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1. SomE time ago Littlewood and Offordt gave estimates of the number of
real roots that an equation of degree n selected at random might be expected
to have for various classes of equations in which the coefficients were
gelected on some probability basis. They found that, when each coefficient
was treated on the same basis, the results were practically the same in all
cases considered and agreed with those found for the family of equations
Jalz) = 14+ 2t a? ... 42" = 0 (1.1)
in which each ¢, v = 1, 2,..., %, 18 -+1 or —1 with equal probability.
The object of this paper is to give a refinement of their result. We shall
prove

TeEOREM. The number of real roots of most of the equations

18 Ellr:rlc:,r:r.-v-{—o {(log n)ilog(log n)}. (1.2)

The exceptional set does not exceed a proportion
o{(loglog n)~*}
of the total number of equations.

Dr. and Mrs. A. D. Booth] have kindly worked out the number of roots
of the 2566 equations Ipwtaby. fab=0

of degree 8. They find that 58 have no real roots, 190 have 2 real roots,
8 have 4 real roots, and none has more than 4. The average number of
roots is thus 1-609, but if we treat those with 4 roots as exceptional then

the average number of roots for the remainder is 1-532, EIogﬂra, is 1-324
ki

for n = 8. Thus there is some reasonable agreement with our result even
for n = 8, although the number of roots would appear to be slightly in
excess of our estimate.

t Proc. Cambridge Phil. Soc. 35 (1939), 133-48.
i K. H. V. Booth, ‘An investigation into the real roots of certain polynomials,’
Math, Tables and Aids to Computation, 8 (1954), 47.

Proc. London Math. Soc. (3) 6 (1956)
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Broadly the idea of our proof is the following. In the first place it is

sufficient to prove that the number of roots of f,(x) in (},1) is El-log n, plus
™

the error term given. For all the roots must liein } < || < 2, and to each
root of f,(x) in (},1) there corresponds a root of f,(—x) in (—1, —3) and
conversely. Also if f,(x) has a root in (1, 2) then z"f,(y) where y = 1/x has
a root in (4, 1).

Suppose now that « < x < 8 is an interval in (4, 1) and that f,(x) = 0
and f,(B) < 0. It follows that f,(x) has at least one root in (x, ). Our
procedure is then to divide (4, 1) into a carefully chosen number of intervals,
and then (i) to estimate the probability that the number of changes of sign

of f(x) at the end-points of these intervals differs from Elug # by more than
w

the error term in (1.2), and (ii) to show that the number of changes of sign
corresponds closely to the number of zeros. Stage (ii) is carried out in § 2.
In § 3 we calculate the probability that f,(x)f,(8) < 0 for given xand §
and in § 4 the probability that we have si.mult.&neously fala)falB) <0
and f,(a)f.(B") < 0 for intervals («,8) and («, 8’) which are not too close.
With this information we are able in § 5 to ﬁnd both the average and the
standard deviation of the number of changes of sign at the end-points
of our set of intervals,

2. We write f[:c,t):ir,(t)x’,
0
_[ 1L 0<t<y,
where rolt) = -1 1<t<l,

rolt+1) = rolt),  ralt) = ro(278).
We denote by N(t) = N(t; a, B) the number of zeros of f(z, t) in the interval
a < « < B reckoned according to multiplicity except for zeros at « and j
which are reckoned according to half their multiplicity; and further write
1 if f(a, 1)f(B,2) <O
N*(t) = N*¥t; e, 8) = { § if f(, O)f(B, 1) = O,
0 if flx, )f(B, 1) > 0.
It is clear that if N*(t) > 0, f(x, t) must have at least one zero inae <z < B,
8o that N(O)—N*(t) >

In this section we shall show that
av{N(t)— N*{t)} < Cy¥log(1/y)}t
t
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where y = (B—a)min{z; (1—f8)-}. This result is contained in Lemma 4.
It enables us to replace the function N(f) by N*(f) when estimating the

numbers of zeros.
We shall suppose that § << a < B < 1 and that y < L.

Levma 1. If f(z,t) has k zeros in o < & << B, then outside a set of measure
at most y*
zugﬂ[f(x, t)| < C(k!)y*{log 1/y} min{va, (1—8)-},
L2

where C i3 an absolule constant.
Proof. If f(x) has k zeros in « << & < B, then f*(x) has k—v zeros for
v=0, 1,...,, k. Lett, be a zero of f*(x),» =0, 1,..., k—1. Then

@£

f@) = [ f%(w) du,

t

80 x é
174 < teteca | [ 1700012 )
fe_1
f }
< {B~a)*( [ 1% du) :
Similarly .
FE2@) = | [ f%9w) du
Tz
< (B—a) sup |f*N)|
a<x=f
8
< (5_a}i(I [ () |2 du)é,
and_consequently N

B
1@ < @ | o au)' (1)

Now write, for shortness,
i
F®(u,t) = 3 r,(t)a,
a

and let € be an arbitrary set of values of . Let &, be the set of { for which

9,02 < A3 a3)
1]
and E, the set for which

2s-2A ( g at) < |f®(u )]t < 2-1A( g a?).
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Then for a given u

J‘ FO,t)2dt =S f B, t) |2 de
& -

ENG
Y] T
<A (@) + 3 2-m(B( 3 o).
) 0
Now by Khintchine’s lemmat the set for which
) 2 ki)
|3 00| >A(Sa)
[ 1]
has measure at most Ce—#", where C is an absolute constant, and so
m(f,) < Cexp(—25-3A).

Hence i 2-Im(E,) < Cei4,
)
and so, taking A = —2logm(E), we get

[ 179,112 dt < O[3 a2)m(©) log{1/m(©)).
& 0

Now, by a simple calculation,

0 2
provided that x < 1, and in any case

n
E as = p2k+l
0

o ('l

B
Hence j du j [f®(a, t)[2 dt < CUM(E)log{1/m(E)},
o 3
. 2k)!
where A= mm{n”""l; 2T(1[T:).,-}T+1 !

Let & be the set for which

8
_[ |f®(u, £)[2 dt > CKA,

Then KWm(€) << Am(E)log{l/m(E)},
and so logm(E) < —K,
or m(E) < e K,

Hence outside a set of measure at most e~% we have, by (2.1),
sup |[f(x,t)] < (B—a)s—H{COKW}
xszsf
< CKA2-K{(2k)!}9* min{nt, (1—8)-4},
f A. Khintchine, ‘Uber dyadische Briicke’, Math. Zeit. 18 (1923), 109-11.
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where y == (B—a)min{n, (1—8)-1}.
Now put K = —4logy; we get
sup|f(z,t)| < C2-%{(2k)!}}y*(log 1/y) min{vn, (1—8)~#}

outside a set of measure at most y*. This completes the proof of the lemma.

LemMma 2. For given x

[f(z,t)| = kmin{vn; (1—x)-1},

except for a set of t of measure at most 10«.

Proof. By a theorem of Erdés,t for any given number C,

If(z,8)—C| = =™,
except for a set of ¢ of measure at most ,/(2/mm). If we choose m so that
z = 1—1/m, and consequently
_ e R
we deduce that [flaz,t)—C| = e?
except for a set of ¢ of measure at most }»/vm. Giving C the values
0, +2e1, 4e, 4. 4 [xVm]e?

we infer that [f(z, 1) = xvm
except for a set of measure at most 10x. Furthermore, 7 can be chosen so
that m = min{n, (1—x)~'} and so the result follows.

LemMma 3. The set of values of t for which f(x, t) has &k or more zeros in
o < & < B has measure at most Cy*(log 1/y)t if k = 2, and at most

Cy*k—log(k/y)} if k > 2.

Proof. We apply Lemmas 1 and 2 in the cases k = 2and 3. In Lemma 2

take x = C(k!)y*(log 1/y)}, and we shall then have
[f(B.t)] = C(k!)yy*(log 1/y)! min{+n, (1—B)-#},

except for a set of measure at most C'(k!)y*(log 1/y)!. Hence by Lemma 1,
if f(x,t) has two or three zeros in o << z < B, then f(z, ) must belong to a

set of measure at most ¥4 C(k!)y*(log 1/y)}, where k = 2, 3. This proves
the lemma in the cases when k is 2 or 3. If k > 3 we choose p 8o that

W < k< 22

and divide the interval (a,B) into 27! equal parts. Then one of these
intervals must contain 3 zeros. Denote this interval by («,,8,) and let

¥p = (B,—ap) min{n, (1—8,)-1}.
Then, by the above result, the chance of this interval containing 3 zeros
is at most y \3 2v-1\1

t P. Erdds, ‘On a lemma of Littlewood and Offord’, Bull. American Math. Soc. 51
(1945), 898-902. Cf. Littlewood and Offord, Mat, Sbornik, x.s. 12 (1943), 277-86.
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Hence the chance of one or other of the 2P-! intervals containing 3 zeros
is at most 043:31(103 ___)r} - 4073(10g )5
and this completes the proof of the lemma.
Levma 4. Forao <z < B
(V) —N*(0)} < Cyog 1/,

where C 13 an absolute consiani.

Proof. Write N(t) = number of zeros in « < x < B, reckoned accord-
ing to multiplicity, if this number exceeds one, and 0 otherwise.

Then N(t)—N*(t) < No).
But av NO(t) = 3 20-1m(E,),
t Pl

where E, denotes the set of values of ¢ for which f(z, ) has at least 2? zeros
in « << z < B. Hence using the result of Lemma 3 we get, after a simple
calculation, av NO(t) < Cy2(log 1)},

¢

as desired.
We shall now apply the above results to obtain an estimate for the error

made by replacing N(f) by N*(t) in estimating the zeros of f(x,t) in (0,1).
Since for |x| < 3 &
[flz, )] = 1*22—" = 2N,

all zeros of f(z,f) in 0 <<x < 1 lie in § < 2 < 1 and so we confine our
attention to this range. We choose a positive number 8 and define p,

and p, by (14-8)Pe << 3 < (1-4-8)-Pott,

and (14-8)-P1 < 1/2n < (1-48)711,

and o, and B, by
l—ay, =14, 1=, = (1487 (po <p <)
l—ﬁp, =0, 1-8,= (14877 (Bp<p <m)

Then it is clear that the intervals («,, 8,) defined for p, < p < p, together
cover the interval § << x << 1. Clearly

Yo = Bp ﬁ;_s (Po <P <1y),
while Ve < 0,
and Vo, = (1—a, )n < }.

We denote by N,(f) and N}(t) the functions N(¢) and N*(¢) for the ranges
a, <z < B,. We have
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Lemma 5.
av| § {N,()—N31)}] < Clogn.5(log 15,
t “p=pe
where C is a numerical constant.
Proof. By Lemma 4,
av{N (t)—DN3(t)} < Cyi(log1/y, ).
Hence av 3 IN,()—N*1)} < Cp,—po)s*(log 1/8)}-+C,

P=De
and the desired result follows.

3. In this section we estimate the averages of the function N*(t) defined
in § 2. We shall give our results in a somewhat more general form than in
the preceding paragraph because many have interest of their own. These

results deal with the sums i a,r,(t) and En: b, r,(t) in which the coefficients
1] ]

satisfy |a,| <1, [b,] <1, and in certain of the lemmas a,b, == 0. This
latter condition is equivalent to assuming e, = 0, b, == 0. We introduce
the function

a0} (S b,r0) <0
a,r0){ 3 ,n0) = o,
a,r,0)| i b7, (1)) >0, (3.1)

E
I
o

MR b P

1
and the main object of the section is to obtain the evaluation of f () dt
i}

given in Lemma 12.
Levma 6. If u(t) is defined as in (3.1), then

Ipm - | fj‘ B4 =) 1,

where dla,y) = Hcos (@, x+b,y). (3.2)

Proof. This result follows from a standard theorem on the characteristic
function. It may be proved directly as follows. There are 27+! distinct

n
sums Y a,r,(t). Writing
0
L k g
A, = Z a,ry( gnj)’ k=1,2,.., 2"+

0
5388.3.6 L
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and denoting the corresponding expression in which a, is replaced by &,
by By, we have .

2“

$@.y)—d(e, —y) = — 5 Z 2 sin(dz)sin( By y); (3.3)

thence

% ff bl )80 ) g

gntr ®

gin A z sin B,y
2“"1172 Z f : f = dy

11 e k—3}
=gtz > {5)

k=1

and this is the desired result.
Levma 7. If the numbers a, are real and satisfy |a,| < 1, and if

A2 = Z as,
0
then av ln Pl el log*4 + et
- (max 1,1 >rta, ) = B
]

Proof. Without loss of generality we may assume 4 > 1, forif 4 < 1
the conclusion is trivial since the first member cannot exceed unity. We

denote by F(z) the distribution function of % r(f)a,. Then

om

] [ min{, ) aro). (3.4)

“{m&x( L[S 0a,))

—_—
. 1
- . S —4 J¥.
Write G(x) 7@ f et df;
then by a theorem of Berry,t in view of our condition that |a,| < 1,
2
‘F(:c}—G(%) <3

The second member of (3.4) is then the sum of

_ _f mi_n(l, %) d{F(m)—G(%)},

+ A. C. Berry, ‘The accuracy of the Gaussian approximation to the sum of
independent variates’, Trans. American Muth. Soc. 49 (1941), 122-36.
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. 1 x

and I = f n:un(l, m) dG(H)'

But, on integrating by parts, we get

e J? {F(:s)—F(-—:c)——G(%)+G(—%)}m—3d:z:g_:

|

while it is easily verified that

2\logd 1
ISQJ(;) i +H’

and we get the desired result on combining these two inequalities.
Lemma 8. If ¢(x,y) is defined by (3.2) and if |a,| < 1, |b,| < 1, then

ﬂ ble.0) o) gy U o), =) 1

otz

where A = min{iaf, "’SE bE).
) 0
Proof. If € > 0, we have from (3.3)

L f a4 f a9}t 1)

] R e A
S L
=~ gy D, | T dwogn(B.
k=1

1 B g
Hence 5 < o+l Z j_ﬁ— o
k=1 ledgl
Fsing | ™

N e T (1 N S

ow 8 = max(1, [ferd,|)

ledr

Hence ] < av : T

max(l, |fend,|) dend end’

where A% = f a2, by Lemma 7,
0
A similar result holds for the integral _[d:u [dy but with 4 replaced
[

by B, where Bt = 3 b2 Writing 4, — min(4, B), we get the desired
2 .

result.
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Lemma 9. If0 <y < 1and

I(y; 4) =

~ © e—HE =2yzy®) -4z 1 2yzu+0?)
dx dy,

Ty
then
@) I(y;0) = gm*—cos~ly,

() I(y;4) < C"'(Lj‘@ for 4 > 2,
where C 18 an absolute constant.

Proof. This is a matter of evaluation which we leave to the reader.

From now on we shall employ the following notation. We write 4% = %aﬂ,
0
B = % i P= i a,b,, and 7 = 1—P?/42B2. By Cauchy’s inequality
0 0
= 0. For convenience we shall suppose that 4 << B. We shall also
assume that for all v, a, b, = 0.
Lemma 10. If ¢(x,y) is defined by (3.2) and
g(x,y) = exp{—i(4%*+2Pxy-- By},
then for all x, y satisfying 0 < 2 <"e, 0 << y < €, where € << }, we have
@ y)—dl, —y) _
—_ +€(x, Esu{-r,y}’
o9 =gt —y) — T
where —e* < efw,y) < 3¢® and

—eX(8A%2 4+ 9B%®) < ey(z,y) < 0.

Proof. We have
#2.9)/$(0,9) (@, —9)j$(0, —y) _ 5Jon{$, )ig(0. )} 4 o

e LT 12PTy)__ g—H AT 2Py — Pre—Hdzi+2Pay)

for some % satisfying |n| << y. Now

[é(a:. 7"}] _$& 1) z b,{tan(a,x-+b, n)—tanb, }.

#(0,7) $(0,7)
But £ b, n)— = sin g,
u an(avx—l_ vﬁ) t&n(bv 71'} OE(G $+b 1}]008(5,.1}]’
andif0 < |y <, 02 <6, 0<a, <1,0<b, <1, we have

Eiil_ﬁawx tan(a, z+b, n)—tan(b, n) < a,[(1—2e*)(1—4e)],

and so i b {tan(a,x-+b, n)—tanb, y} = {1+ (z,y)} Pz,
0
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provided that ¢ < . Hence the second member of (3.5) becomes

%3““‘“"”““’{1+e1tsr,y;}
and we deduce that
$e )= —9) _ 1o 0 $(0.) I gla )
9(z, y)—g(x, —y) BT B 40, ) g(x, 7)
where —e? < gz, y) < 362

We now have to estimate the ratio ¢(z, 4)/g(z, ). For this we require
the elementary equality

logeos § = —162—044(0),

where /(f) is a positive increasing function of || satisfying y(f) < 1 for
|#| < 1. From this it follows that

ﬁ[ cosf, = exp[-—-ir i o — i: ﬁﬁ-!}’(ev}}a
o 0 0
and so, since € < },

ﬁg ?1)) == exPl“g (@, z+b, n)'i(a, 2+b, ’”]'

But
% (@, z+b,7)* < (lz]+ Iylizg (@,&+b,7)* < BeX{A%2*+ B*p*).
Further, since || < ¥,

)? (b, 7)4h(b, m) < $ (b, y)4(b, y).

Therefore
—d(z, ~ $(0, %) g(0, 1) 95
y{:r e = Uta@n? 9(0.9) $(0, 7) nJ
= {I+&(x, y)lexple(z, y)},
where —e*(8A%x%+-9B%?) < ey(z,y) =< 0,
as desired.

Lemma 11. If |a| << 1, |b,| < 1,and a,b, = 0 for allv,and A < B, then

f dax j i _'y!.' —¢=.y) g=a LB o
a

7

= 1n® ~7rs1n“11'+0(0+€ )—|-O("‘;1_°i‘:i_m)+o(ﬂﬁ),

provided that 4642¢* - 7%, and nd < 1.
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Proof. By Lemma 10, since ¢(x, —y)—d(z,y) = 0 in the range con-
sidered,

-J‘ jeﬁ 4’1‘+H‘y'}¢'[‘r’ = ) ‘i’( :3}) d:mfy

< (143e) f f 9@~ =9 Y) yotarar s gy

eAv(1—2e), eBY(1-—-2a) —— 3 —_— "
e—HI -2p2U+Y__ o ~HT 2yTy 4y
— (1+3¢) f f dady,
Yy

. P
T AB(1—20)

This integral therefore does not exceed

where y

drdy + O(e).

T ol -ty 0 -t 2yay )
==
By hypothesis 40 < 7%, so that y << 1 and the integral converges. The
value of this integral is, by Lemma 9,
Imt—qeos~ly = Ir?—msin-L/(1—92).
But 1—?% = 724-0(0),

so that sin~1,{(1—y?) = gin—1r4 D(g).

The value of the integral is therefore at most

imt—msin~lr+0(o/7)+ O(e?).
Again

J' f g—0lA%? pﬂsy‘lﬁb{x: —y)—¢(x,y) dady
Yy

€ &
= (1—€¥) J‘ f sm——y%ywe“{awa?ﬂ%’—(ﬂ4ﬁﬂ'y’ dudy

o

> ff [e—i{{l+2a+16£*JA’.r9—2P:c:.r~'-{1 +20 18 By

__,é—-i{f}. +20416€%). 4% 12 Pry {1 +20+1Re ’,‘lB*yz}]x --1y -1 d"-ﬁdy R __

o@)+0( M) 1 ogya)
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Because the contribution from the range Jq J' cannot exceed
0 0

J‘ Jsg{x, —9—9=Y) 3,4,
o 0 i

it is easily verified that this does not exceed ,/(27)4n. And by Lemma 9

the contribution from J. f is O(ﬂ(—)-%—m). It follows from Lemma 9 that
€.

this integral exceeds
. g 5 vflog(eA)
Jn?—m o8-y, +O(e?) 40 +0(n4),
where

ys = 1— P{A2B*1+20+16€?)(1+ 20+ 18€?) |t = 724 O(o-+€?),

80 cos~ly, = gin—1r4 O(U-i—eg).
T

Lemma 12, If0<a, <1,0<b, <1,and 1 < A < B, then

1
s vlog A
J.p.(ﬂ) dt = _sin 1T+0( L )
0
Proof. Without loss of generality we may suppose T > 2/v4, because
in any case the first member cannot exceed unity. We now put n = 0,
o= 0,and e = 7*4-tin Lemma 11. This is permissible since with A% < }r
we have €2 < }r%asdesired. We then obtain on combining Lemmas 8 and 11

f [ S0 gy — e +O(~flog* ;*A*))_

The desired result now follows from Lemma 6.

4, In this section we shall extend the analysis of the preceding section
to the case in which there are four sums of the form } a, r,(¢). This time
we must define two functions u(f); p, () which is the same as u(f) of § 3 and
ot} whjch is defined in the same way but for the sums ¥ ¢, r,(f) and
¥ d,r,(t). The object of this section is then to obtain an estimate for

j paOpa(t) dt.
0
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Now it is intuitive that if ¢, and d, differ substantially from a, and b, then
the above mean value should approximate closely to

f n®)dt [ o) d,
0 0

and we shall in fact show that this is the case. This result is given in
Lemma 17. Some further specification of the parameters enable us to
simplify this result to the form in which it is applied in the sequel. This
is given in Lemma 18,

Lemma 13. If p,(t) ts the function u(t) of (3.1) and if py(t) is defined by
replacing a, by ¢, and b, by d, in (3.1), then
1

1 1
f pa(Opg(t) d = —3+} j palt) dt+ 3 f ualt) i+

0 0
1 T AB(z, y, 2, t)
[z
0

where bz, y,2,1) = ﬁ cos(a, x-+b,y+c,z+d,t), (4.1)
0
and
A(S}é e ‘ﬁ(‘r! y" %y t) _é(_‘x! 3{: 2, i)__é(mr _'_y! zr t)_¢($r y: —Z, t)_
—¢(z) y’ z, ‘_!’}—i_‘ﬁ(x! 3"; —Z, __t}+¢(x) “ys —_—7 t}+¢{x1 _y’z’ —t)'
Proof. The proof is similar to that of Lemma 6 and so we omit it.
Lemma 14, If 0<a, <1, 0<)H, <1, 0<e, <1, 0<d, <1, 4f
$(2,¥,2,1) is defined by (4.1),
$1(7,y) = (,4,0,0),  y(z,y) = $(0,0,2,y),

and if
Sae, <oAC, Sa,d, <odD, S, <oBO,
[} ' i} [1]
and 3 b,d, < oBD,
0
then

A®(x, y, 2, 1)
Ady(x, y)Ady(2, )
Jor ;i <e<e, 0<y<eg, npn<2<e 0<i<e, where, wriling
€ = max(e,, &),

Nz — T!afxs;'f: Zs t) == O(EE}-I—O[O(

= 2(1- my)expin, (4224 By 4 %2 D)),

(U+D]E,,+ {A+B]el)}
ndP 72 CQ

and M= 7?4.(3’: ¥,z t} .s-atisﬁea |1T4| "‘::‘: 2o.
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Proof. Consider first the ratio i
ﬁﬁé(m, Y, =, t) A¢1(x! y} g '&952(2: ‘) -
$1(4, 0)82(0, )/ $1(0,%) ~ $2(0,1)
We caleulate this by Cauchy’s mean value theorem, and, on differentiating
numerator and denominator partially with respect to y and ¢, we obtain
for ly'| <, || <4,

3,92, t) % b{tan(a,x+b,y"+c,24d,t')—tanb,y}

$1(2, ¥ )o(= V) 3 b,{tan(a, z+b,y')—tanb,y’}

X

g" d {tan(a, z4-b, y’ -, z+d, ¢')—tand, ¢}

) g d{tan(c,z-d,t')—tand,t'}
= II, x IT, x ;.
We consider first IT,. Now,
tan(a, -+, +o,2-+d,¢)—tanb, y’

__ sin@ateztd,t)
"~ cos(a,x+b,y +c,z-+d,t' )cos b,y
. i sing,x
= {1+0()} cos(a, x+b,y Jecos b, y’
" ¢, z+d,t
T e Ty sy
Hence »
%‘ b,(c,z+d,t')
=14+ " Lo
z b,sina,x
_ 1+O{€!U{C+D }-I—O( e2).
Similarly i R 1+o{ﬂ‘iﬂi}+ 0(e).
Finally I, = f]:{l—nt&n(a,x—f—bpy’)tﬂn{ﬂp z+d,t')},
o

and under our hypotheses
exp{—2(a, 2-+b,[y')(c, 244, |¢'|)}
< l—tan(e, z+b,y Jtan(c, z-+d,t")
< exp{2b,ly’(d,[t']},
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and hence

exp{—20(4%?4 B%?*+} C%2 4 D?)}

< I < exp{20(B%%+D%?)},
using the fact that
ACxz < $(A%?+0%?), ete.

We have therefore proved that

(3

BB B0 (1 Joxpln,(A%® + By 0%+ D), (4:2)

where

1 = mlostez, ) = Ofe)of2UTED) astf LB

71209 !
and 7, = n4(*, ¥, 2, t) satisfies [7,| < 20 _
Now ADY = AR B(z,, 2, ) —AZ bz, y, —2,1).
But Aﬁj'ﬁ("tr Y, —=z, t] _ ﬁi?ﬁ) 4’{3": Y, —zZ, t)

A2, )Bdy(—2,0) ~  Ady(x, y)Ady(z,1)
satisfies a similar inequality to (4.2) and combining these two results we
get the desired inequality. '
Lemma 15. We have

J' j f A% s
xyzt
0

[51 [ 71 €3 “A(9)¢
_ fdmfdyfdzf7dxdydzdt+0(q1A+7320)+
Lil 0

loge, 4  loge, B lnge log e, D
0 1 1 2 2
+ { e d + e B & + gD ]
and

| j A1 drdy — f f s dody + 00, )+ 0( 54 BB,
1
0
Proof. We have
jb [ P dvdydedt
J [
o "

ant1 Mt e i . .
_ _Eﬂ Z smA,,xdfo‘J' slanysmC’kzstktdydzdt
2 = x yzt

)l Al

2_3(’2’) rzﬂsgn (4, B, c,,m! (“‘“B)da
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Hence the modulus of the first member does not exceed

gntl &
2nnlgl Ayl = 2%y av (| > e,a,)) = Ofny, 4).

The proof that

[0 [ 35 = ofe22)

is similar to that of Lemma 7. It is now evident that the first inequality
of the theorem follows from these two inequalities and two similar ones
where the variable z plays the role of x in the above inequalities.

The proof of the second inequality of the lemma is on the same lines.

LeEvma 16. We have

e

— Jmd—md(sin-tr,+sin—try) - 2n® sin—Lr, sinlr,+

cr-!-el o€l ﬂ-"log(elA} vlog(e, C')
+f HE TR

1 Ta

+0(ny A+, O)+0(e2)+

&(C+D) . ¢(A+B)
O 2( 1 ],
+ P{mﬁP T wCQ}

>a,b, 264,
where Y a,c, < cAC, ete., and P = ¥ vQ = e

Proof. By Lemma 14

€1 L3 €3 €
A®
o] s |
T 0 Ta 0
€ € A £y € A
0 ]

) J J. ‘3951 el +BYY) dady f f _Aﬁﬂ.{c&umﬁ} dzdt +
2t
7 0

L)

+0(eﬂ)+0{ o

._[_
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And by Lemma 11 this is
2{?;— msin~tr, - O(CH—EE) -+ CJ’(~—-—-—-—‘.‘%g{.:iL A)) 4 0(my A}} .4
€

T

s . T /
X {;-— wsin~lr,+ O( +£2) = O(x log(gg )) +O(n, C]] I

Ta €2
0(et)+-0lo &(C+D) EI(A+B))},
LR {(mAP T 0g
which gives the desired result.
Lemma 17.
1 1 1
[ eat)pat) dt = [ watt) dt j ualt) dt +
0 0
«!’IogA vlog
+O(TiAi) ( i(j?‘+
cr-{—sl a—|—e2 vlog(e, 4)  log(e, C
o o R
520[0—1-1)) 3 e, o(A+ BN\
+ol[2 G2+ of 2 G2

Proof. We have merely to combine Lemmas 12, 13, and 16, and at the
same time choose x, and 7, so that

mid — {egamw;}% %C=:ﬁa%+m];,

and observe that e < ?/r.
The following lemma is obtained from Lemma 17 by further specification
of the conditions.

Lemwma 18. If, in addition to the hypotheses of Lemma 17, we suppose that
(i) A< B<24; C<D<20; 1<4<C;
i P>} Q=1

and write T min('l'l, 'Tg),
then
g i ; Viog 4
0 2 H
+ O(ctlog 1/a)+ O(a/7).

Proof. Without loss of generality we may suppose r > 2/V4, o < 7,
gince neither the first member nor the first term of the second member can
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exceed unity. After making the obvious simplifications in Lemma 17 we
obtain three terms involving ¢;,. They are
z vlog*+(e; A)
£ E7\&

off), o(=ELE), oo,
and we proceed to choose ¢ 80 as to make these three of the same order
of magnitude. We distinguish two cases, (i) o < 1/742, and (ii) ¢ > 1/74%
In case (i) choose ¢, = 74 %, and the three terms become

Vlog 4
o(__ﬁ 5 )
In case (ii) choose ¢, = 1/a*4, and then under our conditions the three
Yerts. ard O(otlog 1/o).

The terms involving e, can be treated in the same way and in view of
conditions (i) and (ii) we obtain the desired result.

5. We turn now to the special case of our theorem. We write 8 = (logn)t
and define p, and p, so that

(148) 71 < 3 < (14-8) P,

(14+8) 7 < o < (148)25.

We define x,=1—(148)?, p,<p<p,

] =
Tpye = % Tpr+1 = L.

We further define p, and p, in the following way:

(14-8)-7: < exp{—(logn)}} < (14-8)-P++1, (5.1)
and P3 = P1—Pe-
Then it ig clear that py ~ (logn)i. (5.2)

Then, by Lemma 5,
1
f $ (¥, ()—N4) dt = Oflogin(loglog n)¥),
P=Ppo

and so i {N(t)—N3(t)} = of{logtn(loglog n)},

except for a set of ¢ of measure at most o {(loglogn)}. Using (5.1) and the
fact that 0 <L N}(t) < 1, we see that outside this exceptional set

i N,(t) = i N¥(t)+o{login(loglog n)}. (5.3)
%

p=ps
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We shall now apply the results of the two preceding paragraphs to obtain
an estimate for the first sum in the second member, Write, for

P <P < g <Py,
bv: &F)=%+1r

¢, = oiP) = x, d, = d@ = Ty y1e

l‘.'i,, o as;pj e .’.E;,
Then, for p, << p < p,,
af < {1—(14-8) )" ~ {1—n-Teloemi}n
< exp{—edoemt),

1—gln+e 1 1
s A s s 1 /2
Hence A= AP = =~ (—ai) ¢2(1+3)P ; (5.4)
Further we may take o = (14-0)-a-»e, (5.5)
while
n 2
T,y
SRl Ly (2_: ? }H-l) i {l_x;)(l_x;-ﬂ) T (@p1—2p)* ,
P ﬁ - Eu: Y (A= %y )* (e
]

so that . S 5 ]

1—z, 2,4 T (1+38)P+1 1 —TpTpa
~ 3{2 45— (14-8)-7}-1,
That is T, = -+ 0(32), (5.6)
and also sin1r, = 33+ 0(32).

By Lemma 12 and (5.4) we have
1

J‘ () dt = ;rsin—l'rp-{-(){v’p $4(14-8)-7),
0
But the function p,(t) of § 3 is now identical with the function N3(t), so

uging (5.1) and (5.6) we have

1
8 -
I Nii) dt = = + 0O(3%), (5.7)

LU ]
1
for p > p,. Writing my, = J. N(t) dt,
1}
we have from Lemma 18, (5.4), (5.5), and (5.6),

1
| N0Ng) dt = my,m+O{psH(1+8)»5}+

' +O(g—p)(1+5)~a-219) -
+O{3-1(14-8)-a-»12) (5.9)
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for p, < p < g < p;. Consider

= 1
<2 mfk E J' NYONE(E) dt —m,, mq]+
D=D; d=ps+k o
P 1
Tak *
= E]. + Eg,

where k = [glog%]. But by (5.8)

—&
%, = O(pd) 5 Np(1+8)70+

»=I

ps—ik
+00) S (g—p)(1+-8)-a-pVo
k4 +k

=Ps §=Dp

+0E’S 3 (4a)amn

P=Psg=p+
= Ofp}3-5%(1+8)-}+
+Ofpy(k-+51)(14-8)46)+ Ofp, 3-2(1-+5)47}.
Using (5.1) and inserting the values of k and 3, we get
Z, = O(py)-
On the other hand, since 0 << Nj(t) < 1,
1

1
[ My dt < [ N30 de = 0@)
0 Q0

by (5.6) and (5.7). Therefore
Z, = O(p, k3) = O(p, log 1/8).
We deduce that

L 2
I [E (N:‘,(t)—m,,}l dt = O(p,log 1/8) = O(logtn loglog n),
0 P

and hence that

? {N;(t)—mp}[ = o (lognloglog n),
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except for a set of ¢ of measure at most o{(loglogn)~*}. Combining this
with (5.3), we see that, outside the exceptional set,

3: Ny(t) = % m,+o{loginloglog n},
P=Do a
and using (5.5), (5.8), and (5.7) that this expression is

1
5 (P3—p2)8+0(p4 3%)+o0{logn loglog n}.

But Ps—Py = P1—2p, = §-'logn+O(login).
Hence, outside a set of measure at most o {(loglog n)-¥}
pﬁ N,(t) = i]og n+-o{login loglogn}.
D=0y 2'?!‘
But the first member denotes the number of zeros of the equation parameter
tin the range (3, 1), and as explained in § 1 this completes the proof of our
theorem.

The Hebrew University, Birkbeck College,
Jerusalem London
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