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MONOTONICITY OF PARTITION FUNCTION S

P. T . BATEMAN and P .ERDÖS

1 . Introduction . Let A be an arbitrary set of positive integers (finit e

or infinite) other than the empty set or the set consisting of the singl e

element unity* . Let p(n) = pA (n) denote the number of partitions of

the integer n into parts taken from the set A, repetitions being allowed .

In other words, p(n) is the number of ways n can be expressed in the form

n 1 a1+n2 a 2 + . . . , where a 1 . a 2 , . . . are the distinct elements of A and

n l , n 2 , . . . are arbitrary non-negative integers . In this paper we shall

prove that p(n) is a strictly increasing function of n for sufficiently large n
if and only if A has the following property (which we shall subsequentl y

call property P1 ) : A contains more than one element, and if we remove

any single element from A, the remaining elements have greatest common

divisor unity .
We shall obtain this result as a special case of the following more genera l

one. Let k be any integer and suppose we define p ck> (n) = pT(n) by the

formal power-series relatio n

x

	

x
fk(X) = E p(k)(n)X" = (1—X) k p(n)X1z

72 _o

	

n= o

= (1—X) k II (1—h") -1 .

	

(1 )
as A

Thus pk>(n) is the k-th difference of p(n) if k > 0, p(n) itself if k = 0, and

the (—k)-th order summatory function of p(n) if k 0. For k 0, we

shall prove in the sequel that pk)(n) is positive for all sufficiently large positive

integers n if and only if A has the following property, which we shall cal l

property P k : There are more than k elements in A, and if we remove an

arbitrary subset of k elements from A, the remaining elements have greates t

common divisor unity. When k = 0, this reduces to the well-known result

([3], [6]) that p°> (n) = p (n) is positive for all sufficiently large n if and

* The inclusion of thee two trivial cases would complicate the statements and proof s

of some of our theorems and so, for the sake of simplicity, we agree to exclude them through -

out the paper.
[MATHEMATIKA, 3 (1956), 1–14]
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only if the elements of A have greatest common divisor unity . When

k = 1, it is the result stated in the preceding paragraph .

Although we are primarily interested in positive values of k, we shall
find it convenient to agree that when k is a negative integer any set A has
property Pk . Then the italicized assertion is trivially true for negative k .

Note that if A has property P k, it must actually contain at least k+ 2
elements. We remark also that A has property Pk if and only if the
following assertion holds for every prime number p : there are at least
k± 1 elements of A which are not multiples of p . In particular, if A has
the property that for every prime number p there are infinitely many
elements of A not divisible by p, then A has property Pk for arbitrary k.

The proof that property P k, is a necessary condition for p(k>(n) to be
positive for large n is a straightforward argument with power series 02) .
The sufficiency is proved in the following stages . First 03), we prove i t
for the case in which A is finite by using the partial fraction decompositio n
of the generating function fk (X) . Second 04), we prove that in any cas e
p(n) = o (p(-')(n)) as n increases. Third (5), we prove sufficiency for th e
case where A is infinite by using these two results . Actually, under the
assumption of property Pk we shall prove much more than the mere
positivity of p(k)(n) for large n and shall include the case of negative k in
our theorems for completeness 06) . However, all the arguments used
are essentially elementary . We conclude the paper with a discussio n
(§7) of the relative orders of magnitude (as functions of n) of pm(n) and
p(k+1) ( n )

Our attention was drawn to the problems discussed in this paper by
remarks of various authors ([4], [5], [6]) on the usefulness of knowing tha t
p(n) is an increasing function of n for large n . In particular, the applica-
tion of Ingham's Tauberian theorem for partitions becomes considerably
simpler in that situation . By our results this holds if and only if A has
property P1 . However, it follows from the corollary after our Theorem 6
(in the case k = 0) that actually property Po, namely, that the elements
of A have greatest common divisor unity, would be sufficient for the purpos e
of applying Ingham's theorem. This remark has been made previously
by Auluck and Haselgrove in [1] .

All our theorems refer to the behaviour of p( k )(n) for sufficiently large n .
The behaviour of p(k) (n) for small n can be rather erratic, since it depends
on the arithmetic properties of the smaller members of A rather than
on the arithmetic properties of A as a whole . In particular, if k 1 it i s
impossible for p (k) (n) to be positive for all non-negative n, since
p(k)(1) e 1-k .

For partitions into distinct parts the questions analogous to thos e
discussed in this paper are much more difficult . The reason for this is
that, in the case of distinct parts, these questions become trivial for finit e
sets and it is not possible to use the finite case to attack the general case,
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as we have done in this paper . However, a rather broad sufficient condition
for monotonicity is given by Roth and Szekeres in [10] .

Throughout this paper small Latin letters denote (rational) integers .

2 . Necessity of property P k .

THEOREM 1 . If k _> 2 and if p (k'(n) is non-negative for all sufficiently
large n, then A has property P k . If p°(n) is non-negative for all sufficiently
large n, then either A has property P 1 or A contains the element 1 .

Proof . Suppose k > 0 and A is such that p(k) (n) is non-negative for
all sufficiently large n . Since the empty set and the set consisting of th e
single element 1 have been excluded from consideration, it follows fro m
(1) that fk (X) is not a polynomial . Thus p(k)(n) is positive for infinitel y
many n and so fk (X) + co as X approaches 1 from below. Thus A
must contain more than k elements, since otherwisefk (X) would be a rationa l
function which, when expressed in reduced form, has a denominator no t
divisible by 1--X. Suppose that B = {a l , a2 , ak} is an arbitrary
subset of A having exactly lc elements and let d be the greatest common
divisor of the elements of A—B . Then the left-hand side of the identity

k
H (1 —Xa)-1=fk(X) II (1+X+X2+ . . .+Xa--1)

	

( 2 )
a€A—B

	

m= 1

is expressible as a power-series in X d. On the right-hand side of (2), th e
power-series for fk (X) has non-negative coefficients from some point on
and an infinite number of positive coefficients, while the coefficient of X
in the expansion of

k
II (1+A+X2+ . . .+Xa,. 1 )

m= 1

is positive unless k = 1 = a1 . Thus, unless k = 1 and A contains the
element 1, the right-hand side of (2) has infinitely many pairs of consecutiv e
coefficients both of which are positive, so that d must be 1 . Hence, unless
k = 1 and A contains 1, A must have property Pk . Accordingly Theorem 1
is proved .

THEOREM 2 . For arbitrary k, if p (k '(n) is positive for all sufficiently
large n, then A has property Pk .

Proof. The theorem is vacuous if k < 0 and follows immediately
from Theorem 1 either if k > 1 or if k = 1 and A does not contain the
element 1 . If k = 1 and A contains 1 ,

f1(X) = H (1—Xa ) — 1
aCA,ar 1

and thus fl (X) is expressible as a power series in Xd, where d is the greates t
common divisor of the elements of A other than 1 ; hence, if p(1'(n) > 0
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for all sufficiently large n, d = 1 and so A has property P1 . If k = 0 ,

fo(X) = II (1—X9— 1
ae A

and thus fo(X) is expressible as a power-series in Xd , where d is the greatest
common divisor of all the elements of A ; hence, if p`0 )(n) is positive for al l
sufficiently large n., d = 1 and A has property Po .

3 . Sufficiency of condition P k when A is finite .

LEMMA 1 . ,Suppose A has exactly r elements a 1 , . . ., a., and suppos e
k < r . Then if n > 0

p(r>(n) = g(n)+ 0 (0-1) ,

where g(n) is a polynomial in ii of degree r—k—1 with highest coefficient
[(r—k— 1)! a.1 a 2 . . . ar ]-1 , and where q is the largest number of elements of A
which have a common divisor greater than 1 .

Proof. The proof is based on the methods of Cayley, Glaisher, an d
Sylvester (cf . [2] and [7]) . From (1) we see that l/fk (X) is a polynomial
whose factorization into linear factors i s

1

	

r

A(x) — ( 1 — y)r-k II II (1—e2n~lla„ X) ,
1 1= 1

Thus the terms in 1—X in the decomposition of f,. (X) into partial fractions
have the form

1a1k }- (1	 2X) 2 . . . (1 a I)r—k ,

where ar_1, _ (a l a 2 . . . a r)- 1 . If g(n) is the coefficient of X'v in the
power series expansion of (4), we have

g(n) r' n+h—1 '
_

h=1

	

h

	

~

which is a polynomial in n of degree r—k—1 and highest coefficient

	

[(r—k— I)! a1 a 2 . . . a,.]-1 . If d >1 and

	

is a primitive d-th root of
unity, the multiplicity of the factor 1—SX in the factorization (3) is equa l
to the number q d of multiples of d among a 1 , a 2 , . . ., ar . Since by definitio n
q is the largest value which qd can have for any positive integer d greater
than 1, the terms in 1— SX in the decomposition of fk (X) into partial
fractions have the form

1
	 P

X+
( 1
	 P2X~2 . . . { (1	 ~ X)4'

	

(5 )

where of course some of the ,8 's may be zero. The coefficient of (a)" in
the power series expansion of (5) is a polynomial in n of degree at most
q— 1 . Summing over all possible we get the result of the lemma .

(3 )

(4)
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THEOREM 3 . Suppose k is arbitrary, A has exactly r elements
a l , a 2 	 a, ., and A has property P k . Then as n increases p (k)(n)- +o0

in such a 'way tha t

(i) p(k>(yZ)

	

(r—k-1)?ala2 . . .a,,-I-/J(nr-k-2) ,

II
p(k+1>(n)

=

	

pk>(n—1)
= '1 ~ .O p(k)(n)

	

p— 1—
(k>(n) — O~ n

Proof. By the assumptions of the theorem and the definition of
property Pk , we have k r . Thus Lemma 1 is applicable . Further, the
number q in Lemma 1 does not exceed r—k—1 . Hence (i) follows immedi-
ately from Lemma 1 and (ii) follows from (i) .

H A is finite, conclusion (i) of Theorem 3 shows that property Pk i s
a sufficient condition for p (k )(n) to be positive for all large n. The specia l
case k = 0 of Theorem 3 is well known (cf. [8]) .

4 . Proof that p(n) = o (p ( - 1)(n)) . Conclusion (ii) of Theorem 3 shows

in particular that when A is finite p (n) = o (p (-1)(n)} as n increases. We

now show that this relation is also true when A is infinite .

THEOREM 4 . Suppose A is infinite . Then as n increases

(i) p! 11 (n) n- c --->+ co for any fixed c ,

~(	 1'n

	

1
(ii) 1i-1)(n )

ra= 1—~ p(11 (n) ) - 0 .

Proof. In proving assertion (i) we may assume c > 0 . Let B be a
finite subset of A having at least c± 1 elements . Conclusion (i) of

	

Theorem 3 shows that p 1> (n)

	

+ oo as n increases. But

p(V> (n ) A-1)(n )

and so (i) follows .

It remains to prove assertion (ii) . Suppose that n > 0 and that

n = nl al+n2 (1 2+ . . . +nq a q is a partition of n into parts al , a 2 , . . ., a q
taken from A, where n 1 , n2 , . . ., ng are positive integers . From this w e
construct a partition of each of the q integers n—al , n—a 2 , . . ., n—a q in
the following way :

~L — al = ( nl — 1)al +n2 a2-r . . .-rng ag ,

n— a 2 = nl a'1+ (n2— 1) a 2 +n3 a 3 -}- . . . -I- ng ag ,

n— a q = nl al+ . . . +ng -1 ag -1+ (nq —1 ) ag .
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In this construction no two distinct partitions of n give rise to the same
partition of some integer less than n. Let P,2 (n) denote the number of
partitions of n into parts taken from A in which the number of distinct
elements of A which actually occur is exactly q . Then the above con-
struction shows that

n-1

E q Pq(n)

	

E p(m).
g=1

	

m= 0

Now Pq (n) is the coefficient of Xn in the expansion of

Xal

	

Xaa

1—lia r
. . . l—XaQ '

where the summation is taken over all subsets {al , . . ., aq} of A containing
exactly q elements . Hence P0 (n) does not exceed the coefficient of Xn in

E(X a1+X2a1+ . . .) . . . (Xa,+X2aq+ . . .) ,

where the summation is taken over all subsets {a 1 , . . ., ag } of the set

{1, 2, . . ., n} which contain exactly q elements . Since there are
(nq

such subsets and since the coefficient of Xn in

(Xal+X2a1+ . . .) . . . (X a ,+ 7i'2ai+ . . . )

does not exceed that in
q

	

a'

(X+X2+ . . .)q = ( `i)
—

	

(m—l) Xm
>—X

	

m =qlq— J

Pq (n) < ( n
f I n`l \ <n2Q~ 1 .

q q— 1

Now if t is any fixed positive integer, we have by (6) and (8 )

p (-1)(n) = E p(nz )
m—o

n

p ( n)+ g Pq(n) = ( t +1)p (n)+ E ( q— t) Pg(n)
q =1

	

q = 1
e -1

(t+ 1)p(n)—(t—1) E Pg (n) ~ (t+1)p(n)— (t —1)2n2c-3 .
q= 1

Hence
	 p (n)	 1

	

(t—1)2 n21- 3

p(-1) (n)t+1

	

t+1 p(-1) (n) •

By conclusion (i) the second term on the right-hand side of (9) has limi t
zero as n increases . Therefore

11Tn	 p(n )
p( (

Since t can be chosen arbitrarily large, conclusion (ii) follows .

(6 )

( 7 )

we have

(8 )

(9 )

1
t +l
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5 . Sufficiency of condition P k when A is infinite .

LEMMA 2 . For any k, an infinite set of positive integers has propert y
Pk if and only if some finite subset has property P k .

Proof. The assertion is trivial if k 0, so suppose k O. If some finit e
subset of an infinite set A has property Pk , then clearly A has also, sinc e
enlarging a set with property P k cannot destroy that property . Suppose
now that A is an infinite set with property Pk . Let

AO = { a 01 , a 02 , . . ., a O, k+l}

be some subset of A containing exactly k+ l elements . Suppose th e
prime divisors of the product aol a o2 • • • a o, k+i are pi , p 2 , . . ., pb. By
the definition of property Pk there exists, for i = 1, 2, . . ., b, a subset

A i = {ail, ai2, . . ., ai, k+i }

of A containing exactly k+l elements none of which is divisible by p i .
If p is a prime other than p 1 , . . ., Pb' clearly no element of A o is divisible
by p. Then the union B of the (not necessarily disjoint) subset s
Ao , A 1 , . . ., A b of A is a finite subset of A with property Pk . For given
any prime number, we can find at least k+ l elements of B which it does
not divide .

THEOREM 5 . Suppose k is arbitrary, A is infinite, and A has property P k .
Then as n increase s

(i) p(k) (n) n-c —* + co for any fixed c ,

p(k+l)(n) —

	

p (k) (n—1 )
(ii) p(k)(n) — 1— p(k)(n) —>- 0 .

Proof. The assertions of the theorem have been proved for k = - 1
(Theorem 4) and they follow immediately for k -1 by summation .
So suppose lc 0 and A is an infinite set with property P k . By Lemma 2
there is a finite subset A l of A which has property Pk . If k = 0 we may
assume that A l contains at least two elements . Let us put A 2 A—A 1
and write

PT ( n ) = p (k) (n), pál(n ) = p (i.k) (n), PÁ
2

(n ) P2 (n), p(21)(n) =P(2-1)(n) .

We shall use the identity

n
p(k)

( n ) _ E pi)(n— m)p2(m) ,
m= o

which is an immediate consequence of (1) .
Let t be an arbitrary positive integer. By Theorem 3

	 P (k) ( 7z )	
1 —irn	>oo 1+i :W +1 )(n)I

+°°

(10)
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and so there exist positive integers g and h such that

r_ g
	 p(

l
k) ( n )

1 +I pik+1) ( n )I ' t 1+

for all n ,

for n > h.

(12 )

(13 )

Let

	

s= max {1+Iplk+1)(n)I} .
0,n<h— 1

By Theorem 4 there is a positive integer hl such that

p2(n)

	

1

p21)(n) (g+t±1)hs

for n hl . Then if n h+h 1 —1 we obtain from (10)-(13 )

n— h
p(k)(n)(t-}-1) E {1--P1i+''(n —m) I} p2(m )

m=0
n

—g E

	

{ 1 +1 nL )I}p2(m )
m = n —h +l

n
(t-r1) E {1 + 1 1~i

+l> (gg—rrz )
rn = 0

n

n

}p2(rrz )— (g+ t + 1 ) s

	

E p2(m )
m= n—h+ l

(t+ l ) E {l+l p(i
k+l) ( n—m )I}p2(m)

m=0
n

— (g+ t+ 1 ) s ~ E p2(~n )Ip2 1} ( m)} p~1) (n )
m=n—h+ l

t+1— (g+t +1)s E

	

p2(m)lp2 1 >(rn )
=n —h +1

n
x E {l + Iplk+l) (n—m) I }p2(m )

m = o
n

t E { 1 +I pik} 1) (n—m ) I} p2(m )
ne =0

t E p2( m ) + t
m =o

n
E p(,k+l)(n—m)p2(nZ )

m= 0

= tp;1) (n)+t p(k+l)(n )

Now t can be chosen arbitrarily large . Therefore lim p(k)(n)/p(2- - 1) (n) = + co
n—> m

and thus, since A 2 is infinite, assertion (i) of the present theorem follows from

assertion (i) of Theorem 4. Also lim p(k+l>(n)Ip(k)(n) = 0 and assertion

(ii) is proved .
Theorem 5 shows in particular that, when A is infinite, property Pk

is a sufficient condition for p(k) (n) to be positive for all large n. Thus
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property Pk is a sufficient condition for the eventual positivity of p(k) (n )

in any case .

COROLLARY . For arbitrary k, if A has property P k., then as n increases

p(k)(n) —> -F- co .
p(k~1)(n)—1— p(k)kn—1)—>

0 .
p ( n )

	

p (n )

6 . Further implications of property Pk . Although Pk is a necessary
condition for p(k) (n) to be positive for all large n, we have already seen
(Theorems 3 and 5) that if we assume property Pk we can actually asser t
much more about p(k) (n) than the mere fact that it is positive for large n .

In this section we go further in this direction .

THEOREM 6 . Suppose k is arbitrary and A has property P k . Then

there is a positive integer b such tha t

p(k)( .yyl) p(k)(n) if 7n—b>n>0 .

Proof . If k < -1, the result stated is trivially true with b = 1, since
p(k+l)(n) = p(k)(n)—p`k)(n—1) is positive for all non-negative n. If k =— 1

and A is non-empty, we can take b as any element of A. For then i f

m—b > n > 0, there is an integer j such that n jb m, so that

m

	

n
p(-I)(nt) = E p ( h )

	

z p( h ) =p(jb)+p(-1)(n) > p(-1) (n) .
h=0

	

h= 0

When k > 0 we first settle the case in which A is finite . Suppose
A = {a 1 , a 2 , . . ., ar } and A has property Pk . Then by Theorem 3 there i s
a positive integer c such tha t

p(k) (n) —
nr-k-1

(r —k —1)! a1 a 2 . . . ar
cnr-k-2+ 1

for all non-negative n . Therefore if m > n 0 we have

7m-k-1 nr-k-1
p(k)(m)—p(k)(n)

	

CnLr-k-2 —cnr- k - -̀' — 2
(r—lc— 1)! a1a2 . . . a,

(m—n) 7n r-k- 2

(r—k—1)! a1 a2 . . . ar—
(2c-}-2) 7n r-k- 2 .

The last expression is positive if 7n.—n b, where

b = (2c+3)(r—k—1)! ala, . . . ar + 1 .

Thus the assertion of the theorem is proved if A is finite .
Finally, suppose k 0, A is infinite, and A has property Pk . As in

the proof of Theorem 5 let A l be a finite subset of A which has property
Pk and contains at least two elements, put A 2 = A—A 1 , and write
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pki ) ( n ) = p(k)(n), pÁi(n) =p2) (n), PA z (n ) =p2(n), p;,z ) ( n ) = pl) (n ) . By
Theorem 3 there exist non-negative integers g and h such that plk) (n) —g
for all n and pík) (n) 1 for n h. By Theorem 4 there is a positive intege r
hl such that p2 (n)/p 1) (n) 1/(2gh+2h) for n il l . By . the previou s
paragraph there is a positive integer b such that b > h+h l —1 and

p(,k) (m) > plk) (n) for m—b > n O .

Hence if m—b > n > 0 we have

n

	

m
p(k)(m)—p(k)(n) = E {plk)(m— l)—plk)(n—l)}pz(l)+ E p(,k)(m—l)pz(l )

1=0

	

1=n+ 1

E p2( 1)+ E 1)2( l ) —g E

	

1)2(1 )
1=0

	

1=n+1

	

I=m-h+ l

— ( 1)/ 7n

	

—

	

1	 	 p2( 1 )	 )
— p 2 ( ) 1

	

(g+ )
1-m -h+l p2

1) (m) f

p1)( 7YL ) 1
/ — ( g+ 1 )

	

E

	

p21
)
(l)

}

	

(-1 )>

	

1>1) (m) > o .
1111

	

1=m-h+l p'l (l )

Thus Theorem 6 is proved.

COROLLARY . Suppose lc is arbitrary and A has property P k . If h is
any fixed positive integer, then

p*-1) (n+h) —p(k-1) (n )

as n increases. If h is a fixed integer not less than the integer b of Theorem 6 ,
then

p(k-1) (n h)—p(k-1)	 (n )
h

is a strictly increasing function of n for non-negative n .

Proof. The first assertion follows from conclusion (ii) of Theorem 3
and conclusion (ii) of Theorem 5 :

n+h
p(k-l)(n+h) —p(k -1)(n) = E p( k)(m) = h{1+o(1) }p(x)(n) .

m=n+ 1

The second assertion follows from Theorem 6 :

J1p(k-1) (n+h) —p (k-l) (n)}— {p(k-l) (n—1 +h) —p(k-l) (n— 1) }

	

n+h

	

n-1 -h= E p(k) (m)— E p(k )(m) =p(k)(n +h) —p(k)(n) > 0 ,

	

nt=n r l

	

m = n

provided h > the integer b of Theorem 6 and n > 0 .

h

	

= {1+0(1)} p(k) (n )
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THEOREM 7 . Suppose k is arbitrary, A is infinite, A has property Pk ,
and OKa<1 . Then

hm	 1	 max p( k )(m) = O .
n-,-,, p(k)(n) 0<m<x n

Proof. Let A l be a finite subset of A having property Pk and con-

taining at least k+2 elements . Then A l has q±k±1 elements, where q
is some positive integer . By conclusion (i) of Theorem 3 there is a positiv e

integer s such that
splk>(n )

lim

	

= 1 .
n–>-x‘

	

n q

Hence there are positive integers t and u such that

2n4 < splk>(n) < 2n q for n

and

	

plk > (n) .<u for n < t .

Hence if n max{(us) lq/(a—a 2 ), t/(1—a)} and t m <an, we have

m
p(k)(m) = E pi )(m— l)p2(l )

t=o
m–t

	

m
• E 2s-1(m—l)gp2(l)+ E up2( l )

t=o

	

1=m-1 4- i

m-t m
< E 2s-1(an—al) gp2 (l)-{- E s- l a g(n—an) gpa(l )

l=0

	

l=m–t+ 1

m

	

m
▪

		

2aq E s-1 (n—l) gp 2 (l) < 4aq E plk>(n—l) p 2 (l) . (14)
t=o

	

t=o

Suppose now that k < O. Then p(ik)(n—l) 0 for any 1 and so if
0 < m < an we have

	

m

	

n
pl)(n—l)p2(l)

	

E p lk) (n—l ) p2( l ) = p(k)(n) .

	

t=o

	

z = o

Combining (14) and (15), we find that

p(k)(m) <4c' p(k)(n),

	

( 16 )

provided t .<m < an and n is sufficiently large . By Theorem 5 th e
inequality (16) also holds if 0 < m < t—1 and n is sufficiently large .
Hence

lim	 (ki	 max p(k)(m) < 4aq .
n-->co P (n ) 0<m< a n

Since we can make q as large as we please by arbitrarily enlarging A 1, the
assertion of the theorem is proved when k O.

(15)
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To prove the assertion of the theorem when k > 0 it is again sufficient
to show that (15) holds if 0 < na < an and n is sufficiently large . By
Theorem 3 there are non-negative integers ti and g l such that plk>(n) 1
for n t l and pi>(n) —g1 for all n . By Theorem 4 there is a positive
integer t 2 such that p2(n)!p2-'>(n) < 1/(3t 1 g1 ±3t i ) for n t 2 . By the
result of the preceding paragraph there is a positive integer t3 , ti—t2 — 1
such that p2'>(m) fp21>(n) provided 0 < m r.n and n 13 . Accord-
ingly, if n max {t 3 , (ti±1),t (1— x)} and 0 <m < an we have

m-

	

n

P'k>(n)— E p (ik)(n— l)P2( l ) = E pi>(n—l)P2(l )
l=0

	

1=m+ 1

n–tl

	

n.

E p2(1)—gl

	

E

	

P2( l )
1=m 1

	

1=n–t i+ 1

= p2li(n) p2'>(m}— (91+ 1 )

	

P2( 1 )
l = n –t l+l

( 1>

	

Pál>(m)

	

"112(1)~i P 2 ( 9a ) f 1—

	

— (g1 1 1 )

	

E
PV-'(n )

	

n.–t i P+1

	

1)
(l) 1

p2'>(n) - — ;- -(gl -r-1)t13f1~
+3t1 I

	

32~ 2 ~ >(n )

This completes the proof .

7 . The order of magnitude of pck+'>(n)/p(k>(n) . Suppose A has property
Pk and h is the smallest positive integer such that p` k > (n) 0 for n h.
(Such an integer h exists if and only if A has property Pl .) Then the
quantity-

O .

pck>(n) =
ptk=1>(n) —

	

pck>(n—1 )
pck>(n, )

	

1

	

pck>(n )

is defined for n?-h. If A is finite we know that p (k >(n) = 0(1/n) [con-
clusion (ii) of Theorem 3] . If A is infinite we have proved that p (k )(n )
tends to zero as n increases [conclusion (ii) of Theorem 5] without gettin g
a more explicit estimate of its order of magnitude for large n . In fact we
have been unable to obtain any result in this direction . However, we feel
that there is reason to believe that the following assertion may be true .

CONJECTURE . If k is arbitrary and A has property Pk, then

p(k)(n) = 0 ( l /n'2 ) •

It is easy to see that the assertion of the conjecture, if true, is bes t
possible . For if A is the set of all positive integers, then as n increase s
p(k> (n) = {1-áo(1)}7r/(6n) 1/2 by Rademacher 's exact formula for p(n) in
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this case [9] . On the other hand, the following theorem shows that p (k) (n )
cannot be 0(1/n) for any infinite set A, that is, conclusion (ii) of Theorem 3

is definitely false for infinite sets .

THEOREM 8 . Suppose k is arbitrary and A is infinite . If A has propert y
P k , then np (k>(n) is unbounded above for large n . If A has property Pk+l ,
then as n increases np (k) (n) + oo .

Proof. Suppose A is infinite and has property Pk . As above let h be
the smallest integer such that p(k) (n) > 0 for n h. Suppose np(k) (n) were

bounded above by the integer g for n h . Let c = max (g, h) . Then

if n c

p(k)(n) — n

	

p(k)(9n)

	

m

	

m

	

n )n

	

( n
II

	

~ IZ	
~ ~

	

— \
<

p( k) ( c )

	

m-,+1
p(k) (m—1) m =c +1 m—g m =~ +1 m—c

	

c ) nc .

But this contradicts conclusion (i) of Theorem 5. Thus the first assertion
of the present theorem is proved .

Suppose now that A is infinite and has property Pk+l . By Theorem 6
there is a positive integer b such that p( k + l)(n) > p(k+l) (m) if n—b m O .
Since the ratios

p(k+l)(n_ b+ 1)
p(k+l)(n) '

	

p(k+l)(n)

	

p(k+l)(n )

all have the limit 1 as n increases, there is a positive integer h l b such
that all these ratios are less than 2 if n > hl . Thus if n hl and m n
we have p( k +1)(m) 2p(k+l)(n) . Now let E be an arbitrary positive number .
By Theorem 7

lim	 1	 max p (k + l) (m) = 0
n-sao p

(k+l)
( n ) 0<m<(1-,) n

and hence there is a positive integer h 2 such that

max p( k +l)(m) s Ep(k + l) (n)

0<m<(1-e) n

for any n h 2 . Hence if n max (hl , h 2 , 1/E) we have

[(1 E)nl

	

n
p(k) ( n )

	

p(k+l)(m)+

	

p(k+l) ( m)
m=0

	

m = [(1 -On] -f- 1

[(1- On]
Ep(k+1)(n)+

	

Fi

	

2p(k+l)
(n)

m=0

	

m=[(1-e)n}+ 1

s nEp(k+1)(n)+(En+1) 2p(k + l)(n) s 5enp (k + l)(n) .

Since E is arbitrary, this proves the latter assertion of Theorem 8 .

p(k +1) (n_ 1 )

	

p(k+l) (n— 2)
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