On perfect and multiply perfect numbers.

by P. Ernis (in Haifa. Israel).

Nammary. - Denofe by Plx) the number of integers n==uw satisfying s(n)=0 (modn), and
by Py(x) the number of integers n=<<ux satisfying s(n})=2n. The author proves that
P(x) << abldte and Pyiz) << o(1=e)l2 for a certain ¢ 0.

Denote by ao(n) the sum of the divisors of n, on) = E d. A number n

is said to be perfect if sin)=2n, and it is said to be dIEultiply perfect if
a(n) = kn for some integer k. Perfect numbers have been studied since
antiquity. It is contained in the books of Eucrip that every number of the
form 27—' (22 — 1) where both p and 27 — 1 are primes is perfect. EULER ()
proved that every even perfect number is of the above form. It is not known
if there are infinitely many even perfect numbers since it is not known if
there are infinitely many primes of the form 27 — 1. Recendly the electronic
computer of the Institute for Numerical Analysis the S/W.A.C. determined
all primes of the form 27 —1 for p < 2300. The largest prime found was
2#%1 — 1, which is the largest prime known at present.

It is not known if there are an odd perfect numbers, EuLer () proved
that all odd perfect numbers are of the form

(1) pém®, p=oa=1 (mod 4),

and SYLVESTER (') showed that an odd perfect number must have at least
five distinet prime factors.

Multiply perfect numbers are known for various values of %k but it is
not known whether there are infinitely many multiply perfect numbers.
Recently KaNorp () proved that the density of multiply perfect numbers is 0.
(i. e. the number of multiply perfect numbers not exceeding = is o(x)). and
HoRNFECK (°) proved that the number of perfect numbers not exceeding
is less than x'*.

Denote by P(x) the number of multiply perfect numbers not exceeding .
and by P,(x) the number of perfect numbers not exceeding x. In the present
note we are going to prove

() Dickson, History of the Theorie des Numbers, Vol. 1, Chapter 1.
(?) « Journal fiir die reine und angew. Math.», 194 (1955), 218-220.
{*) « Archiv der Math. » § (1955), 442-443.
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THEOREM 1.
P(z) < ' for every ¢ > 0 and = > xye).
THEOREM 2. ~ There exists a constant ¢, > 0 so that for x > x,
P,(x( < a—a)2,

These results are no doubt very far from being best possible. In fact it is
very likely true that P(x) = o(x*) for every & > 0.

By more complicate arguments I can prove that for every constant ¢,
there exists a constant ¢, so that the number of integers n < @ for which

(a(n), n) > n=

is less than x'-% By still more complicated arguments I can prove

TureoreM 3. - Let fix) be an increasing function satisfying f(x) > (log x)™
for some ¢, > 0. Then the number of inlegers n < x satisfying

(o(n), n) > flx)

is less than cx/f(x) for some ¢, >0 and ¢, > 0. The same result hold if
ain) is replaced by Euler’ s 3 function.

We are not going to give the proof of Theorem 3. It can further
be shown that Theorem 3 is best possible in the following sense: Let
flx) = o((log &) for every e > 0. Then the number of integers n < x satisfying

(a(n), n) > f(x)
is greater than x/(f a) for every ¢, > 0, if & ix sufficiently large.
Further I can prove the following.
Turorem 4. - T'le density of integers n satisfying
(sin), n) < (loglog n)*

equals gle) wkere giz), 0 < a < oo is an increasing function satisfying g0) = 0,
gioc) = 1. The same result holds if an' is replaced by g(n).
We supress the proof of Theorem 4.
Proof of Theorem 1. First we prove two Lemmas.
LeMMA 1. - o(n) < 2nloglog n for all sufficiently large n.
Lemma 1 immediately follows from the result of LANDAU (*) according
to which lim sup o(n)'n loglog n = ¢°, (where C = 0°5377 ... is EULER’ 8 constant).
n=0o0
Put % = a@,+b, where
Oy = I P b,‘: 1] P
p*in pn
a>1 pEn
@y is called the quadratic part of »# and b, the squarefree part of n.

{(4) Laxpav. Verteilung der Primzahlen, Vol. 1. p. 217. Laxpar states his result for
EvLer' s ¢ function. but the result for 3(n) follows immediately.
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Leymma 2. - Denote by gle, A) the number of inlegers n < x for which
ty > A. Then glxe, A) << cax!A'* where ¢, is an absolule constant independent
of x and 4.

Clearly the quadratic part of n is the product of a square and a cube.
Thus

x x ® 1 1 1 1
g, 4) a,>A40n  rp>a kP =1 0 psap K ped U g B

5 1 1/ [5\1e o 1 o
$P;Aﬁ<x1=§,i e E) i xr,.:“' ji< G'Tw;"AI q. e d.

To prove Theorem 1 it will clearly be sufficient to show that
(2) Px) - P{x2) < wbléte for m > w,(e)

To prove (2) we split the multiply perfect numbers y satisfying
/2 < y < into two classes. In the first class are the y's with 0y = ',
By Lemma 2 the number of the y's of the first class is less than ca®.

For the y's of the second class we evidently have b,>;x'i‘~’. Put

by =0 - Qrs @ <Gy < e << Gy
where the ¢'s are distinct primes. Define b, = ¢y ¢, ... qn, Where qp = q,
and g, (1 <4 <7) is the largest ¢ which does not divide {g, + ligs, + 1)..
{Qa‘._l e 1\i Put b-V= by‘by”. By’ our construction

3) b, olb,)=1, o(b,) =0 (modb,”) or b,'sb,’) =0 (mod b,).

Also since b, > %x”’ we have by (3) and Lemma 1

;m'fﬂ < b, < b,ab,) < 2b,% loglog a
or

4 by o= ;x'v’*;loglog .5

Now o(y) =0 (mod y) and sly) =0 mod o(b,")) (since oly)=waia,)-aid,)a(b,”).
Thus by (3)
oly) = 0 (mod b,'a(b, ).
Now by Lemma 1 o(y) = ky < 2y loglog «. Thus

(5) yB, = 0mod (a(y)) = 0 mod (b,'ab,’)) where B, = [loglogx]!.
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Hence by (4) and (5) if y belongs to the second class yB, is divisible by an
integer of the form asi@) with a > éw”*;loglog . Thus the number of inte-

gers of the second class is less than (¥’ indicates that @ > %a:‘-" (loglog x)

@B, a—;@ < B, E’C% < 2B,w"* loglog x < @+,
which completes the proof of Theorem 1.

Proor or THEOREM 2. - The proof will be very similar to that of Theo-
rem 1. Since by EULER’ s result the nmumber of even perfect numbers not
exceeding « is less than logw, it suffices to consider odd perfect numbers.
To prove Theorem 2 it will be sufficient to prove that

[\6) PE’(CG) o Pz' (6_02) < wl;"&—c,:

where P,(x) denotes the number of odd perfect numbers not exceeding .
By (1) the odd perfect numbers are all of the form

y=p“m’, p=o=1 (mod4).

We now split the odd perfect numbers y satisfying /2 < y <<« into three
classes. In the first class are the g's for which p* > ax%. Thus if y is in
the first class we have m < (-2 A simple argument shows that to each
m there is at most one p* so that p*m* is perfect (*). Hence the number of
y's of the first class is less than «’~%)2 TFor the ¢'s of the second class
we have a,, > ®*». By Lemma 2 we obtain that the number of ¢'s of the
second class is less than ca''=%)2 For the y's of the third class we have

p:l é {Ecﬂ . f&m < mgcs i T]]_“S bm > éx(l—f)cs)fz- PII.[.
B e G e T

where the ¢'s are distinet prime. Define b =gq; q;, ... q; where ¢, =g,
and ¢, (Ll <i<r) is the largest ¢ which does not divide

(7) (G, + @, + D@, + 4, + 1 g, + 0, )
and for which
(8) q;,;_r.)( (1 4+ gr, + q;‘) for (1=<j=<i— 1)
It follows from our construction that
() (B, olbm) = 1
(5) This follows immedintely from the fact that %-‘:h"—‘;;'. HorxFECK s proof is also

based on this iden.
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and that if ¢|b,,. q:#:_qkj, 1 <j<r then either (if (7) does not hold)
(10) q|o®}),
or (if (8) does not hold)

11y 1 4+q+q =olgh) = D{moquj} for some 1<j<r and ¢ < gx,.

Put now by = bbby where b, is the product of the ¢'s satisfying (10)
Clearly Lemma 1

(12 bin < (bym) < 20y loglog a.

Each prime factor of b, satisfies (11). Thus for every ¢ b (1 4+ ¢+ ¢ b)) > q.
Now (Dubmby is squarefree)

e g

(13) oY) = 2y == 20 Awbmbubim)® = (D)0 (U)o (bn )5 )-
Thus for each gk'.lb:,.; Q;_,.)(a(b:;). Hence
(U{b:;’, bm)zl I (14 q+ q’. h;"”l,!! = b::"" (sJ‘
s
or
(14) b < bom -
Thus from (12) and (14)
by < 20 loglog .

Thus since y belongs to the third class
R Pioge & (1—Pcg)[10/
(15) b > 7 B loglog a.

Now by (13), (9) and since y is odd
5(bom)

y = 0[mod (b:f, . c:(b',:})l or m = 0 (mod b,,) and (m®, o(by)) > o

or by (1) (p* < x%)

) ) 2, q0e
(16) m = 0 (mod by,) and (m, o{b,f,}) = (%b:‘)) >~ 1 2(1=102)10 100l 0g e

(%) To see this observe that if ¢!#', there can be at most two prime factors g, and g,
of ", satisfying s(q?) =o0(qs®) =0 (mod ¢), nlso if ¢ | &, (slg?), &',,) > q.
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The number of integer m < x'® satisfying (16) for a fixed b, is clearly
less than (the dash indicates that ¢ > i x1-1e10/]oglog x)

2 "
atlr 22 d(a(b,y) » 4 logloga a5 TotE
17 o 2 i < 7 7
o b gs(pz)t  bw AT b

where d{n) denotes the number of divisors of n. Thus from (17) we obtain
that the number of integers m < x'/* which satisfy (16) is less than

:1‘3% +Cy-te b i' <% % “+ep+2e .
b’m'(w bm

Thus the number of y, s of the third class is less than 25 FOTE < gi—e)p
for sufficiently small ¢,, which completes the proof of Theorem 2.
Added in proof: Denote by @fx) the number of odd integers n < a
1

satisfying o(n) = 2%. WOLKMANN proved that @ x)=0 (_ml—m). (Journal
fir reine ung angew Math. 195 (1953), 154).
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