)

g (0, K) Pu(2)+ Qu(2)
where
e (kn+ 1) kn+1 I“Jrl k),
P11(2)~—1 + (k¢z+1_k71)'
and

_ Skt DRy e,
Qud) = 2 '

The roots of the equation P,(2)=0 are all lying on the circle
1

i21: —( (k11+1__k71)! )kn+1_ku
T\ 1) ke,

and by Stirling’s formula we obtain

K
L
(A+K)'®

If ¢ >0, we have on the circle |2|=r(1-¢)

limo,=r=

Nn->0

P@I=(1+ i

for n=n,(¢). On the same circle we have

- “idg
(1 +K)arri-1 - K(142¢) ‘
= i < i (=28 )

—fagy GHE T

(kn "+‘ 1) (kn+/) ,lﬂ oy
(kn+J kn)‘

S m?j)f——l_éll?’ we have

1Q.(2)|=4+2K for |z|=r(1+¢)
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if 0<e< 4(K+ 0y It follows by ROUCHE’s theorem, that

(25) lim N(1+I.-)n(g(2', k),nf(l +S)):K
n->m [(1 +K) ]

if O<8<4(K+1)

Let us mention that g™ (z, K) has more than cn zeros (c >0) in [z|<r,
for some r,>r and every n=1,2,....

§ 2. Entire functions

As it has been mentioned in § 1, it follows from Theorem 1 that if
f(2) is an entire function, we have

(26) lim inf M:O.
k—>o k
(26) can not be improved, i. e. no relation of the_form
o Ne(f(2), 1)
llgl};ﬂf ke (k) =0
holds with lim &(k)=0 (s(k) >0) for all entire functions. (26) can, however,
k—>o

be strengthened if we put some restriction on the rate of growth of f(z). This
is expressed by the following

THEOREM 2. Let g(r) denote an arbitrary function, monotonically increas-
ing in 0<r<--oo, for which limg(r)= + oo. Let x=h(y) denote the

r—>+0
inverse function of y=g(x). Let us suppose that f(z) is an entire function
for which, putting M(r)= Max |f(z)|, we have
|z|=r

lim inf 10g M(r)
paew G
Then we have
@7) lim inf U (23{’ DEG) . 2
k—>o

PROOF OF THEOREM 2. Let ¢ >0 denote an arbitrary small positive
number. Let us denote by »(r) (0 <r< - oo) the central index of the series

Flay =2, > a2

=0
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for |z|=r, i. e. suppose

d th |au| 1" = vy ® (n=0,1,2,..)
an us

Ay (r .
(28) o] =1 7 ) (i=1,2,...).

Let us consider such a value r >0 for which
(29) log M(re) = g(re).
By our supposition we can find arbitrarily large values of r satisfying
(29).
Applying our Lemma with A=1, B=r, k=wv(r), R>r, o=e, we
obtain : .

£ 1
= for |z|=e
@) (0 v(r)+1 ’
il
r
and thus by JENSEN’s theorem
(30) Notr (@), 1) = () 1) Tog —— = 20 1+

=
¥

if r=r,(e)
Now, taking into account that for every n=1,2,... and every R>0
we have |ay|RY = M(R), and using (29), we have

|a.|(re)" = M(re) < e
and thus
@] = eslon (n=1,2,...).
Therefore

\a,|rm=1 if n=g(re).

But it is known,’ that the absolute value of the maximal term on |z|=r of the
power series of an entire function is tending to oo for r— oo thus it
follows that if r is a sufficiently large value, - satisfying (29), we have
v(r) = g(re), and thus A(¥(r)) = re. It follows from (30) that

. v(r)e’(1+%¢)
31 No(f(2),1) = .
( ) ()(f() ) h(V(f))
Thus, taking into account that »(r) — oo for r— oo and that ¢ >0 is arbit-
rary, (27) follows.

We can prove quite similarly also the following

2 See e. g. [7], p.- 2, Problem No. 9.
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THEOREM 2'. [If f(2) is an arbitrary entire function, M(r) = Max \f(2)|, and
x==H(y) denotes the inverse function of y—log M(r), then we have
NS DHE) _

lim inf

k>

Proor. Clearly, the condition lim inf —GT)(r) < 1 is needed in the proof

of Theorem 2 only to ensure the existence of arbitrary large values of r for
which (29) is valid. Now for g(r)= G(r) (29) is valid for all values of r,

thus Theorem 2" follows.
Theorem 2 is best possible in the following case: if g(r) is a monoto-

nically increasing and convex function for which g(0) =0, ¢'(0)=0, g(1)=1
and l1m g =} oo, then there can be found an entire function f(z) such that
log M(r)

putting M(r) = Max |f(z)| we have lim inf N + oo and nevertheless
lg|=r r—>o
L TCETION
k>

where x=~Hh(y) is the inverse of y=g(x). As a matter of fact, if the
sequence n; is defined by n,=0, n,=1 and by the recursion formula

Ny = [nk (1 —]——h——(em)], the function

f&)=2 —
1 @y
has all the properties required. This can be shown again by using ROUCHE’s

theorem as follows:
Let us consider first ft#)(z). We have clearly

Z)I]..

FW@ _ p(2)+ Qu2)

f(”] )(O)
where
1) A 4 M1
Py == .t (ﬂ;\ + . ( )
I(Z) 1 = (nl.'+1_n7,-)! h(nkﬂ)
and

Qi(2) = V (A1) M 2V ;
F’ (nl -+ n,)! kit 4
J ] (ng)s s

s=k+1
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Clearly, all roots of P:(z)=0 are lying on the circle

1
K+ o R
}Z' — o= h(llk+l) [(,fn+jlrtliz] e "

and we have for k— o g, Nh(”wl)

oo 1 .
T But as #'(y)= Fie) is
we have
. h(n; H) o n. ' (nk)e'
B T R 2 O
But ‘
() &)

h(y) — xg'(x)
and as g”(x) = we have

(@) (c—tyat
gx) ¢ —d
xg’(x) ) -
| g (tyxat

Thus it follows lim ¢, =1
k>
Clearly, on the circle |z|=1--¢ we have

. 'HA, 171!,}.
Pu(2)| = (1+;) o k= k(o).

On the other hand, on the same circle we have

decreasing,

1(,
Ny — Ny 3¢ Mok~
M 2 “ (1 o o )"w n ( . )
Mgy — N)! Tt = N
( +j ) I]h(n )ns g 1 ‘1 ( - k )Il(nkﬂ)
s—=k+1 ) 8

L
for sufficiently large values of k. As (14x)"=e and (

for k— oo, it follows that for |z{—1+-¢ (

O<s<%)

2 -

n
— m;) h(niii) — 2e

Thus f(2) has n.i—n; roots in the circle [2|=1-¢ for 0 <e <12 and
&= ko).
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Let us consider now a number N, m1 < N<n. If N= nke .
I 2
then f™(z) has more than ﬂ%v_) roots in the point z=0. On the other
hand, if N> h , let us have |- V... (O<l & l)
1 e 14 Le 4
4 h(ny) h(ny)
We have clearly
A . !
1), —N1 1) ¥E )
where
= nk+j(nk+j—1)- # '(flk_;__y'-— N+ 1) P AL
(IN(Z):Z %
=  m(n—1)---(m—N+1 ) _
J k( k ) ( L + ) Hh(ns)ns—ns_l
s—k+1
and

nk+1(nk+1—’1)' : '(ﬂ1;+1—N+ 1) ( 4 )nkﬂﬂ%
N ==1 *
Px(2) T ne(ne—1)---(m—N-+1) h(ngs)
The roots of py(z)=0 are all lying in the circle |2|— Ry where Ry~
1Y 83 1 ' ( 6)5 =
~(1 +/1)(1 +7) =l 5 as O<Z<Z.Butonthe circle |z| = 1+-2— ~4~V5
we have for any d >0, if K is sufficiently large,

et (s —1) - (e —N+-1) 2l

. =
(i, —1) - (my— N1 kti =
7( L ) ( k 5y ) n h(ns)ns-ns_l
s=k+1
5 47 Mot Nk
(1 +26)Z]/5
é i 2 _—:ﬂ”"*jiuh (_I: 2’ 3, " .)
i . 1(8
where #<1 if 0<d<—( 7 —1).
55
Thus it follows by ROUCHE’s theorem that f™)(2) has ngy—n roots
’ . d)5 N -
in the circle |z| = (1 +2)ZV3. As mp—n = RN’ combining the cases
M NE—F  and meN>—% it follows that f™(2) has

e e
' Zhm) Y Zh
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N . .
= Zh(N) roots in the circle |z| < 2. Thus we have
lim inf Ny (f(z) 2)hk) 1:7 -
k—->w

what was to be proved.

It remains to show that 11m mf o8 él/[)(r) ~+ oo. This can be done as
follows: let us put r.=h(n:) and
R
u (rh‘) = “‘]Trh—“ 3

J=
First we show that

lim sup

k—> o

log u(ry)
T, T

This can be proved by starting from the evident formula

log u(ri) _ h(ny)
T ; (n;—n;_y) log h(ny)
Let us denote by S, (r=20,1,...) the set of those values of j for which
h(n h(n
2(1:1)*/1( 7) (1)
Let /. denote the greatest element of the set S,. Then we have clearly
log e2(r)
r41
ny ﬂ/; 0( + )nl

Now n; <g( I(m”)) and g(x) is convex, therefore

8 g(h(n))  m
2" 2"
and thus
log u(ri) = S‘% r—H 4
ny —_ 2

Now u(r:) is the maximal term of the series
o] ]‘115

M(rk)—Z:——'——*

N= n n_
L] Ay
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and it is easy to show that
log M (@ _
k> @ 10g u (rlc)

Taking into account that n, = g(r.), we obtain

tim inf 28 M) _ 4.
oo &)
By the same method it can be shown that lim inf loir?;l)(r) =1, but for our

purpose this is not necessary.
The theorem of YEVGRAFOV can be deduced from Theorem 2 as follows:

Let us suppose that f(z)= Z a,z" is an entire function and

n=1

MA?L
q(1)q(2)---q(n)
where g(x) is positive and monotonically increasing for x =1, lim g(x) = -} oo
and lim 4 ()

e G(X)

let us denote by x=17(p) the inverse of y=gq(x), and let us for a given
r >0 determine the integer /N by

‘ N=|y(2Ar)], i.e. N=y(2Ar)<N+1.

‘anté (1121,2,...)

=0 where 0 =¢=1; clearly it can be supposed that ¢(1) >1;

Then _
(32) g(N)=24r=q(N+1).
It follows that for |z|=r
- (Ar)™y
where
q(N) g(N)g(N—1) , g(N)g(N—1)---q(2)

S1 + (Ar)z s abkLds o (Ar)N—l

and
(Ary
=14 Dt TR ey T

Clearly we have

Si=2+24--+2¥1=2" and \32;§1+%+%+...:2
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Thus it follows that
N
(33) M(r)=2M exp {N log 2Ar— > log q(k)] :
k=1

As log q(k) is positive and increasing,

;\/
N

Dlogq(k) = J-10g q(x)dx

k=1 .

1

and therefore, by (32),
"
log M(r)=log 2M + Nlog ¢(N+ 1)— ‘ log q(x)dx.

1

According to our supposition log g(x) is of the form

&

log q(x) =olog x -+ [

1

where lim ¢(¢)=0; it follows that if ¢>0, log M(r)=0oN-0(N), i. e. for

t—> o

an arbitrary ¢ >0 we have
(34) log M(r)=o07(2Ar) (1 +¢)

if r is sufficiently large, and thus if g(r)=20-7(2Ar) and x=h(y) is the
inverse of y=g(x), we obtain by Theorem 2

Nu(f@), DR _ .
b AR o

&(t)

lim inf
k—>o

As

1 [k
h<k>=§~Aq(\2—9)
and

i)
. \Za] 11V
lh»rg q(k) E(Z) .
it follows that
(35) tim inf VU@ DIE) 0 (i)
k-» k 2@

Thus we have proved YEVGRAFOV’s theorem for ¢ > 0.

If =0, we have log M(r)=o0(y(2Ar)) and thus it follows in this
case also that

(36) i e 2 (2);{ DI o

k-
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Now we shall suppose that f(z) is an entire function of order =1 for
which, putting M(r) = Max |f(z)|, further log M(r)= G(r), the limit
|2|=r
. dlog G(r)
(37) ,“,‘2 dlogr

exists ; we shall show that in this case, denoting by x= H(y) the inverse
function of y= G(x), we have

=a=1

(38) lim inf

Nu(F2), DH() _
k

and thus for entire functions of order =1 and satisfying the condition (37)

the assertion of Theorem 2’ follows® from YEVGRAFOV’s theorem. Substituting
( )

r==H(n) in the inequality a, ~ (n=1,2,...), we obtain

i

(39) %au ‘ é 77
(H(n))

and thus

(40) la,| = e

H()H(2) -H(n)’
Now let us suppose that f(z) is such an entire function for which the finite
or infinite limit (37) exists. As

YH'(y) 1
H(y) — (dlog G(x)) ’
dlog x
it follows from the existence of lim dlog G _ ¢ that lim V) 0 = )
iro dlO 0g X y> H( ) «
exists. As we have supposed that G(r) is of order =1, it follows that

O=o=1

Thus we have shown that YEVGRAFOV’s theorem is equivalent to the spe-
cial case of Theorem 2’ for entire functions satisfying (37). Thus Theorem 2’
is slightly stronger but, of course, Theorem 2 is easentlally stronger than
YEVGRAFOV’s theorem.

§ 3. Remarks on the zero z. of f#)(z) which is nearest to the origin

It follows from our Theorem 2 that especially if

lim infw <A,

r—>

3 Except the numerical estimation of the left hand side of (38).
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we obtain* _
lim inf Ny.(f(2), 1) < €*A.
>0

This can be formulated as follows: If r, denotes the absolute value of

the zero z; of f®(2) which is nearest to the origin, we have for an entire
function for which lim mflog fVI(r) A,

>0

lim sup r, L
P A

k—> @

For entire functions of finite order 4 = 1, the behaviour of 7, has been investi-

gated by ALANDER [3] who proved that
log — 1
Ik A—1
IT, ;nf Togk -
Now we shall prove a general theorem which includes this result of ALANDER

as a special case.
THEOREM 3. If f(2) is an entire function, M(r) = I\'}ax |f(2)| and ry denotes
|z|=r
the absolute value of the zero z. of f®(z) which is nearest to the origin
(k=1,2,...), then denoting by x= H(y) the inverse function of y = log M(x)
we have 4

(41) fion fnf ) =

T k> krk
PROOF. Let us start from the inequality (38). This implies that for any
¢>0

“2) lim (#)1 a] =0.

n—>o

Thus we can find arbitrary large values of k& for which

(43) | |@rss| = (HZ:))’]WI (j=1,2,...)

1
4 This implies that for A < =
11m inf Nk(f(z), D<K,

i. e. an infinity of derivatives of f(z) have no zeros in the unit circle. It is known that if

log M
f(z) is of exponential type and lim supg—(r—)<A, the same assertion holds for
r

A <0,7199. (See [5]) i
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It follows from inequality (15) that for such values of & for which (43) holds
and for |z| = ¢ we have

2@ _ 4 ’ !
fo0)

1+e) LT
(1_£) »
H(k)

(44)

[IA

)

and thus f®(2)==0 for |z| =0 if

M)

(l _ 9 (314—()""H 5 i
H(k) z'

i. e. for a sufficiently large k if

H(k) log 2
_kel+2£ :

(45) 0<
But (45) implies that

o w y BTLEY o B
(46) A ll}f:olonf T, §10g2'

As & >0 is arbitrary, Theorem 3 is proved.
Clearly, (41) implies
(47) lim sup kry = oo

k>
for every entire function.
For functions, which are regular in a circle |z| < R, instead of (47) we
can prove only

THEOREM 4. If f(z) is regular in the circle |z| <R and is not a poly-
nomial, further z; is the root of f%¥(z) which is nearest to the origin, then
putting r.— |z| we have

(48) lim sup kri, = Rlog 2.

3 k>

Proor. The proof is very similar to that of Theorem 3. If f(2)=

— a2, we have lim sup |[a] <=L and thus X ]a”]“—>0 for any &>0.

n=0 n->m R (1 +8 |
This implies that putt Rl _ B have for k-—k

his implies that putting ma\x (At+e' AT we have for k= ¥
(N=1,2,...)

Q .
(49) |G| <JR— G—1,2..).
(H—S)

2 Acta Mathematica VII/2
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Thus by inequality (15) we have for |z| =0 and the mentioned values of &
@ ! 1
f®(0) ( 0(1+8))k+1 y

25

(50)

lIA

therefore f®(2) &0 for |z| =0 if
N \k+l
(1 e +é)) o1

R 2
and thus if
s Rlog 2
1) =T 1)(1+29)

for sufficiently large £.
The assertion of Theorem 4 follows immediately.

It should be mentioned that there exist functions f(z) regular in the
unit circle for which lim sup k7. < +- oo, for example if f(z)— 1——]—2—2, we have
k—>co S
lim sup-kr,..,:%. This example is due to ERwWE [8].
k—>
It would be interesting to determine the greatest constant by which
log 2 can be replaced in (48).

The question may be raised: what can be said about the series

(52) g,l I

It can be shown that the series (52) is divergent not only for every entire
function but also for every function which is regular in some circle |[2|<R
(except for polynomials) with R >0. As a matter of fact, this follows easily
from the results of W. GONTCHAROFF ([6], p. 34).

The following conjecture® of ERWE is a simple consequence of this

remark: If f(2) is regular in |2| <R, |2|<R, |2.1] = % z,| and f@(2,) =0

(n==1,2,...), then f(2) is a polynomial. As a matter of fact, we have

r, = |z.| and thus our suppositions imply > r.< +oco. More can be said
n—=1

about the sequence r; if the power series of f(z) has Hadamard gaps. If

f(z)= 2> a,z« where % =¢g>1 and f(2) is an entire function, then
k=0 I

5 Erwe proved that if f(z) is regular in a circle around z==0 containing the points

z, for which |z,+1] §%|z,,|2, further f((z,)=0 (n=1,2,...), then f(z) is a polynomial.
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k>

lim sup r, = -} oo; if it is supposed only that f(z) is regular in the circle

. R (1 £ L)
|zl < R and f(2) == > g.zm with B = g >1, then lim sup r s b _ffa
Te=0 1y k> ‘ 2e

It seems that the following conjecture is true: If f(z) is an entire func-
tion, we have ‘ ,
: Tickh o= i

hf&iw log k

= oo.

(Received 30 May 1956)
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‘0 YUCJE KOPHEH IMOCJIEJOBATEJbHbIX UHPOI/IBBOD:HI)IX AHAJIMTUYECKUX
OYHRUNN ‘

M. 9pnéw u A Peunn (Bynanemr)

(Peswome)

Hycrs f(z) perynapra B HEKOTOPOH 0OGMACTH MIOCKOCTH KOMILIECKCHOI nepemenno
copeprramiels BHyTpu ce6st kpyr |z < r(r > 0), u nycte Ni(f(z), r) 03Hayaer yuciaoO KOPHeir
f®O(z) B xpyre |z| < r(k=1, 2,...). O603uainm uepes z;, HanGonee 61u3Kuii Kk TOYxe z=0
xopeb oT f®)(z) u nycte rp==|2;|. ‘ ) ‘

Pa6ora wusyuaer acumproTMyeckue CBOHCTBA nocaegosatensnoctein Ni(f(2),7) mu
n(k=1,2,...). B uactHocTy, B pa6oTe NOKA3BIBAIOTCS CIEAYIOUINE TEOPEMBI:

Teopema 1. lycts f(2) perynspua B epunuyHOM Kpyre u nycts 0 < r < 1. Toraa

T TALL CACI ) M 0P

k—>c0 k

2k
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rae K= K(r) ects equHCTBeHHbIH MOJOIKUTEILHBIA KOPEHb TPAHCUEHAEHTHOrO ypaBHEHUS
K

re=—

i

(14+K) F
Teopema 2. Ilycre g(r) ecrb nioGasi HempepbIBHASE ¥ MOHOTOHHO BO3pACTAKOLias |
B uarepsane (0 < r < oc) yuxnust n nycrb lim g(r) = - co. OGo3naunmm uepes x:h(y(
dynruuo, o6patHyro pyuxuun y = f(x). Ilycte f(2) ects unenas gynxuns, M (r):Mlax |f(2)]

|z]=

U OPEeANOIOKUM, 9TO

lim inf l_cwg_]v{(_r) <1
7>
Torpa
fim int Y@, DRE) _ o
7c—>q) k -

Teopema 3. Iycts f(z) ects uenas gynxuus, M(r) = |N‘[alx If(®)], x=H(y) 0603~
Hauaer ¢yskumio, obparnyo dyHrunn y=1log M(x). Torpa o
H(k) €

lim inf = .

ks Kry IOg 2

Teopema 4. Eciun f(2) peryasipsa B €IUHHYHOM KpPyre M HE MHOrOWIEH, TO
lim sup ki = log 2.
k>
[lepeuncnedd e Teopemsl SIBISIIOTCS 0606wenusimu peayasraros [loita [1], EBrpa-
dosa 2] u Anaupgepa [3]. PaGora copepskur Tare AOKA3aTENHCTBO OfHON rumoTeskl
dpse [8].
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