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MONOTONICITY OF PARTITION FUNCTIONS
P. T. BatemanN and P. Erpos

1. Introduction. Let A be an arbitrary set of positive integers (finite
or infinite) other than the empty set or the set consisting of the single
element unity*. Let p(n)=p4(n) denote the number of partitions of
the integer n into parts taken from the set 4, repetitions being allowed.
In other words, p(n) is the number of ways n can be expressed in the form
Ny @y +nyayt..., where a;, a,, ... are the distinct elements of 4 and
ny, My, ... are arbitrary non-negative integers. In this paper we shall
prove that p(n) is a strictly increasing function of n for sufficiently large n
if and only if 4 has the following property (which we shall subsequently
call property P;): A contains more than one element, and if we remove
any single element from A, the remaining elements have greatest common
divisor unity.

We shall obtain this result as a special case of the following more general
one. Let k be any integer and suppose we define p®(n) = p®(n) by the

formal power-series relation

FulX) = £ pP(n) Xn = (1—X)t 3 p(n) X"

n=0 n=0

=(1—X) 1T (1—X*) L (1)
acAd

Thus p®(n) is the -th difference of p(n) if &> 0, p(n) itself if k= 0, and
the (—k)-th order summatory function of p(n) if £ <<0. For k>0, we
shall prove in the sequel that p®(n) is positive for all sufficienily large positive
integers n if and only if A has the following property, which we shall call
property P,: There are more than k elements in A, and if we remove an
arbitrary subsel of k elements from A, the remaining elements have greatest
common divisor unity. When L = 0, this reduces to the well-known result
([3], [6]) that p©®(n)= p(n) is positive for all sufficiently large » if and

* The inclusion of these two trivial cases would complicate the statements and proofs
of some of our theorems and so, for the sake of simplicity, we agree to exclude them through-

out the paper.
[MATHEMATIEA, 3 (1956), 1-14]
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only if the elements of 4 have greatest common divisor unity. When
k=1, it is the result stated in the preceding paragraph.

Although we are primarily interested in positive values of %, we shall
find it convenient to agree that when k is a negative integer any set 4 has
property P,. Then the italicized assertion is trivially true for negative k.

Note that if 4 has property P, it must actually contain at least £+2
elements. We remark also that 4 has property P, if and only if the
following assertion holds for every prime number p: there are at least
k-+1 elements of 4 which are not multiples of . In particular, if 4 has
the property that for every prime number p there are infinitely many
elements of A not divisible by p, then A has property P, for arbitrary k.

The proof that property P, is a necessary condition for p®(n) to be
positive for large n is a straightforward argument with power series (§2).
The sufficiency is proved in the following stages. First (§3), we prove it
for the case in which 4 is finite by using the partial fraction decomposition
of the generating function f,(X). Second (§4), we prove that in any case
pn)=o0 (p('l)(n)) as n increases. Third (§5), we prove sufficiency for the
case where A is infinite by using these two results. Actually, under the
assumption of property P, we shall prove much more than the mere
positivity of p®(n) for large » and shall include the case of negative k in
our theorems for completeness (§6). However, all the arguments used
are essentially elementary. We conclude the paper with a discussion
(§7) of the relative orders of magnitude (as functions of n) of p®(n) and
p(kﬂ)(n).

Our attention was drawn to the problems discussed in this paper by
remarks of various authors ([4], [5], [6]) on the usefulness of knowing that
p(n) is an increasing function of » for large #n. In particular, the applica-
tion of Ingham’s Tauberian theorem for partitions becomes considerably
simpler in that situation. By our results this holds if and only if 4 has
property P,. However, it follows from the corollary after our Theorem 6
(in the case k= 0) that actually property P, namely, that the elements
of 4 have greatest common divisor unity, would be sufficient for the purpose
of applying Ingham’s theorem. This remark has been made previously
by Auluck and Haselgrove in [1].

All our theorems refer to the behaviour of p®(n) for sufficiently large n.
The behaviour of p®(n) for small #» can be rather erratic, since it depends
on the arithmetic properties of the smaller members of A rather than
on the arithmetic properties of A as a whole. In particular, if £ > 1 it is
impossible for p®(n) to be positive for all non-negative =, since
p®(1) <1—k.

For partitions into distinct parts the questions analogous to those
discussed in this paper are much more difficult. The reason for this is
that, in the case of distinet parts, these questions become trivial for finite
sets and it is not possible to use the finite case to attack the general case,
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as we have done in this paper. However, a rather broad sufficient condition
for monotonicity is given by Roth and Szekeres in [10].
Throughout this paper small Latin letters denote (rational) integers.

2. Necessity of property P,.

TaeoreM 1. If k=2 and if p®(n) is non-negative for all sufficienily
large n, then A has property P,. If p®(n)is non-negative for all sufficiently
large n, then either A has property P, or A contains the element 1.

Proof. Suppose £ >0 and 4 is such that p®(n) is non-negative for
all sufficiently large n. Since the empty set and the set consisting of the
single element 1 have been excluded from consideration, it follows from
(1) that f(X) is not a polynomial. Thus p®(n) is positive for infinitely
many % and so fi(X)— -+ o0 as X approaches 1 from below. Thus A
must contain more than k elements, since otherwise f,, (X ) would be a rational
function which, when expressed in reduced form, has a denominator not
divisible by 1—X. Suppose that B = {a,, a,, ..., @} is an arbitrary
subset of A having exactly k elements and let d be the greatest common
divisor of the elements of 4—B. Then the left-hand side of the identity

M (1—X9 =f,(X)

acA—-B

(14 X+ X24 ... Xon1) (2)

1

=

is expressible as a power-series in X¢. On the right-hand side of (2), the
power-series for f;(X) has non-negative coefficients from some point on
and an infinite number of positive coefficients, while the coefficient of X
in the expansion of

k
I (1+X4X24... 4 Xon 1)
m=1

is positive unless £ =1=a;,. Thus, unless k=1 and A contains the
element 1, the right-hand side of (2) has infinitely many pairs of consecutive
coefficients both of which are positive, so that d must be 1. Hence, unless.
k= 1and 4 contains 1, 4 must have property P,. Accordingly Theorem 1
is proved.

THEOREM 2. For arbitrary k, if p®(n) is positive for all sufficiently
large n, then A has property P,.

Proof. The theorem is vacuous if ¥ <0 and follows immediately
from Theorem 1 either if £>1 or if k=1 and 4 does not contain the
element 1. If =1 and 4 contains 1,

flX)= 1T (1—X9)7
agd,a+1
and thus f; (X) is expressible as a power series in X%, where d is the greatest
common divisor of the elements of 4 other than 1; hence, if pW(n) > 0



4 P. T. BATEMAX and P. Erpos

for all sufficiently large n, d =1 and so A has property P,. If k=0,
SoX)= 11 (1—-X«~

ag A4
and thus f,(X) is expressible as a power-series in X9, where d is the greatest
common divisor of all the elements of 4 ; hence, if p®(n) is positive for all
sufficiently large n, d =1 and A has property P,.

3. Sufficiency of condition P, when A is finite.

Lemma 1. Suppose A has exactly r elements a,, ..., a, and suppose
E<r. Thenifn>0
pP(n) =gn)+0n1?),
where g(n) is a polynomial in n of degree r—k—1 with highest coefficient
[(r—k—D)aja,...a,]7%, and where q is the largest number of elements of A
which have a common divisor greater than 1.

Proof. The proof is based on the methods of Cayley, Glaisher, and
Sylvester (¢f. [2] and [7]). From (1) we see that 1/f,(X) is a polynomial
whose factorization into linear factors is

1 i a,—1
e — (1—X)y* I TI (1—e2nilla, X).
=02 0 I (e X) 2
Thus the terms in 1 —X in the decomposition of f, (X) into partial fractions

have the form
C(.

where o, ;= (8,05...a,)7%. If g(n) is the coefficient of X» in the
power series expansion of (4), we have
ko mth—1
gm) =2 ("),

h=1

which is a polynomial in » of degree r—k—1 and highest coefficient
[r—k—1)aj05...a,]7t. If d>1 and { is a primitive d-th root of
unity, the multiplicity of the factor 1—{X in the factorization (3) is equal
to the number g, of multiples of d among a,, a,, ..., @,. Since by definition
g is the largest value which g, can have for any positive integer d greater
than 1, the terms in 1—{X in the decomposition of f,(X) into partial
fractions have the form

B B B
T—x i gxp et = fxe ®)

where of course some of the 8’s may be zero. The coefficient of ({X) in
the power series expansion of (5) is a polynomial in »n of degree at most
g—1. Summing over all possible {, we get the result of the lemma.
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THEOREM 3. Suppose k 1is arbitrary, A has exactly r elements
Qy, gy onny Oy, and A has property P,. Then as n increases p®(n)— -+ oo
in such a way that

pr—k-1

(1) #P(a) = (r—k—1)!a;a,... ar+0(nT‘k_2)’
p*m) o pPn—=1) /1
o = e =0

Proof. By the assumptions of the theorem and the definition of
property P,, we have k <r. Thus Lemma 1 is applicable. Further, the
number ¢ in Lemma 1 does not exceed r—k—1. Hence (i) follows immedi-
ately from Lemma 1 and (ii) follows from (i).

If A is finite, conclusion (i) of Theorem 3 shows that property P, is
a sufficient condition for p®(n) to be positive for all large n. The special
case k = 0 of Theorem 3 is well known (cf. [8]).

4. Proof that p(n) = o(p(*l)(n)). Conclusion (ii) of Theorem 3 shows
in particular that when 4 is finite p(n) = o(p(‘”(n)) as n increases. We

now show that this relation is also true when A4 is infinite.
TaEOREM 4. Suppose A is infinite. Then as n increases
(i) pY(n)n=—>+ o for any fized c,

(i) _pn) PH)("—‘I)_”)_

F) =  )

Proof. In proving assertion (i) we may assume ¢>0. Let B be a

finite subset of A having at least ¢+1 elements. Conclusion (i) of
Theorem 3 shows that pV(n)n—°— + oo as n increases. But

5P (m) = 5 (n)
and so (i) follows.

It remains to prove assertion (ii). Suppose that » >0 and that
=10+ Ny85+...+n,4, Is a partition of n into parts a,, a,, ..., a,
taken from A, where n,, ny, ..., n, are positive integers. From this we
construct a partition of each of the ¢ integers n—ay, n—a,, ..., n—a, in
the following way :

n—ay, = (hy—1)a;+nya5+...+n,a,

n—ay =1y 3+ (Ry—1) Ay +n305+... 41,0,

N—y =110+ ...+ Ny @+ (n,—1)a,
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In this construction no two distinct partitions of » give rise to the same
partition of some integer less than n. Let P (n) denote the number of
partitions of » into parts taken from 4 in which the number of distinct
elements of A which actually occur is exactly g. Then the above con-
struction shows that

n n—1
E g Pgim)= ZOP(M) (6)
q= m=
Now P,(n) is the coefficient of X" in the expansion of
X X%
D I, (7)
where the summation is taken over all subsets {a,, ..., @,} of 4 containing

exactly q elements. Hence P, (n) does not exceed the coefficient of X in
Z(XnF X204 )L (X% X200 ),
where the summation is taken over all subsets {ay, ..., a,} of the set

{1, 2, ..., n} which contain exactly ¢ elements. Since there are (Z>

such subsets and since the coefficient of X* in
(X X2y )., (X% X2, )
does not exceed that in

s = 5y = £ (1)

m q —1
we have

ra<(3) (13 <o ®

Now if ¢ is any fixed positive integer, we have by (6) and (8)

POm) = % p(m)

m=0

n

= p(n)+ 21q Py(n) = (+1)p(n)+ 21(q~t) P,(n)
= q=
t—1
Z (1) pn)—(t—1) Z Py(n) > (+1)p(n)— (—1)2n¥-3,
g=1
Hence
p(n) 1 (—1)2 n2-3
P ST L 5
By conclusion (i) the second term on the right-hand side of (8) has limit
zero as n increases. Therefore

(9)

=—  pn) 1
S ) Si1

Since ¢ can be chosen arbitrarily large, conclusion (ii) follows.
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5. Sufficiency of condition P, when A is infinite.

Lemuma 2. For any k, an infinite set of positive integers has property
P, if and only if some finite subset has property P,

Proof. The assertion is trivial if & << 0, so suppose £ > 0. If some finite
subset of an infinite set 4 has property P, then clearly A has also, since
enlarging a set with property P, cannot destroy that property. Suppose
now that A4 is an infinite set with property P,. Let

Ay = {ag, gz -oes o, k1)

be some subset of A containing exactly k+1 elements. Suppose the
prime divisors of the product ay agy ... @g 1,y are py, Py, ..., . By
the definition of property P, there exists, fori =1, 2, ..., b, a subset

Ay = {ay, @, ooy a@',k+1}

of A containing exactly k41 elements none of which is divisible by p,.
If p is a prime other than p,, ..., p,, clearly no element of A4, is divisible
by p. Then the union B of the (not necessarily disjoint) subsets
Ay, Ay, <.y Ay of A is a finite subset of 4 with property P,. For given
any prime number, we can find at least k41 elements of B which it does
not divide.

THEOREM 5. Suppose kis arbitrary, A isinfinite, and A has property P,.
Then as n increases

(i) p®(n)n—t——+ o for any fized c,

o pEPm) L p®P(n—1)
W ) = w7
Proof. The assertions of the theorem have been proved for k= —1

(Theorem 4) and they follow immediately for & < —1 by summation.
So suppose £ > 0 and 4 is an infinite set with property P,. By Lemma 2
there is a finite subset 4, of 4 which has property P,. If k=0 we may
assume that 4; contains at least two elements. Let us put 4,=4—4,
and write

p(j‘)(n) = p(k)(n), pg‘:(n) e p&k)(n)’ pAa (n) =p2(n)’ pil—zl)(n) =p(2—1)(n)'
We shall use the identity
pPm = I pi(n—m)py(m), (10)

which is an immediate consequence of (1).
Let ¢ be an arbitrary positive integer. By Theorem 3

- PP(n)
o e T T
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and so there exist positive integers g and % such that

pPm) /{ —g  for all =, )
1| pFH(n)| Lt+1  for n>h.
Let s= max {14|pfD(n)}. (12)
0<n<h-1
By Theorem 4 there is a positive integer %, such that

PV S Tt ks

for n>h,. Then if n >h+h,—1 we obtain from (10)-(13)

PPm) > (41) S (L] pl+d (n—m) [} py(m)
m=0

—g X ([ m—m) [} pa(m)

m=n—h+1

n

> (4 E (14| pFt0(n—m)|} po(m)—(g-+t+1)s = pz(m)

m~ m=n—h+

> (t4+1) >'5 AP —m) ) pa(m

—(g+t+1)s J E pyim) )P5Y( m)tp( D(n)

m n—h+1

>lH1—( ) S palm)lpii(m)]

m=n—h+

x & 14 [pf (n—m) [py(m

m=0

>t 3 (14| pED(m—m) [} py(m
m=0

>t 3 pym)+t| T p(n—m)py(m)
m=0 m=0

= tp V() +t )

Now ¢ can be chosen arbitrarily large. Therefore lim p®(n)/pSY(n) = + o0

n—>w
and thus, since A4, is infinite, assertion (i) of the present theorem follows from
assertion (i) of Theorem 4. Also lim p%*+D(n)/p®(n)=0 and assertion

N—>D0

(ii) is proved.
Theorem 5 shows in particular that, when A is infinite, property P;
is a sufficient condition for p®(n) to be positive for all large n. Thus
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property P, is a sufficient condition for the eventual positivity of p®(n)
in any case.

CoroLLARY. For arbitrary k, if A has property P,, then as nincreases

(k+1) E) (p—
Pp®(n)—> L co, %H(—r(:)l—) e 1—%»0.

6. Further implications of property P,. Although P, is a necessary
condition for p®(n) to be positive for all large n, we have already seen
(Theorems 3 and 5) that if we assume property P, we can actually assert
much more about p®(n) than the mere fact that it is positive for large n.
In this section we go further in this direction.

THEOREM 6. Suppose k is arbitrary and A has property P,. Then
there 1s a positive integer b such that

PO (m) > p®(n) if m—b>=n=>=0.
Proof. If k<< —1, the result stated is trivially true with b = 1, since
P& (n) = p®(n)—p®(n—1) is positive for all non-negative n. If k=-—1

and A is non-empty, we can take b as any element of 4. For then if
m—>b >mn >0, there is an integer j such that n < jb <m, so that

pm) = £ p(h)>p(b)+ = p(h) = p(ih)+p0n) > pN(n).

When k>0 we first settle the case in which A4 is finite. Suppose
A = {a,, a, ..., a,} and 4 has property P,. Then by Theorem 3 there is
a positive integer ¢ such that

nr—k—1
Len*241

(k) S
P (n) (T_k—l)!ala/g--'a’r

for all non-negative n. Therefore if m > n >0 we have

.mr—k—l _ nr——k—l

p(k) (m) __p(k) ('ﬂ) > (r_ k___ 1 ) _ Cmr~k—2 _ Cn'_k_2~ 2

la,ay...0,

~ (m—mn)mr—F2

_ (9 r—k—2
T (r—k—1)aya,...0, (Ao ’

The last expression is positive if m—n > b, where
b= (2c42)(r—k—1)la,a,...a,+ 1.

Thus the assertion of the theorem is proved if A is finite.

Finally, suppose k£ >0, A is infinite, and A4 has property P,. As in
the proof of Theorem 5 let 4, be a finite subset of A which has property
P, and contains at least two elements, put A,= 4—A4,, and write
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pPn) =p®P(n), pp(n)=pPn), p, 0)=py(n), P n)=piP(n). By
Theorem 3 there exist non-negative integers ¢ and % such that pR(n) = —
for all » and p{¥(n) >1forn >h. By Theorem 4 there is a positive integer
hy such that p,(n)/p5P(n) <1/(2gh+2h) for n>h,. By the previous
paragraph there is a positive integer b such that 6 >A-+h,—1 and

PP (m) > pi(n) for m—b>n>0.

Hence if m—b >n >0 we have

ﬂWm%wwmkiEjﬂmm D)—pP(n—1)}p,(l +—E FW —1) p(1)
m—Fh m

P+ Z pl)—g Z py(l)

0 l=n+1 l=m—h+1

=p5? (ﬂb%ﬁd)

V
NYE

I

) |

i=m Iz+1p( 1)( [

> P m) {1_(g+l)z n§h+1 Ph (T))} = 4w m) > 0.

Thus Theorem 6 is proved.

CorOLLARY. Suppose k is arbitrary and A has property P,. If h is
any fized positive integer, then

ple— 1>(n+h) — k1 — (14 0(1)) p(n)

as nincreases. If b is a fixed integer not less than the integer b of Theorem 6,

then
P (1) —p*D(n)
h

is a strictly increasing function of n for non-negative n.
Proof. The first assertion follows from conclusion (ii) of Theorem 3
and conclusion (ii) of Theorem 5:

PEDR)—pDm) = S p(m) = h{1-+o(L}pP(n)
m=n+1

The second assertion follows from Theorem 6:

(D () — D)} — (PP (n—1+h)—p*D(n—1)}
n+h n—1+h

= 'S pem)— T po(m) = pP(n-+h)—p®(n) > 0,

m=n+l m=mn

provided A > the integer b of Theorem 6 and » > 0.
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TuroREM 7. Suppose k is arbitrary, A s infinite, A has property P,,
and 0 <a<<1l. Then
1
m ——— max p%®(m)=0.
n—>» P(k)(n) 0<m<anp ( )

Proof. Let A; be a finite subset of A having property P, and con-
taining at least k2 elements. Then A, has g%+ 1 elements, where ¢
is some positive integer. By conclusion (i) of Theorem 3 there is a positive
integer s such that

1 (k)
tim' 2™ _ g,
n—>o0
Hence there are positive integers ¢ and » such that
e <spP(n) <2n2 for n>t
and pP(n)<u for n<t

Hence if 7 > max {(us)?/(x—a?), t/(1—a)} and t <m < an, we have

pO(m) = 3 p®(m—I) py(l)
1=0

m—t mn
< 3B 2 m—l1p,()+ = up,(l)

=0 l=m—t+1

m—t m
< IE 25 Yom—al)p,()+ £ s laf(n—an)?p,(l)
1=0

l=m—t+1
m

<200 T s n—l)ip,() <ot 3 pP(—D)py(l).  (14)
=0 i

Suppose now that k¥ <<0. Then p¥(n—I) >0 for any I and so if
0 <m < an we have

I Mz

2 pPa—Dp) < Z pP(n—1)pa(l) = pP(m). (15)

Combining (14) and (15), we find that
PP (m) < 422 p® (), (16)

provided ¢t <m <<an and n is sufficiently large. By Theorem 5 the
inequality (16) also holds if 0 <m <{t—1 and = is sufficiently large.
Hence

— 1

lim ——— max p®(m) <<4a?

n—>o P®(n) 0<m<anp (s
Since we can make ¢ as large as we please by arbitrarily enlarging 4, the
assertion of the theorem is proved when %k < 0.
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To prove the assertion of the theorem when % > 0 it is again sufficient
to show that (15) holds if 0 <m <an and = is sufficiently large. By
Theorem 3 there are non-negative integers ¢; and g, such that p®(n) > 1
for n >, and p{(n) > —g, for all n. By Theorem 4 there is a positive
integer ¢, such that p,(n)/p§i?(n) <1/(3t;g,+3¢t) for n>f,. By the
result of the preceding paragraph there is a positive integer ¢, >¢,1-f,—1
such that p§P(m)/p5P(n) <1 provided 0 <m <an and n >t,. Accord-
ingly, if » > max{f;, ({,+1)/(1—a)} and 0 < m < an we have

P(’“’(n)—fo =l p()= = PP (=D pa(0)

2
{(=m*+1 I=n—t;+1

= P — D) — (1) pa()

I=n—t+1

ED(m) n pa(l)
>peom (12 _g 1y & 2l
=P )t Pgh(n) G2+ )l:n-ftl+1p(271)(l)-'

{ 1 |
> ptD 11—l (g, 1), ——— 1D =
=Py (n) 0 3 (gl - )tl 3f1 gl+3t1| 3P2 (n) > 0.

This completes the proof.

7. The order of magnitude of p®*+V(n)/p®(n). Suppose 4 has property
P, and h is the smallest positive integer such that p®(n) > 0 for n > A.
(Such an integer A exists if and only if 4 has property P,.) Then the

quantity
D) ) (19—
PR =) P(m)

is defined for n>h. If A4 is finite we know that p®(n) = O(1/n) [con-
clusion (ii) of Theorem 3]. If A is infinite we have proved that p®{n)
tends to zero as n increases [conclusion (ii) of Theorem 5] without getting
a more explicit estimate of its order of magnitude for large n. In fact we
have been unable to obtain any result in this direction. However, we feel
that there is reason to believe that the following assertion may be true.

CoNJECTURE. If k is arbitrary and A has property P, then
PO (n) = O(1/n1®).

It is easy to see that the assertion of the conjecture, if true, is best
possible. For if A is the set of all positive integers, then as % increases
p®(n) = {1+o(1)}n/(6n)'2 by Rademacher’s exact formula for p(n) in
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this case [9]. On the other hand, the following theorem shows that p®(n)
cannot be O(1/n) for any infinite set 4, that is, conclusion (ii) of Theorem 3
is definitely false for infinite sets.

THEOREM 8. Suppose kis arbitrary and A isinfinite. If A has property
P,, then np®(n) is unbounded above for large n. If A has property P,
then as n increases np™(n) — - co.

Proof. Suppose 4 is infinite and has property P,. As above let % be
the smallest integer such that p®(n) > 0 for n >h. Suppose np®(n) were
bounded above by the integer g for n >h. Let ¢=max(g, ). Then
if n>c

=

va— < —

p®(n) I p®(m) < 1 m 2 om (n)
= = — g I = L0t
p(k)(c) m=c+1 p(k)(m_l) m=c+1 M—G . m=c+1 M—C ¢/

But this contradicts conclusion (i) of Theorem 5. Thus the first assertion
of the present theorem is proved.

Suppose now that A4 is infinite and has property P, ,. By Theorem 6
there is a positive integer b such that p*+0(n) > p%+D(m) if n—b >m > 0.
Since the ratios

p(k-l-l)(n_ 1) p(k+1) (n_2) p(k+1)(n_b+ 1)
pED(n) 7 pEID(m) v T D ()

all have the limit 1 as n increases, there is a positive integer A, > b such
that all these ratios are less than 2 if » >A;. Thus if n >4, and m <n
we have p®+D(m) < 2p®+D(n). Now let ¢ be an arbitrary positive number.
By Theorem 7

1
lim ———— max &+D(m) = 0
n—>w0 p(k+l)(n) o<m<(1—e)n P ( )

and hence there is a positive integer %, such that

max p(m) < eptt(n)
0<m<(1—¢)n

for any n > h,. Hence if n >max (k,, %y, 1/¢) we have

[(1—e)n] n
PO = T pkem)4 X g
m=0 m=[(1—e)n]+1
[(1=e)n] n
< I gtmt B ki)
m=0 m=[(1—e)n]+1

<nep®D(n)+-(en+1) 2p*+0(n) < Senp®i(n).

Since e is arbitrary, this proves the latter assertion of Theorem 8.
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