ON ADDITIVE ARITHMETICAL FUNCTIONS AND
APPLICATIONS OF PROBABILITY TO NUMBER THEORY

P. Erndis

The main topic of this lecture will be the study of the distribution function
of additive arithmetical functions. Before proceeding with the subject T want
to call attention to the excellent review of Kac 1 on this subject, were a very
clear and detailed discussion of the interplay of probability and number theory
is given. In the present review I try to emphasize those results which were not
freated in detail by Kae

A real valued funetion fin), =1, 2, ... is called additive if

i) = flom) + Fln) whenever (mn) — 1,
The function g(n) n =1, 2,... is called multiplicative if
glmn) = gim).g(n) whenever (m,n) =1

Additive and multiplicative functions are thus completely determined if one
knows their values for all powers of primes #%

Examples for additive functions are log u, »(n) (the number of distinct
prime factors of #); examples for multiplicative functions are u, Euler's
funetion ), and &(n) (the sum of divisors of n).

Let A{n) be any real valued function defined for n =1, 2,.... We say
that Jii(n) hasa distribution function p(e) if for every ¢ the density of integers
satisfying Jifit) < ¢ exists. Dénoting this density by y(e) we Turther must hawve
wi— @) =1, p{+ o) =+ L

The question whether an arithmetic function has a distribution function
received eonsiderable attention. As far as I know the first result in this direction
is due to Schoenberg ¥ who proved that g@(n)/n has a distribution function.
A little later almost simultanecusly Davenport®, Behrend and Chowla proved
that a{n)/n also has a distribution function, This result was especially interest-
ing since for ¢ = 2 we abtain the so called deficient numbers, (If ain) << 28, »
is called deficient, with-a{n) = 2, # is called abundant and with e{n) = 2u, »
is called perfect).

All these papers user the theory of Fourier transforms: 1 attacked the
problem in a somewhat different way. An integer u is called primitive abundant
if it iz abundant and all its divisors are deficient. Clearly we obtain all abundant
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numbers by considering the set of all moltiples of all the primitive abundant
numbers. Thus if we can show that the sam of the reciprocals of the primitive
abundant numbers converges, it will follow by a simple argument that the
density of the abundant numbers exists. Denote by N(#) the number of
primitive abundant numbers not exceeding », thén I proved that %%

" "
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(1) easily implies thal the sum of the reciprocals of the primitive abundant
numbers converges and thus the density of the abundant numbers exists,

Unfortonately this method can be applied only in very special cases.
Define n to be primitive a-abundant if g{n) = wn but for all divisors d of #
gld) <= #d. 1t isnot hard to prove that for almaost all & the sum of the reciprocals
of the primitive s-abundant numbers converges, but it is also easy to show that
every interval contains ¢ ¢ — 5 for which the sum of the reciprocals of the
primitive s-abundant numbers diverges (these results are unpublished).
Further Besicovitch constructed a sequence of integers 4, <2 a5 < .. . so that
the set of their multiples does not have a density, Thus it is clear that the above
method does not lead to general results.

In a subsequent paper Schoenberg ™ deduced the existence of the dis-
tribution funetion of additive functions under very general conditions. Since
the logarithm of a multiplicative funetion is additive it usually will suffice to
consider additive functions.

Generalising several previous results 38 T proved that the convergence
of the two series

Hp) (fip))®
2 e !

(2) > z =
where

; oy JAEYIELB) ] =1
@ ”’”_{ L i |fp)| > 1

is a sufficient condition for the existence of the distribution function. In a
subsequent paper Wintner and I¥) proved that the convergence of (2} is the
necessary and sufficient condition for the existence of the distribution function
of fln).

Our principal tool was the following theorem of Kac®) and myselt;
Let fin) be additive, Put

@ a=38, 5300

et ] peln
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Assame that

{5 By = =0, [(#) = 0(1),
Denote by K, (@) the number of integers m,1 = m = n for which
(5) flm) < dp + 0B,
Then
(6] tim 222 _ oy [ ettt
wem M R

Qur proof of this result uses a combination of probabilistic and number
theoretic methods, we nuse the central limit theorem and Brun's method, As
stated in the introduction Kac gives a more detailed diseussion of the connec-
tions between probability and number theory. As far as I know Kac and
Wintner were the first who called attention to the probabi listic nature of
these theorems. I also omit here the connection of these results with those of
Hardy-Ramanujan and Turan since Kac discusses them in detail. Recently
new proofs were given to our theorem with Kac by Delange 1) and Halberstam
which aveid both the central limit theorem and Brun's method but uses instead
the method of moments.

A simple argument shows that (6) indeed implies that B, — 20 is in-
compatible with the existence of the distribution function. The fact that the

CONVETZENCE O — is also mecessary for the existence of the disimbution
f IIFif‘llls for th ist f the distributi

function requires some new and complicated arguments.
Using Brun's method and the estimates of Cramer and Berry on the error
term in the central limit thesrem 1% proved the fﬂ]lumng Tesult:
Let f{n) be additive.
B, =, fip) =0
Then the density of integers for which
0 << f(m) < e{mod 1)

equals ¢, and is thus mdependent of the [unction f{n).

Let us now assume that the series in (2} converges. It follows from a result
of Paul Levy that the necessary and sufficient condition for the continuity of
the distribution function is that

) S o=

S ]
I obtained for this result a direct number-theoretical proof. In a subsequent
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paper 1 extended this result considerably, in fact 1 proved the following
theorem: )

Let f{n) be any additive function which satisfies (7). Then to every e there
exists a 4 so that if » is sufficiently large and if a; <y < ... < a, S xisa
sequence of integers satisfying

| flag) — Hay) | << @

then § < ex. A slichtly inaccurate but suggestive formulation of this result is
that the distribution function tries to be continuons even if it does not exist,

The above result iz a consequence of the following one:

An additive function is said to be finitely distributed if there exist two
constants ¢ and ¢, and a sequence #y < My <= ., . tending to infinity so that
for every i there exists a sequence

aff <afl <..oal <
satisfying
f(af) — flal) | <ep &> e (L =7, 8 S1,).
If f(n) has a distribution function it is clearly finitely distributed, also log nis
finitely distributed.

The necessary and sufficient condition that f{n) should be finitely dis-
tributed is that there should exist a constant ¢ and an additive function gin) so
that

2
P

The proof that (8) is sufficient is not difficult, but the proof of the necessity is
ruther invelved.

{7) gives the necessary and sufficient condition for the continuity of the
distribution function, it would be of mterest to obtain necessary and sufficient
conditions for the absolute sontinuity of the distribution function. Here [ 19)

(&) fin) = ¢ log n—|—g|{1;},z

1
proved using resubts of Jessen and Wintner that if | f{p) | < ;‘i forsome e = 0

and (7) holds, then the distobution funetion is continnous but purely singalar,
On the other hand [ pave examples of absolutely continmows distribution
functions, in fact if

fp®) = (= )" (loglog gy~
the distribution function is an entire function. It does not seem casy to give a
necessary and sufficient condition for the absolute continuity of the distribution

function. Another difficult problem seems to be to decide which distribution
functions ean be the distobution funetions of additive functions. 1t is not hard
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to prove that the distribution function wix) = 0for — oo <<% < 0, plx) = %
forO=x=1 wix) =1forl < %< co, can not be the distribution function
of an additive function,

Some time ago Chowla conjectured that the density of the integers {or
which dfn = 1) =d(#) is §. It is not difficult to deduce from the results of
Kac and myself ') that if | f() | < ¢ (7) i5 satisfied, the density of integers
eatishying fln 4+ 1) = fin) iz 4. 1t would be of interest to find out to what
extent the cendition |f{p) | = e can be weakened. The additive funection
fln} = log n shows that it can not entirely be omitted. If f{p) = (logp}®,
o 7= 1, = 0 or f{#) = $ it presumably is troe that the density of integers for
which fim 4 1) = f(n) is 4, but I am unable to prove these conjectures.
The conjecture for the case f(#) = p is easily seen to be equivalent with the
following conjecture: The density of integers » for which the greatest prime
factor of s + 11is greater than the greatest prime factor of nis }. Leveque 1)

gy
P

cally independent. It wonld be interesting to know to what extent the condition
| fi) | =< ¢ can be omitted here, again f(#) = log » shows that it is not entirely

st
superflucus (the condition z {f{—ﬂls oo can not be omitted).

proved that if | () | <cand Z diverges f{m) and [(x 4~ 1) are statisti-
P

P

The proof of all these conjectures seems to present great difficulties. The
methods used here by Kac, Wintner and myself and some other investizators
which combine the central limit theorem with Brun’s method works very well
if the effect of the very large primes (the primes greater than #”) on the valoe
of fin) is negligible. But if this condition is not satisfied (like e.g. for f{#) = #)
our method fails completely,

Some further problems. 19) proved that if f{n < 1) — f(») -0, then
fin) =c¢logs. Let us now only assume that |fin+1) —fln)| <ec I
conjecture then that fin) =& log w4 gl | (gn) | < ey

Is it true that almost all integers » have two divisors 4, and d,
satisfying
(5 dy = dy = 2d, (ovr more generally d, <<d; < (1 4+ g)d,)?

11} proved that the density of integers salisfying (9) exdsts, but T can not
prove that itis I,
Let g(n) be a multiplicative function for which

glg) =1
o

and o
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— 1)
(11 Z (glp) — 1}

converges. Then

pe=gn

(12) im lzgm
k=1

exists and is dilferent from 0 and oo 12}, Does the limit (12) still exist if we
only assume the convergence of (10)7

Tt might be remarked that the method nsed to prove the existence of the
distribution fonction of additive functions oftéen can be used to prove the
existence of the distribution function of non additive functions ¢.g. Shapiroe
and I proved that (will be published in the Canadian Journal of Math.)

has a continuouws and steadily increasing distribution function. Also

1
(14) =2

where [ (k) is the exponent of a{mod k), has a distribution function,

Many aspects of this subject were not considered in this short note e.p.
the interesting resnlts of Van Kampen, Wintner, Kac and de Bruijn on con-
nections between the theory of almost periodic functions and additive and
multiplicative functions, perhaps 1 gave an ondue amount of place to my own
papers, but T may be excused since not unnaturally T am best acquainted with
them. The references to the litterature are not complete and again I refer to the
review article by Kac quoted above.

In closing T would Iike to call attention to a lew other applications of
probability to number theory. First of all Cramer vsed probability theory to
malke plausible conjectures about primes. Further Reényi by using probabilistic
methods considerably strengthened the large sieve of Linnik. He himself
derived from these results that every integer is the sum of a prime and an
integer having a bounded nomber of prime factors. His results have several
other applications. Finally I would like tocall attention to the fact that one
often can privee the existence of sequenceswith certain properties by probahility
methods, In fact one then proves that almeost all sequences have the required
property, perhaps without being able to construct a single sequenece having the

property.
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