
On perfect and multiply perfect numbers .

by P . ERDÖS, (in Haifa . Israel) .

Summary. - Denote by P(x) the number o f integers n ~_ x satisfying o(n) -- 0 (mod n.), and
by P2(x) the number of integers nix satisfying o(n)-2n . The author proves that
P(x) < x'314:4- and P2 (x) < x(t-c)P for a certain c > 0 .

Denote by a(n) the sum of the divisors of n, a(n) - E d. A number n
din

is said to be perfect if a(n) =2n, and it is said to be multiply perfect if
o(n) - kn for some integer k . Perfect numbers have been studied since
antiquity. l t is contained in the books of EUCLID that every number of the
form 2P- ' ( 2P - 1) where both p and 2P - 1 are primes is perfect . EULER (1)

proved that every even perfect number is of the above form . It is not known
if there are infinitely many even perfect numbers since it is not known if
there are infinitely many primes of the form 2P - 1. Recently the electronic
computer of the Institute for Numerical Analysis the S .W.A .C . determined
all primes of the form 20 - 1 for p < 2300. The largest prime found was
2J 9 "' - 1, which is the largest prime known at present .

It is not known if there are an odd perfect numbers . EULER (') proved
that all odd perfect numbers are of the form

(1)

	

pam2, p - x - 1 (mod 4),

and SYLVESTER (') showed that an odd perfect number must have at least
five distinct prime factors .

Multiply perfect numbers are known for various values of k but it is
not known whether there are infinitely many multiply perfect numbers .
Recently KANOLD (-) proved that the density of multiply perfect numbers is 0 .
i . e. the number of multiply perfect numbers not exceeding x is o(x)), and
HORNFECK proved that the number of perfect numbers not exceeding x
is less than x' 12

Denote by P(x) the number of multiply perfect numbers not exceeding x,
and by P,(x) the number of perfect numbers not exceeding x. In the present
note we are going to prove

(') DICKSON, History of the Theorie des Numbers, Vol . 1, Chapter 1 .
(2) -< .Journal für die refine and angew . Math . 194 (1055(. 218-220.
(2) g Archiv lei Math . , 6 (1955(, 442-443 .
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THEOREM 1 .

P(x) < x314 for every a > 0 and x > x,,(a .
THEOREM 2. - There exists a constant c, > 0 so that for x > x,,

P2 (x( < xcl- c= ) )2.
These results are no doubt very far from being best possible . In fact it is
very likely true that P(x) = o(v) for every a > 0 .

By more complicate arguments I can prove that for every constant c .,
there exists a constant c 3 so that the number of integers n < x for which

(a(jj), n ) > no-2

is less than xl

	

By still more complicated arguments I can prove
THEOREM 3. -Let f ix) be an increasing function satisfying f (x) > (log X)C4

for some c, > 0. Then the number of integers n < x satisfying
(a(n), n) > f (x)

is less than c;xl(f(x)lcs for some c, > 0 and c, > 0. The same result hold if
a; n) is replaced by Euler' s :p function .

We are not going to give the proof of Theorem 3 . It can further
be shown that Theorem 3 is best possible in the following sense : Let
f (x) = o((log x), ) for every s > 0 . Then the number of integers n < x satisfying

(a(n), n) > f(x)

is greater than xf(f!,x))c~ for every c 5 > 0, if x i sufficiently large .
Further I can prove the following .
THEOREM 4. - The density of integers n satisfying

(a( n), n) < (loglog n) :'
equals g(a) where g(a), 0 < •a < oo is an increasing function satisfying g(0) = 0,

= 1. The same result holds if a(n) is replaced by -(n) .
We supress the proof of Theorem 4 .
Proof of Theorem 1 . First we prove two Lemmas .
LEMMA 1 . - a (n) < 2n loglog n for all sufficiently large n .
Lemma 1 immediately follows from the result of LANDAU (') according

to which lim sup a (n)/n loglog n = ee, (where C = 0'577 . . . is EULER' s constant) .
n-00

Put n =an • b„ where
an = 11 p',

	

bn = II p
p%In

	

pin
x>1

	

p2 Xnn

an is called the quadratic part of n and bn the squarefree part of n .

(4) LANDAU . Verteilung der Primzahlen, Vol . 1 . p . 217 . LANDAU states his result for
EULER' S 'P function . butt the result for a (n) follows immediately .
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LEMMA 2 . - Denote by g(x, A) the number of integers n < x for which
ca,, > A . Then g(x, A) < c,x,/A' 2 where c, is an absolute constant independent
o f x and A .

Clearly the quadratic part of n is the product of a square and a cube .
Thus

00
~y(x A

	

x

	

x

	

°

	

E 1=x J 1 J 121g( 7 )<

	

-<

	

3 = x V

	

3a,t>Aa'vi

	

k213>A k l

	

t= 1 l3 k >A113]C '

	

Z3<A l k->A113 t

3 112
x 1

13
< x u 3 l) + x 2] 3 < c,x/A' i2 q. e. d .

t3>A

	

V<A 1 A

	

V>A l

To prove Theorem 1 it will clearly be sufficient to show that

(2)

	

P(x) - P(x/2) < x 3 1 4+ , for x > xo (e) .

To prove (2) we split the multiply perfect numbers y satisfying
x/2 < y C x into two classes . In the first class are the y's with ay Z X 112 .
By Lemma 2 the number of the y's of the first class is less than c,x 3 1' .

For the Y's of the second class we evidently have b,,> 2 x`1 2 . Put2

by =M, . . .qh , q 1 <q 22 < . . . <qh

where the q's are distinct primes . Define by' = gh,gh, . . . qh where q . , = qh
and qh . (1

	

i < r) is the largest q which does not divide (q hs + l i(gh2 + 1) . .
(qk=_ { -s- 1). Put by = by'b y " . By our construction

(3)

	

(by', a(by )) = 1, a(bv') - 0 (mod by") or b,'a(by) - 0 (mod by ) .

Also since by > 1 x`1 3 we have by (3) and Lemma 1
2

x'l' < b y !~,- b y'a(by ') < 2by'2 loglog x

Or

(4)

	

by' > 9 x1 ;4/loglog x .

Now c;(y) = 0 (mod y) and a (y) = 0 (mod a(by ')) (since a(y)=a(ay ) • a(by')a(by')) .

Thus by (3)
a(y) - 0 (mod b,, a(b a,')) .

Now by Lemma 1 a (y) = ky < 2y loglog x . Thus

(5)

	

yB, = 0 mod (a(y)) - 0 mod (b t,'a b y ')) where Bx = [ loglog x]! .
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Hence by (4) and (5) if y belongs to the second class yBx is divisible by an
integer of the form aa(a) with a > 2 x"'jloglog x . Thus the number of inte-
gers of the second class is less than (I' indicates that a

> 2
X" , ( loglog x)

xBxE'1 < xBx E' 12 < 2Bxx3 1' loglog x < x 3 1'+` .aa(a)

	

a

which completes the proof of Theorem 1 .
PROOF OF THEOREM 2 . - The proof will be very similar to that of Theo .

rem 1 . Since by EULER' s result the number of even perfect numbers not
exceeding x is less than log x, it suffices to consider odd perfect numbers .
To prove Theorem 2 it will be sufficient to prove that

(6)

	

P 2'lx) - P2 ' (2) < x'I 2

where P_,'(x) denotes the number of odd perfect numbers not exceeding x .
By (1) the odd perfect numbers are all of the form

y = pxm 2 , p = a = 1 (mod 4) .

We e now split the odd perfect numbers y satisfying x/2 < y < x into three
classes. In the first class are the . y's for which px > xce . Thus if y is in
the first class we have m < x(1-0/2. A simple argument shows that to each
m there is at most one px so that pxm' is perfect (5 ) . Hence the number of
y's of the first class is less than x( 1- c9)1 2 . For the y's of the second class
we have a,,, > x2 c9 . By Lemma 2 we obtain that the number of Vs of the
second class is less than c,x''-c )1 2 . For the y's of the third class we have
px C xc`-, . a,,, < x2ce . Thus b,,,

	

1 x(1-5es)12. Put

b„ e =q2 . . . qk , q, < q2 < . .. < qk

where the q's are distinct prime . Define b"i = gk ,gk 2 ..kqk where qk, =
and qk . (1 < i C r) is the largest q which does not divide

~7)

	

(qki
2

	

2
+ qk! -4- 1)(gk 2 + qk2 + 1 . . . (qk a_, + gki_ i )

and for which
(8)

	

gk.X(1+qk .-+-qk) for (1Cj<i-1) .

It follows from our construction that

(9)

	

(b;,z, a(b,) = 1

qk

15) This follows immediately from the tact that
a(pa)

	

=(~`~), HORNFECK's proof is al o
based on this idea .

	

P-/

	

qi
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and that if q lb,,, , q = qk 1 , 1 C j C r then either (if (7) does not hold)

(10)

	

q 6(bm),

or (if (8) does not hold)

(11)

	

1 + q + q' = c(q 2 ) = 0 (mod q k ~) for some 1 Cj C r and q < qk~ .

Put now b .m = b~„b' b ;;, where b', is the product of the s satisfying (10) .
Clearly Lemma 1

)
(12)

	

b'N', < 6(b„ < 2bm loglog x.

Each prime factor of b ;;b satisfies 41) . Thus for every q ; bm (1 + q + q b ,M) > q .
Now (bmbmbn, is squarefree)

6

	

= 2 = 2p z a b
, , . ",

= a 7 aa 2 )6 b ,2 a b.'2 b',~2~
(13)

	

(y)

	

y = N ( m »xbmbm

	

(p ) ( M, ( "I ( M ) ( M

Thus for each qk, b„,q 2 1 )( 6(bm) . Hence

(a(br .), b+,~)	 [ II (1 + q + q`, b )]'! 2 > by= I(2 (°),
91b.

Or

(14)

	

bm < bm .

Thus from (12) and (14)
b, < 2bm loglog x .

Thus since y belongs to the third class

(15)

	

b;,,. >
4

x(1-5ca)) 10/loglog x.

Now by (13), (9) and since y is odd
2

y - 0 [mod (b' 2 • a(bm))1 or in - 0 (mod b ;,,) and (m, j(b r )) z
~( bn~)
pu

or by (15) (px < xc9)
(b.2,) (2

(16)

	

n2 = 0 (mod b,m ) and (m, a(b'2 ))
> 1sPay))

>
4

x(1-10co) 10/loglog x.

( 6 ) To see this observe that if q' b',,, there can be at most two prime factors q, and q2
of b"', satisfying ~;(q,2) - a(g22) - 0 (mod q), also if q I b"'„, (c(q2), b',,,) > q .
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The number of integer mCx'1 2 satisfying (16) for a fixed b;,t .is clearly
less than (the dash indicates that t >

4 x(1-10Cq)J 10/loglog x)

(17)

	

xif
2 r

	

1 < x'I2 d(a(bnx))-4 loglog x C X5 +C,q~ E

b , tj ,(b" ) t

	

b;,2

	

xcl-'°o9)~lo

	

bra
M

where d(n) denotes the number of divisors of n . Thus from (17) we obtain
that the number of integers m ~ x 1 1 4 which satisfy (16) is less than

x5 -}-Cg-FE u

	

1 C ,x 5 +cy+2e .

bm

Thus the number of y, s of the third class is less than xs +~ 9+2E < x(1_e9 )/2
for sufficiently small c,,, which completes the proof of Theorem 2 .

Added in proof : Denote by Qi(x) the number of odd integers n < x
1_ 1

satisfying 6(n) = 2 1x . WOLKMANN proved that Q4(x) = 0 (x, 2(i--2)) . (Journal
für reine ung angew Math. 195 (1955), 154) .
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