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1 . SOME time ago Littlewood and Offordt gave estimates of the number of
real roots that an equation of degree n selected at random might be expected
to have for various classes of equations in which the coefficients were
selected on some probability basis . They found that, when each coefficient
was treated on the same basis, the results were practically the same in all
cases considered and agreed with those found for the family of equations

fn(x) = 1+ElX+E2x2+. ..+En xn = 0

	

(1 .1)
in which each E,,, v = 1, 2, . . ., n, is + 1 or -1 with equal probability .

The object of this paper is to give a refinement of their result . We shall
prove
THEOREM . The number of real roots of most of the equations

n
fn(x) _ I Ey x" = 0

0

is

	

2log n+o{(log n)ilog(log n)} .

	

(1 .2)
7r

The exceptional set does not exceed a proportion
o {(loglog n) - }

of the total number of equations .
Dr. and Mrs. A. D. Booths have kindly worked out the number of roots

of the 256 equations

	

=l±x±x2± . ..±xg - 0
of degree 8 . They find that 58 have no real roots, 190 have 2 real roots,
8 have 4 real roots, and none has more than 4 . The average number of
roots is thus 1 .609, but if we treat those with 4 roots as exceptional then

the average number of roots for the remainder is 1.532 . 2 log n is 1 .324
7r

for n = 8 . . Thus there is some reasonable agreement with our result even
for n = 8, although the number of roots would appear to be slightly in
excess of our estimate .

t Proc. Cambridge Phil . Soc. 35 (1939), 133-48.
$ K. H. V. Booth, `An investigation into the real roots of certain polynomials,'

Math. Tables and Aids to Computation, 8 (1954), 47.
Proc. London Math. Soc . (3) 6 (1986)
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Broadly the idea of our proof is the following . In the first place it is

sufficient to prove that the number ofroots offn(x) in (2,1) is 2 - log n, plus

the error term given . For all the roots must lie in I < Ix I < 2, and to each
root of fn(x) in (1,1) there corresponds a root of f.(-x) in (-1, --1) and
conversely. Also iffn(x) has a root in (1, 2) then xnfn(y) where y = 1/x has
a root in (2, 1) .
Suppose now that a < x < /3 is an interval in (1,1) and that fn(a) > 0

and fn (f3) < 0 . It follows that ff(x) has at least one root in (a, /3) . Our
procedure is then to divide (2,1) into a carefully chosen number of intervals,
and then (i) to estimate the probability that the number of changes of sign

off (x) at the end-points of these intervals differs from 2logn by more than
7T

the error term in (1.2), and (ii) to show that the number of changes of sign
corresponds closely to the number of zeros . Stage (ii) is carried out in § 2 .
In § 3 we calculate the probability that fn(a)fn (/3) < 0 for given a and /3
and in § 4 the probability that we have simultaneously fn(a)fn(P) < 0
and fn (a') fn(~') < 0 for intervals (a, fl) and (a', /3') which are not too close.
With this information we are able in § 5 to find both the average and the
standard deviation of the number of changes of sign at the end-points
of our set of intervals .

n
2. We write

	

f (X,
t) _ I r,,(t)x",

0

where

	

r0 (t) =
k

1, 0 < t < 2,
-1, 2 < t < 1,

r o(t+1) = ro(t),

	

rn(t) = r o (2nt) .

We denote by N(t) = N(t ; a, /3) the number of zeros off (x, t) in the interval
a < x < /3 reckoned according to multiplicity except for zeros at a and /3
which are reckoned according to half their multiplicity; and further write

1 iff(a, q (fl'(/3, t) < 0,

I iff(OZ, t)f (/3, t) = 0,

0 if f(a,t)f(f,t)>0 .

It is clear that if N*(t) > 0, f (x, t) must have at least one zero in a < x < /3,
so that

	

N(t)-N*(t) > 0.

In this section we shall show that

av{N(t)--N*(t)} < Cy2{log(1/y)}1
t

N*(t) = N*(t; (x, /3) =
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where y = (fl-a)min{n ; This result is contained in Lemma 4.

It enables us to replace the function N(t) by N*(t) when estimating the

numbers of zeros .
We shall suppose that < a < < 1 and that y < 1.

LEMMA 1. If f (x, t) has k zeros in a < x < P, then outside a set of measure

at most y4
sup If(x, t) I < C(k!)yk{log 1/y}1 min{,\/n, (1-#)-1}

a<x<-9

where C is an absolute constant.

Proof. If f (x) has k zeros in a < x < P, then f(v)(x) has k-v zeros for
v = 0, 1, . . ., k . Left, be a zero of f v(x), v = 0, 1, . . ., k-1 . Then

x
f k-1(x) =

J
f (k)(u) du,

tk-1so

	

I fk-1(x)
I< ! X-4-111

	

x
f

I f (k)(u)12 du
tk-1

Similarly

and consequently

1
fk-2(x) I

Now write, for shortness,

N

	

1
(~-a) 4( J I f (k)(u) 12 du 2 .

w

x

f f(k-1)(u ) du
tk-z

(fl-a) sup If(k-1)(x) Ia<x<~

Sr

	

1
(fl-a)1

J If (k)(u) 1 2 du
2 '

a

P

	

1
sup I f(x)) < (P-a)k-1 J I

f (k)(u)12 du ~ .

	

(2.1)
a~x~~ a

n
f (k)(u, t) _ I rv(t)a v0

and let (9 be an arbitrary set of values of t. Let El be the set oft for which

f(k)(u, t) 1 2 < A(' av)

and ES the set for which

28-2A ( a2) < I f (k) (u, t) 1 2 < 28-1A( av) .

31
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Then for a given u

f f(k)(u, t) 12 dt =3~ f If(k)(u, t) 12 dt
e

	

E,n(E

A (m(fl + 28-1m(E8 )) ( av) .

Now by Khintchine's lemmat the set for which

I n rv(t)av 1 2
> A( n av)

0

	

0
has measure at most Ce-1A, where C is an absolute constant, and so

m(E8 ) < C exp(-2 8-3A) .
00

Hence

	

12s-1m(E8 ) < Ce-1A ,
2

and so, taking A = - 2log m(f), we get

f(k)(u, t) 12 dt < C( I av)m( ) log{1/m( )} .

Now, by a simple calculation,
n 2

	

1 2 k

	

(2k)!
I av < 2 x(1-x) 2k+1

provided that x < 1, and in any case
n

av < n2k+1j'

	

,~0

Hence

	

f du f I f (k)(u, t) 12 dt < C%m(c) log{1/m((E)},
a

	

(~

where

	

W = min n2k+1 ;

	

(2k)!
2 2k(1-x) 2k+1

Let (9 be the set for which
Pf If(k)(u, t) 1 2 dt > CKW.
a

Then

	

K91m((9) < %M((9) log{1/m((9)},
and so

	

log m(e) < -K,
or

	

m(e) < e-K .

Hence outside a set of measure at most e-a we have, by (2.1),
sup Jf(x, t) I < (fl-a)k-1{CK9X}1

a<-x-<#

CK12-k{(2k)!}lykmin{n1 , (1-,8)- 1},

f A. Khintchine, `Über dyadische Brücke', Math. Zeit. 18 (1923), 109-11 .
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where

	

y = (P-a) min{n, (l
Now put K = -4 log y ; we get

sup l f (x, t) I< C 2-k{(2k)!}lyk(log 1/y)1 min{Vn, (1-,8) -1}
outside a set of measure at most y4. This completes the proof of the lemma .
LEMMA 2 . For given x

I f(x, t) I > K min(Vn ; (1-x) -i},
except for a set oft of measure at most 1OK .

Proof. By a theorem of Erdös,t for any given number C,
I f (x, t) - C I > xm,

except for a set of t of measure at most ,J(2/,rm) . If we choose m so that
x > 1-1/m, and consequently

xm > e-1 ,
we deduce that

	

I f (x, t) - C I > e- 1
except for a set of t of measure at most 2~r/Im . Giving C the values

0, + 2e -1 , + 4e-1 , + . . ., + [K'Vm]e -1
we infer that

	

I f (x, t) I > K'Vm

except for a set of measure at most 1OK . Furthermore, m can be chosen so
that m > min{n, (1-x)-1} and so the result follows .
LEMMA 3 . The set of values of t for which f(x, t) has k or more zeros in

a < x < 18 has measure at most Cy2(log 1/y ) 1 if k = 2, and at most
Cy3k-2{log(k/y)}1 if k > 2 .

Proof. We apply Lemmas 1 and 2 in the cases k = 2 and 3. In Lemma 2
take K = C(k!)yk(log 1/y)1, and we shall then have

I f (fl, t) I > C(k!)yk(log 1 /Y)i min{Vn, (l -P)-1},
except for a set of measure at most C(k!)yk(log 1/y ) 1 . Hence by Lemma 1,
iff (x, t) has two or three zeros in a < x < P, then f (x, t) must belong to a
set of measure at most y 4+C(k!)yk(log 1/y ) 1, where k = 2, 3 . This proves
the lemma in the cases when k is 2 or 3. If k > 3 we choose p so that

2p < k < 2p+1
and divide the interval (a, f) into 2p -1 equal parts. Then one of these
intervals must contain 3 zeros . Denote this interval by (ap , PP ) and let

yp = (fp -ap) min{n, (1-1p ) -1} .
Then, by the above result, the chance of this interval containing 3 zeros
is at most

Cyp(log 1/yp )1 < C 2Y
	 1 log 2p-12

~,
.

Y
f P. Erdös, `On a lemma of Littlewood and Offord', Bull . American Math . Soc. 51

(1945), 898-902 . Cf. Littlewood and Offord, Mat. Sbornik, x .s. 12 (1943), 277-86 .
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Hence the chance of one or other of the 2p -1 intervals containing 3 zeros
is at most

	

3

	

2p- 1 1

	

3

	

k 1

C

	

log	 2 < 4C Y2 log- 2 ,4p-'(

	

y

	

k

	

y

and this completes the proof of the lemma .
LEMMA 4. For a < x < g

av{N(t)-N*(t)} < Cy2(log 1/y ) I,
t

where C is an absolute constant .
Proof. Write N(2)(t) = number of zeros in a < x < f, reckoned accord-

ing to multiplicity, if this number exceeds one, and 0 otherwise .
Then

	

N(t)-N*(t) < N(2)(t) .

But

	

avN(2)(t) = j, 2p-1m(Ep ),
t

	

p=1

where EP denotes the set of values of t for which f (x, t) has at least 2p zeros
in a < x < f . Hence using the result of Lemma 3 we get, after a simple
calculation,

	

avN(2)(t) < Cy 2(log 1/y)j,
t

as desired .
We shall now apply the above results to obtain an estimate for the error

made by replacing N(t) by N*(t) in estimating the zeros off(x, t) in (0, 1) .
Since for I x < 1

	

N
I f(x, t) I> 1- 2-n = 2-N ,

1

all zeros of f(x, t) in 0 < x < 1 lie in 1 < x < 1 and so we confine our
attention to this range . We choose a positive number 8 and define p o

1-apo = 2,

	

1-ap = (1+8)-io (PO < p < p1),

1-Pp . = 0,

	

1-flp = (1+8)-p-1 (p0 < p < pi) .
Then it is clear that the intervals (ap , Pp) defined for po < p < pi together
cover the interval 2 < x < 1. Clearly

yp = 1
- a p

- 8 (PO < P < p1) ,
p

while

	

ypo < 8,
and

	

yp l = ( 1-ap1)n < 2 .
We denote by Np (t) and Np(t) the functions N(t) and N*(t) for the ranges

up < x < Pp. We have

and bp1 y (1+8)-PO < 2 < ( 1+6)-po+1,
and (1--8)- pl < 1/2n < (1-i-8)-p1+1,
and ap and fp by
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LEMMA 5.

av
[P=
I {NV(t)-Np(t)}] < Clogn .8(log 1/8)1,

t

	

o

where C is a numerical constant .

Proof. By Lemma 4,

av{Np(t)-Np(t)} < Cyp(log 1/ yp)J .

Hence

	

av

	

INN(t)-NN(t)} < C(p1-p 0)82(log 1/8)J+C,

P=P*and the desired result follows .

3. In this section we estimate the averages of the function N*(t) defined
in § 2 . We shall give our results in a somewhat more general form than in
the preceding paragraph because many have interest of their own. These

n

	

n
results deal with the sums I a„r„(t) and I b„ r,,(t) in which the coefficients

•

	

0

satisfy Ia,, I < 1, jb,, J < 1, and in certain of the lemmas a,, b,, > 0 . This
latter condition is equivalent to assuming a„ > 0, b,, > 0. We introduce

the function

1, ('a, r,,(t)) (' b,, r,,(t)) < 0,
•

	

0

µ(t) _

	

( I a,, r,,(t)) ( I b„ r„ (t)) = 0,

L
0, (

•
a„ r„(t)) ( Y b„ r„(t)) > 0,

	

(3.1)

1

and the main object of the section is to obtain the evaluation of f µ(t) dt
0

given in Lemma 12 .

LEMMA 6 . If µ(t) is defined as in (3 .1), then
1

	

oo

f µ(t) dt = 2+;2 f f 0(x, y)	
xw(x,

	 -y) dxdy,

0

	

0
y

n
where

	

c(x, y) = 11 cos (a, x+b,, y) .

	

(3.2)
0

Proof. This result follows from a standard theorem on the characteristic

function. It may be proved directly as follows . There are 2n+1 distinct
n

sums I a,, rv (t) . Writing
0

5388 .3.6

.,6

	

i
Ak

	

avrv 2_n+1 ,

	

k = 1, 2, . . ., 2n+1 ,=

L
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and denoting the corresponding expression in which a, is replaced by b,
by Bk , we have

2n+i

4(x, y)-9(x, -y) _ - 2n

	

2 sin(A kx)sin(B k y) ;

	

(3.3)
k=1

thence
00

1
ff

O(x, y)-qS(x,-y) dxdy
?T 2

	

Xy
0

_ - n 2
2 211+ 1 °° sinAk x dx

CO
sin Bk y dy2+7r L J x

k=1

	

f
y0

	

0

1

	

1 2"+' k-j
y -2+ 2n+1 M 2n+1

k=1

and this is the desired result.
LEMMA 7 . If the numbers a„ are real and satisfy I a,,I < 1, and if

n
A2 _ 21 a,,,

0

then

	

av 1 log+A 5n

	

~	
(max 1,l I r„(t)a„()

	

A +A

Proof. Without loss of generality we may assume A > 1, for if A < 1
the conclusion is trivial since the first member cannot exceed unity . We

n
denote by F(x) the distribution function of I r,(t)a, . Then

0
1

Write

	

G(x) =	
(2~)

f ea-Y'A

then by a theorem of Berry, - in view of our condition that Ja„ I < 1,

F(x)-G A) < A .

The second member of (3.4) is then the sum of
CO

I1 = f min 1,
-00

1

av max (1, I

	

r,,(t)avl

	

-00
)j = '

min 1, 1 dF(x) .

	

(3 .4)
-F XI)

Ixl) d 1 F(x)-G1Al },

t A. C. Berry, `The accuracy of the Gaussian approximation to the sum of
independent variates', Trans . American Math . Soc. 49 (1941), 122-36 .
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and

But, on integrating by parts, we get

')I,= {F(x)_F(_x)_G(+G(_}x2dxA

	

A - < A,
1

while it is easily verified that
2 log A 1

12<	 A +A
and we get the desired result on combining these two inequalities .
LEMMA 8 . If O(x, y) is defined by (3 .2) and if la, I < 1, 1b,, I < 1, then

oo

	

E

ff
O(x, y) ~O(x,-y) dxdy =

ff
O(x, y) ~O(x,-y) dxdy +

y y
0

	

0

where

Now
00

A2 -1 -

00

J min 1, 1
FXI)

Hence

	

jl <
2n11~r

~'

I

sin0 d0 .
k==

IEAkI

aa(A).

I'
sin 0 dO
0

I

Hence

	

~I1 < av	1	 < log+(2 eTrA)
+,,A'

10
max(1, errAk )

	

e~,A
n

where A 2 = 57 a2v, by Lemma 7 .
0

co .0

A similar result holds for the integral f dx f dy but with A replaced
0

	

E
n

by B, where B 2 = bv. Writing A 1 = min(A, B), we get the desired
0

result .

7T

max(1, 1 2 e'rrA k j)

+ 0 log+(2E7rA1)

2€irA l

	

'

min{ I av, bv} .

Proof. If e > 0, we have from (3.3)
00 00

11
=

J
dx

J
O (x, y) -O(x,-y) dyxy

E

	

0

- -
1 2-+1 sin Ak x dx sgn(Bk) .

2n+17,
:~ f x
k=1 _
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LEMMA 9 . If 0< y < 1 and
cc 00 e -1(x2 -2yxy+y 2)- e-4(x2 +2yxv+y 2)

I (Y; A) = J dx

	

xy

	

dy,
A

	

0
then

(i) 1(y ; 0) = -17T2-COs-1y,

(ii) I(y ; A) < C~(lA`4) for A > 2,

where C is an absolute constant .
Proof. This is a matter of evaluation which we leave to the reader.

n
From now on we shall employ the following notation . We write A 2 = av,

n

	

n
0

B2 = b2 , P = a„ b,,, and T 2 = 1-P2/A 2B2 . By Cauchy's inequality
0

	

0
T > 0 . For convenience we shall suppose that A < B . We shall also
assume that for all v, a,, b,, > 0 .

LEMMA 10. If O(x, y) is defined by (3.2) and

g(x, y) = exp{-z(A 2x2+2Pxy+B2y 2)},

then for all x, y satisfying 0 < x < E, 0 < y < E, where e < 1, we have

f (x, y)-O(x,-y) _ {1-} 1E, (X, y)}eE2(x.u),
g(x, y) -g(x, -y)

where -E2 < E1(x, y) < 3E 2 and

-E2(8A 2x2+9B2y 2 ) < E2(x, y) < 0 .
Proof. We have

O(x, y)/O( 0,y)-O(x,-y)/O(0,-y) - On {o(x , -q)/O(0,,)}
e-J(AZx2+2Pxy)-e-J(AZx2-2Pxy)

	

-Pxe-j(Ax2+2Pxf) '

	

(3.5)

for some -q satisfying I'7I < y. Now

8 (O(x, q),

	

_ O(x''7)

	

b~,{tan(a„ x+b„ -q)-tan b„ q} .
On l0(0 )1

	

0(0' ) 0

But

	

tan a x+b

	

tan b

	

sin a„x
(

	

"~)-

	

( "~) - cos(a,,x+b,,7))cos(b,,')'
a n d if 0 <

	

<E,0<x<E,0<a„<1,0<b,,(1,wehave

sin e
E

a,,x < tan(a„x+b,,'q)-tan(b„7)) < a,,x[(1-2E2)(1-2E2)]-1,

n,
and so

	

I b,,{tan(a„ x+b,, -q)-tan b„ 711 _ {1 + e 1 (x, y)}Px,
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provided that E < 4 . Hence the second member of (3 .5) becomes

O( x, q) e 1(Ax2 +2Pxrn ){1-+1(x, y)}
~(0 , ~I)

and we deduce that

f(x, y)- O(x,-y)

	

0(O, y) e-IB212 0(x,q)
g(x, A - g(x, - y)

	

{l+ E
1
(x, y)} e_	BZ 2 0(0,

	

,
-0 g(x, ~I)'

where

	

-E2 < El (X, y) < 3E2 .

We now have to estimate the ratio 0(x, ,q)/g(x, -q) . For this we require
the elementary equality

logcos 0 = - 202-04 (0),

where 0(0) is a positive increasing function of 101 satisfying 0(0) < 1 for
0 < 1. From this it follows that

rj• cos 0,, = exp{-2 0v -n 0v • f̀'(ev)},
•

	

0 0

and so, since E < 4,

`N(x' -0 =

	

n

g(x, ~)

	

exp{-
0

(av x+bv -q) 40(av x+bv -q)} .

But
•

	

nI (av x+bv -q) 4 < ( IxI+iyi) 2 I (avx+bv q)2 < 8E 2{A2x2+B 2,g 2} .
•

	

0
Further, since i < y,

•

	

nI (bv -7)4,(bv,1) < I (bv y)41(bv y) .
•

	

0
Therefore

Cx,y) -c, (x,	 -y) - {1 +E1(x, y)} c(0, y) g(O,q) ~(x, q)
g(x,y)-g(x, -y)

		

g(O,y) 0(0"q) g(x, -0
_ {1+E 1 (x, y)}exp{E 2 (x, y)},

where

	

- F 2(8A 2x 2+9B 2y 2) < E2(x, y) < 0,
as desired .

LEMMA 11 . If la, I s 1, 1b y I < 1, and a v by > 0 for all v, and A < B, then
•

	

E

f
dx

f
O(x, J)-- O(x, y) e± 2x2+B av2 ) dy

0

= 2~r2-7rsin-1T+0
a
rE2 +0

~logA
A)

+0(nA),e

	

)
provided that 4a+2E2 < T2 , and -qA < 1 .
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Proof. By Lemma 10, since O(x, -y)-~(x, y) > 0 in the range con-

sidered,

E E

f ea(A2x2+B2y2)Cx' -y) O(x,y) dxdy
,~

	

xy
7] 0 E

(1+3E2)
J J

g(x' -y)-g(x,y)ea(A2x2+B2y2) dxdy
xy

0
EAJ(1-2a), EBJ(1-2a)

_ (1+3€2)

	

ff

	

e-1(x2-2yxy+2/2)-e-1(x2+2yxy+y2)

y

	

dxdy,
0

_ PY
AB(1-2 4

This integral therefore does not exceed
co

where

0

By hypothesis 4a < T2 , so that y < 1 and the integral converges . The
value of this integral is, by Lemma 9,

27T2- 7T cOS-1Y = 27T 2-7T sin-1 J(1-y 2 ) .

I-y2 = T 2+O(U),

so that

	

sin-1V(1-y2 ) = sin-1T+ 0 Q
.

But

77 0

ff e-
j(x2-2yxy+y 2)-e-j(x 2+2yxy+y 2)

E E
-9(x' y) e-(a+8E2)A2x2_{a+9E2)B2y2 dxdy(1-E2)

J J y

71 0
00

e -}{(1+2a+16E2)A2 x 2-2Pxy+(1+2a+i8E 2)B2 y 2}-fi [
0

dxdy + O(E 2 ) .

T

The value of the integral is therefore at most

2Tf2-7T sin-1T+O(U/T)+O(E 2) .
Again

E E

ff e-a(A2 x 2+B2 y 2) 0(x ' -y) -0(x,y) dxdy
xy

-e-j{(1+2a+16E2)A2x2+2Pxy+(1+2a+18E2)B2y2}]x-1y-1 dxdy +

+O(E2)-}-0 Vlog(EA)

)+0(A) .
77EA)
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71 E

Because the contribution from the range f f cannot exceed
0 0

yf E

f 9'(x, -y)- g(x, y)
dxdyf

	

xy
0 0

it is easily verified that this does not exceed 4 f(2Tr)Aq . And by Lemma 9
OD OD

r r

	

Vlog(EA)the contribution from f J
is 0	

eA
. It follows from Lemma 9 that

e 0
this integral exceeds

1172-7rCOS-172+0(€2)+0
Vlo A)

+O(-7A),
where

Y2 = 1-P2[A 2B 2(1+2i+16E2)(1+2a+18E 2 )] -1 = T 2+ 0(a+E2),

so

	

COs-1Y2 = sin-1T+0 a+E2 .
T

LEMMA12.If0<a„<1,0<b„<1,and1<A<B,then

1

f µ(t) dt = 1 sin-1T+0
VT A1

0

Proof. Without loss of generality we may suppose T > 2/VA, because
in any case the first member cannot exceed unity . We now put -q = 0,
a = 0, and E = T*A- 1 in Lemma 11. This is permissible since with A - 1 < 17
we have E 2 < IT2 as desired. We then obtain on combining Lemmas 8 and 11

0(x,- y)- O(x,y) dxdy = $IT2-Tr sin-l-r+0
flog+(T1A1 )

ff

	

xy

	

T1A1
0

The desired result now follows from Lemma 6 .

4. In this section we shall extend the analysis of the preceding section
to the case in which there are four sums of the form J a, rv (t) . This time
we must define two functions µ(t) ; µ 1 (t) which is the same as µ(t) of § 3 and
µ 2(t) which is defined in the same way but for the sums I c, r v(t) and

d„ r,,(t) . The object of this section is then to obtain an estimate for
1

I µ1(t)j2(t)dt.
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Now it is intuitive that if c, and d„ differ substantially from a,, and b„ then
the above mean value should approximate closely to

1

	

1

f µ1(t) dt f µ2(t) dt,
0

	

0
and we shall in fact show that this is the case . This result is given in
Lemma 17. Some further specification of the parameters enable us to
simplify this result to the form in which it is applied in the sequel . This
is given in Lemma 18 .
LEMMA 13 . If /hl (t) is the function µ(t) of (3.1) and if 1t2(t) is defined by

replacing a,, by c,, and b„ by d,, in (3.1), then
1

	

1

	

1

f

	

f

	

fµ1(1)µ2(t) dt = -4+ 2 f pµ1(t) dt + I µ2(t) dt +
0

	

0

	

0
CO

+ 1

	

0(3) (x, y, z, t) dxdydzdt,2,r4 5555	xyzt
0

where

	

O(x, y, z, t) = rj cos(a„ x+b,, y+c„ z+d,, t),

	

(4.1)
0

and
0(3)0 _ O(x, y, z, t)-0(-x, y, z, t)- Y'(x, - y, z, t) - `t'(x, y, -z, t)-

-O(x, y, z, -t)+¢(x, y, -z ) -t)+c6(x, -y, -z, t)+¢(x, -y, z, -0-
Proof. The proof is similar to that of Lemma 6 and so we omit it .
LEMMA 14 . If 0<a„<1, 0'<b,,<1, 0<c„<1, 0<d„<1, if

O(x, y, z, t) is defined by (4.1),

01(x, y) = q(x, y, 0, 0),

	

02(x, y) = 0(0, 0, x, y),
and if

and
then

n

	

n

	

n
a, c, < aAC,

	

I a„ d,, < aAD,

	

b,, c,, < aBC,
0

	

0

	

0
n
.1 b,, d,, < aBD,
0

O(3)0(x,
y, z, t) = 2( 1 +-q3)exp{ ,g4(A 2x2+B2y2+C2z2+D2t2 )},001(x, y)A02(z, t)

for ?1i < x < El, 0 < y < El, 772 < z < E2, 0 < t < E2 , where, writing
e = max(E., E 2 ),

% = n3(x, y, z, t) = 0(E2)+o a (C+D)E2 (A+B)E 1
771 AP + 712 CQ

and 7)4 = 74(x, y, z, t) satisfies 17741 < 2a .
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Proof. Consider first the ratio

	

'
wt)0(x, y,z, t)

	

0 1 (x, y) 002(z, t)
0i(y, 0)02(0, 0 010 , y) '2T

We calculate this by Cauchy's mean value theorem, and, on differentiating
numerator and denominator partially with respect to y and t, we obtain
for Iy'I < y, It'd < t,

n

0( x, y', z, t')

	

I bv{tan(a„x+b„ y'+c i, z+dv t')-tanb vy'}

01(x, y,)02(z, t') X

	

	n

	

x
by{tan(a v x+bv y')-tan by y'}

We consider first 112 . Now,
tan(a vx+b v y'+cvz+dv t')-tan by y'

sin(a„ x+c,, z+dv t')
cos(a,,x+b,,y'+cv z+d,, t')cos b,, y'

= {1 + 0(,E2)}	sinav x
cos(avx+bv y')cos b '„ y

1 +0j	
CV

z+dvt'-}- {

	

()} cos(a vx+b„ y')cos b,, y'
n
I b v (c vz+dv t')

1 + 0 n	+ O(E2 )
b y sina v x

0

E2a(C+D)- 1+0( xAP + 0( .E 2) .

Similarly

	

II3 = 1+0	
~ ZCQ

Ela(A B)~ + O(E2 ) .

n
Finally

	

111 = 11 {1-tan(a,, x+b,, y')tan(c,, z+d,, t')},
0

and under our hypotheses
exp{-2(a,,x+b„ ly' j)(c,, z+dv I t' I )}

1-tan(av x+b,, y')tan(cv z+dv t' )
exp{2bv jy' ld,, It' I},

Hence

0

X

n
I d v{tan(av x+bv y' +cv z+dv t')-tan dv t'}
0

n
I d,,{tan(ci*, z+d,, t')-tan d,, t'}
0

= Ill Xl12 X113 .
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and hence
exp{- 2u(A 2x2+ B2y 2+ C2z2+D2 t 2 )}

111 < exp{2Q(B2y 2+D2t2 )},
using the fact that

ACxz < J(A 2x 2+C2z 2 ), etc .
We have therefore proved that
	z ) (x,y, z, t) - ( 1+7)3)exp{7)4(A 2x2+B2y 2+C2z 2+D2 t 2)}, (4 .2)

001(x' y)A02(z' t)
where

% - %(x, y, z, t) = O(E2)+0 E2a(C+D)+ E1 Q(A+B) ,
{ 'q1 AP

	

2CQ	 }'
J~

and '74 = 7) 4(x, y, z, t) satisfies
17)41 < 2Q .

Now

	

0(3)o = D(21O(x, y, z, t)-Oc~2t O(x, y, -z, t) .

But	wt~~(x, y, -z, t) - - AY(t) O(x, y, -z, t)
001(X, y)002(- z, t) 001(x, y)A02(z, t)

satisfies a similar inequality to (4 .2) and combining these two results we
get the desired inequality .
LEMMA 15 . We have

OD

f
~z dxdydzdt

~j y
0

00

	

E1 E1

ff
0O1

	

f f A~1

	

log E1 A log E1 B
xy

dxdy = J J xy dxdy + 0(7) 1 , A)+0	
E1A + E1 B .

0

	

'r/1 0

Proof. We have
711

	

00

1 Si'S0

	

0

,/,3

0
dxdydzdt

y
- 8 2*+1 711 sin A k x

	

00
sinBk ysin Ck z sinDk t dydzdt2n ~ f x

	

J J	y ztk=1 0

	

0

	

y

3 2"+1

	

7IIA7,1

2n 2 L~ sgn(Ak Bk Ck•Dk)

	

(sin
8 d8.

k=1

	

0

E1

	

E1

	

E2

	

E2

fdx dy dz
0(

zO
dxdydzdt -}-O(,q1 A-~-- 2 C)-f-

J

	

y
771

	

0

	

71s

	

0

0(log e,, A log e, B 109C2C log E2D
CIA + ElB + E2 C +

c2D I '
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Hence the modulus of the first member does not exceed

3

	

2n+ 1

2n 711

k=1

The proof that

AkI =

where I a, c„ < aAC, etc ., and P =

Proof. By Lemma 14E l

	

E1

	

E2

	

E2

f
Q(3)f dx fdy f dz
x

	 dt
f	xyzt

711

	

0

	

712

	

0

n
27r3 9,1 av (Ij E y a y l

\
l = 0(%,A) .

EV=f1 . 0

f dx

	

0()0
dydzdt = 0 log AA

~~ y

	

1
E1

	

0

is similar to that of Lemma 7 . It is now evident that the first inequality
of the theorem follows from these two inequalities and two similar ones
where the variable z plays the role of x in the above inequalities .

The proof of the second inequality of the lemma is on the same lines .

LEMMA 16. We have

co

f

	

~~
z

dxdydzdt
J

		

y
0

17r4- '1r3(sin-1T1+sin-1T2) + 27r2 Sin-1T1 sin-"r2+

+ 0
a+E1+ a+E2 +

0
Vlog(E1 A)+ Vlog(E 2 C) +

Ti

	

T2

	

C E1A

	

E2 C 1

+0(g1A+% C)+0(E2)+

+ 0 a E2(C+D) + El(A+B)
71l AP

	

% CQ
Iab

v

	

Icd vAB 'Q =	 CD	 .

E1 E1

	

E2 E2

= 2
f 0

' 1 dxdy

	

(1 +,3)
002

e'l&(A 2x2+B2y 2+C2z2)
dzdt

J
f  y

	

f f
711 0

	

772 0

E1 E1

	

E2 E2

= 2

	

f001 ef4(A
2x 2+B2y2)

dxdy

	

002 efl.(C1z2+D212) dzdt
f f xy

	

zt
171 0

	

712 0

+O(E2)+0 a E2(A+D)+ ,,(A Q)
711L

	

2
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And by Lemma 11 this is

2
(jT2

-7T sin-1T1+0
°T11)

E 2 + 0log(AA))+OiA)}x(n
1

X
~ 7T 2

	

.

2
-7T sm-1T2+	 T

E2
-I- ~log(C c) + 0(712 C) +

O(U+
2

	

2

+ 0(E2)+0 Q E2(C+D) E1(A+B)
AP + CQ7)1

	

712

which gives the desired result .
LEMMA 17.

1

	

1

	

1f /L1(t)P2(t) dt = f µ1(t) dt f 142(t) dt +
0

	

0

	

0

0 VlogA 0(N/log C
+ ,*Al + Ti C* +

+0 O+E1 + Q-}-E2 + 0 %/Iog(El A)+ Vlog(E2 C) +
T1

	

T2

	

E1A

	

E2 C

+0
E 2 a(C+D)

+ 0
E1 a(A+B)

P

	

Q
	 )1) .

Proof. We have merely to combine Lemmas 12, 13, and 16, and at the
same time choose 711 and 712 so that

7,1A =
E2 a(C+D) 2~

	

C -
Ei Q(A+B)

P

	

X12

	

~	
Q

	 } '

and observe that E2 < E 2/T.

The following lemma is obtained from Lemma 17 by further specification
of the conditions .
LEMMA 18 . If, in addition to the hypotheses of Lemma 17, we suppose that

(i) A<B<2A; C<D<2C; 1<A<C;

(ii) P ? 4,

	

Q

	

1,
and write

	

T = min(-r1, T2),

then
1

	

1

	

1

ff11(t)µ2(t) dt = r µ1 (t) dt f µ2(t) dt + 0 VlogA
+J

	

J

	

J

	

T1A
0

	

0

	

0

+O(Q,log 1/a)+O(cx/T) .

Proof. Without loss of generality we may suppose T > 2/VA, a < T,

since neither the first member nor the first term of the second member can
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exceed unity. After making the obvious simplifications in Lemma 17 we
obtain three terms involving el . They are

0(,E,2

	

O Vlog+(e1 A)

	

O{V(E1 aA)},
T

	

ElA

and we proceed to choose el so as to make these three of the same order
of magnitude. We distinguish two cases, (i) a < 1/TA2, and (ii) a > 1/-rA 2 .
In case (i) choose E1 = TiA-*, and the three terms become

O Vlog A
T*A* .

In case (ii) choose El = 1/a A, and then under our conditions the three
terms are

	

O(ai log 1/Q) .

The terms involving E2 can be treated in the same way and in view of
conditions (i) and (ii) we obtain the desired result .

5. We turn now to the special case of our theorem . We write 8 = (log n) }
and define po and p1 so that

(1+8)-1no-1 < I < ( 1 +8)-POI

(1+8)-pl < 1 < ( 1-f-8)=P +1_
2n

We define
XP = 1-(1+8)-P,

	

po < p < p1,

XP . - 2,1 ,

	

XP' . +1 = 1 .

We further define p2 and p3 in the following way :
(1+6)-p' < exp{-(logn)*} < (1-}-8)-p$+1,

	

(5.1)
and
Then it is clear that
Then, by Lemma 5,

P3 - P1-P2-

P2 '" (log n)' .

	

(5.2)

1 pi
{NN(t)-NN(t)} dt = O{log1n(loglog n)1 },

P=Po

and so

	

I {N(t)-NN(t)} = o {log'n(loglog n)},
P =Po

except for a set of t of measure at most o {(loglog n)}} . Using (5.1) and the
fact that 0 < Np(t) < 1, we see that outside this exceptional set

P1

	

P3
Np(t) _

	

Np(t)+o {log'n(loglog n)} .

	

(5.3)
P Po

	

P=P2
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We shall now apply the results of the two preceding paragraphs to obtain
an estimate for the first sum in the second member . Write, for

P2<p<q<ps,

av=a(p)=xp,

	

b,,=b(p)_x'I-1,
CV =Cyp ) = xq,

	

d,,=d,(,q)=xvqv,+1• .
Then, for P2 < p < p s ,

xpn < {1-(1-{-~ )-pa}n ,~, { 1-n-1e(1ogn)k}n

< exp{-e(logn)* } .
_ 2n+ 2

Hence

	

A = A(p) = 1 1 x
z2

	

(1 1x2
)1

ti 2 (1-~ 8)p/ 2.

	

( 5 .4)
p

	

p
Further we may take

	

U = (1-}-8)-(q-p)/2,

	

(5.5)

while
n

	

2

T2
-

T2

	

(x;x;+i)
rv

1- (1 -'xp)(1-xp+l) _ ( xp+1-x9)
2

P2
-

	

x2v x2v

	

(1-XP xp+1)2

	

( 1-xp xp+l) 2
p

	

p110

	

0
so that

xp+l-xp _

	

8

	

1
Tp rv

1--xp xp+l (1+8)p+l 1-xp xp+l
," 8{2+8-(1+8)-p}-1 ,

That is

	

Tp = P+O(82),

	

(5 .6)
and also

	

sin-1Tp = 28+O(82) .
By Lemma 12 and (5.4) we have

1

f pp(t) dt = 7rsln-1Tp+ O{Vp8}(1+8)-p/3}.
0

But the function pp( t) of § 3 is now identical with the function Np*(t), so
using (5.1) and (5.6) we have

1

J Np(t) dt = 2~+ 0(82),

	

(5.7)
0

1

for p > P2- Writing

	

mp = f Np(t) dt,
0

we have from Lemma 18, (5.4), (5 .5), and (5.6),
1

f Np*(t)NQ(t) dt = mpmq+O{~/p8}(1+8)-p/3}+
0

+018(q-p)(1 +8)-(q-P)16} +
O{8-1(1 _4_8)-(q-p)/2)

	

(5.8)
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for P2 < p < q < p3 . Consider

f1 { ~ (Nv*(t)-mp))2 dt = 1f {

	

Np(t)} 2f

	

dt - 11

	

MP ) 2

0

1p=pa

	

o lp=P2

	

P=P2

ps

	

11 f Np(t)NQ*, (t) dt - mp m4
p=p2 4=p2 U

ps-k pa

	

1
2 Y

	

{ f Np(t)Nq(t) dt - mp m4 +
p=p2 4=ps+k U

1

+

	

f Np(t)N*(t) dt
P=P I p-41 <k U

= Z'1 + Z'21

where k =
b
log 1] . But by (5.8)

pa-k
1: 1 = O(p3 8 })

	

Vp(1 +8) -p/3+
P=p2

+0(6) .~pk I (q-p)(1+s) -44-p)16+
P =P2 q=p+k

and hence that

-

	

Ps
+0(8-1 ) p k

	

(1+8)-(4-p)1 2
p=p2 4=p+k

= 0{pj8
-5/6 ( 1+0 -ps/3}+

+0{p2(k+8-1)( 1+8)-k/6J+O{p2 8-2(1+8)-k/2}.

Using (5.1) and inserting the values of k and 8, we get
El = O(pi) .

On the other hand, since 0 < Np(t) < 1,
1

	

1
f Np(t)Nq(t) dt < f Np(t) dt = 0(8)
o

	

a
by (5.6) and (5.7) . Therefore

E2 = 0(p1 k8) = 0(p 1 log 1/8) .

We deduce that

1 If

	

(Np(t)-mp))2 dt = 0(p1log 1/8) = 0(login loglog n),
0 Ps

P3Y {NN(t)-mp
lea

= o (login loglog n),
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except for a set of t of measure at most o{(loglog n)-1} . Combining this
with (5.3), we see that, outside the exceptional set,

pi

	

jm+o1ognloglogn},1 Np (t) _

	

p{l
P-Po

	

P2

and using (5.5), (5 .6), and (5 .7) that this expression is

1 (P3-p2) 0(p3 8 2 ) 0 {l0g1n togtog n} .
21r -I-

	

-I-

But

	

P3-p2 = p i -2p2 = &-llogn+0(logln) .
Hence, outside a set of measure at most o{(loglog n)-1 }

p
NN (t) = 2-log n+o {logln loglog n} .

P =P0

But the first member denotes the number of zeros of the equation parameter
t in the range (2 ,1), and as explained in § 1 this completes the proof of our
theorem .
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