THE EXISTENCE OF A DISTRIBUTION FUNCTION FOR
AN ERROR TERM RELATED TO THE EULER FUNCTION

PAUL ERD{S axp H, M. SHAPIRO
1. Introduction. The average order of the Euler function ¢{n), the number

of integers less than » which are relatively prime to », raises many difficult
and still unanswered questions. Thus, for

(L) R(x) = 3 éln) — 2o,
naE m

and

(1.2) Hi =00 _ 8,
agz M 2

it is known that B(x) = Olxleg x) and H{x) = Mlog x). However, though
these results are quite old, they were not improved until recently, Walfisz
(1) has given the outline of a proofl of

R{x) = O(x(log x)¥4(log log x)2).
On the other hand it is known (3) that

{1.3) R{x) # O(x log log log x).
and
(1.4) Hix) # O(log log log ).

In this direction it was proved in (4) that each of the lollowing inequalities
holds for infinitely many integral & (¢ a certain positive constant):

{1.5) Rix) > ex log log log log x,
{1.8) E{x) < — cxlog log log log x,
{1.7) Hix) > clog log log log x,
(1.8} Hix) < — ¢log log log log x.

In this paper we propose to continue the study of the error function H(x),
and will prove that H(x) possesses a continuous distribution function. By
this we mean that for N(x, u) = the number of m < s such that H(m) > u,
we have for each &, — o < # < o, that the limit

(1.9) iimjﬂﬂ’—“?j = F(u)
o
exists; and the non-increasing function F{u) is continuous for all wu.

In thé case of additive arithmetic functions, necessary and sufficient
ponditions for the existence of a distribution function are known (3; 6).
The methods used in (5) to establish the sufficient conditions seem to apply
in a fairly general way for establishing the existence of a continuous distribu-
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tion function even for a function which is not additive (7). This method serves
also as the basic framework of the proof given here for the existence of a

continuous distribution function for Hix).
There are essentially three steps. Firsl, we introduce for each integer

k = 1, the {function
(1.10) Hyz) = Mf:‘ ;i}” «]1 (1 - -—)

neT nEy
where

Ax=]__[f-’u'

pi T

where p, is the kth prime, It is then shown that for each u, with fixed &, if
Ne(m, w) is the number of # < # such that He(x) = u, the limit

exists. We then see that (1.9) follows il we can show that, for a given w2 and
any e > (), the inequality
(1.12) |V (m, ) — Nilm, 0)| < en

holds for each & 3= ks = ko(e) and all n = 5y = #s(k). For from (1.12) we have
up EET‘.L} 1i 'h_-"(& inf NE?:; H}_ — lim Nk :1 “} <

Thwpers b

for k > k. This in turn gives
T
suplﬂ: ./ inf N{i;' #)

= D&,

and the existence of the limit (1.9) follows.
The next two steps of the proof are devoted to establishing (1.12). This

asserts that the number of m < » such that either

{a) Him) < aand Hilm) > u
or

(3 Him) > wand H.(m) < u
is less than en for each & > kg, and sufficiently large #. It suffices (since the
argument is the same for the other case) to consider only the case (a). At this
point the second step of the proof comes in. It is proved that; given any § > 0,
e > 0, for k fixed sufficiently large, and n sufficiently large,
(1.13) [H(m) — Hy(m)| < 8
except for at most Jen integers m < n. Thus in case (o),

Him) <wu—38 Hym =>u

cant hold for at most ten integers m < n. Henn!e we need consider on!y those

#t for which
(1.14) #—4&< H(m <u
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This then brings us to the third step of the proof. It is shown that given
€ > 0 there exists a 6 > 0 (§ = §(¢), independent of %), such that for suffi-
ciently large », the number of m < » such that (1.14) holds is less than fen.
This clearly cnmpletes the proof of the existence of F{u). Furthermare, the
result of this third step implies that for a fixed &, given any e > 0, there is a
d = d(e) such that 0 < F(u — §) — F(u) < ¢ which yields the continuity
of Flu).

The main component of the argument used to earry out this last step is
the result that, for any fixed integer I, the function

dlx) , dlx+1 x+1

has a continuous distribution function. Though we shall not bother to delineate
the proof of this, it is contained in the arguments given. The idea in the proof
of the result desired in the third step is that its negation would for some |/
imply the existence of a discontinuity in the distribution function of &,(x).

2. First step: The existence of F(u). We have
Zﬁ{ﬂ-fia - B §t Eﬂ

aer (m, A:) Ber d|im As

-5 ]
s D > il

where [2] = 5 — [2] denotes the fractional part of 2. This in turn yields,
from (1.10},

1) R

Since [x/d] is, for fixed d, a periodic function of x with period d, we see from
(2.1) that H,(x) is a periodic function of = with 4, as a period. Thus we

s Ny(myou) = 3, 1=— 2, 140,
Hemron x':{m?iu

fig a0 ) _ Aimu., ST Y
&

Zats "

‘3. Second step. We will prove in this section that, given any n > 0, for
each & > ko = ko(n), and all & > xy = x(k), we have

n 3 @) - B <




i3] PAUL ERDGS AND H. N. SHAPIRO

From this it follows that if M (x) is the number of # < & such that

|H(n) — Hy(n)| > &,

M{x) < nx/8%, which yields the statement concerning (1.13).
{(3.1) is established in a rather straightforward fashion in the following
sequence of lemmas.

Lenmma 3.1,

(3:2) Z I (n) ~ (—! + —:) &
Proaf. This is essentially Lemma 12 of (8), which asserts that

(3.3) J: ‘H’{u} dtt ~ 35

The passage from (3.3) to (3.2) is simple and we omit it. In passing it is
perhaps of some interest to note that (3.3) is proved by means of a method of
Walfisz (2), and seems to be slightly “deeper’ than the rest of our estimates
which require only elementary methods together with a strong form of the
prime number theorem.

LEMMA 3.2,
(3.4) 2 () ~ agx,
mgT
where
_ L s uldy) pldy)
(3.5] ey = 12 :ng. ﬂ’% 3 {dh d:}
-2+ -2
+ ﬁ' FQ} \ F + 4 LA 1 f‘"
_1 ( _ 1)( e
e LI\t -\l -
Furthermore,
; 1 i
(3.6) lima; = g+ .
Eosen w w

Proof. From (2.1) we have

@ g - 5 3 e el 2}
- preae s s Kt

da | A

Also,
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| 38) E{i}{i’} ) V) MR

1 iads—1 wa= i )
(i dad [Li=50 e f{da)

- x
N dztf:é 1<§,—1H({d1. tfﬂ} * 0{1})
e
{it el id—4
x 2, i+ 0Q1),
1o oy =1

14 Jsada—1
Alld—n

=~

1643

where X = (d,, ds) is greatest common divisor of dy, da, and {dy, da} is the
feast common multiple of dy, da.
A simple calculation gives that

.- 5(E)E))

Vi —1 =1 B

Af—4
_ dids dldz (d: + dﬂ)
X ( + 4 — et e

Combining (3.7}, (3.8) and (3.9) ylelds

T i) = « M%ﬁ el 188 _ &Ly ou;
_gg..i.l d! (dll d‘i}

ulul-'.:-
daldy

£ ,LL( )’+is;1,,(1—£)’

-3, (- )(l-é))

which is precisely (3.4) and (3.5). Since

I1 (1—% —0 as k— =; and g(l—éj)ﬂ—gg,

PR

it follows [rom (3.5) that

(3.9)

wldy) ulds) (ds, da)*
;:;, dids - +

lim @ =
P
(3.6) then lollows from

p(dy) Eg:zq tgdl. dg)' _ B
E&. HH x
LeEmma 3.8.

(3.10) _E Hin) Hy(n) ~ Byx
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where
(3.11) By 30 20 sl e
12 :h Ak dl di
w ki
1 1 )
- 1-— c
;‘!iﬁl;![a( )+T'§I":i'i( F
Frurthermore,
, SR N
(3.12) lim e = 5o+ -
Proof. Setting

_ 3 u@
M) = TE,

since, by the prime number theorem, M(x) = O{log—*u} for any fixed ¢ > 0,
we have for wp = x

E_{_ n(d]
wea M mf{: d
-3 #Ef?[ ] M( ) — M@

LE4
L Z {d] } 4 Qo log™*n).
Taking % = x log—"x, we get
(3.13) i P “Ll{ }+G{Ing""xj

dar log=™ 8 d

{This is essentially Lemma 2 of (8).)
* From (2.1) and (3.18) we obtain

da RaT
davx kg ™
Using a slight modification of {3 &) and (3. g} we gt
2 HmHp) == F{dl “u"){ ﬂﬂ: _ (it d,l}
r - 4
i mm
dyii log— i§ o(x iﬁg_ﬁr}
%& 10
12 a‘.u. (dy, da)*
daldk

‘E?,l;[.( g+ 3l (- ﬁ’))

which gives (3.10) and (3.11). From this it lollows easily that

lrmﬁ# —Iu-l-—;
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Applving (3.2), (3.4}, and (3.10) we have
> (H(n) — Him))* = X H'(m) — 22 Hyln) H(n) + 2 Hi(n)
R Bz T ez

1 (5}
"vz{ﬂ—rf-]-;;—ﬁﬁ;-]-m}.
From (3.6} and (3.12) we see that
. 1 i
m(z“;i+?—2.ﬂg+ﬂx) =1,

and the assertion concerning (3.1) made at the beginning of this section
follows immediately.

4. The third step. In this section we propose to prove that, given any
e > 0, there exists a § > 0 such that the number of m < x such that

(4.1) w< Him) <tu-+35 for some #,

is (for sufficiently large x) less than ex.

We shall suppose that the above statement is false and derive a contra-
diction. Negating the above assertion vields that for seme constant A > 0
and each & > 0, there exist infinitely many positive integers x (depending
possibly on &) such that for some u (depending possibly on x as well as on u)
the number of m < x such that (4.1} is satisfied is at least Ax.

Since from (3.2) we have

(42) P on) <ok

it follows that for these u = u(x, §) (we restrict ourselves to 0 < & < 1),
we have that either —2 < u < 0, or from (4.2)

-}
%Ax < o,

g0 that in any event the possible values of # = u(x, §) are bounded. Thus for
each 4 (0 <& < 1) we can find an infinite sequence of positive integers
{x,(8)] such that

(4.3) lioh w(4(9), 8) = u” (6),
where the set of #%(58) is also clearly bounded. Thus again we can choose a
sequence §; — 0 such that the limit
(4.4) lim o' (5,) = @
Fe

exists.
Given any § > 0 we can find a §; < 1§ such that

6 — u"(5,)] < 3.
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Since from (4.3) we know that, for all sufhciently large 4,
|ﬂ*{5.f]' — sz (y), 85| < 35

it follows that for this sequence {x:(f,)} we have

(4.5) 2 — wulxd8,), 85| <3
For #m < x,(8,) there are more than Ax, integers m < x, such that
{"i:.ﬁ} ﬂ-(:f-g'l:ﬁj), ﬁj‘j < Hl:m:] < ﬂ{x;(ﬁ,), 5_{} + 5_1'+

But since (4.5) implies that
=5 < u(x8,), ;) < ulx, (), 6;) +é;, <a-+4§

it follows that for at least %dx, of the m < x, we have one of the
inequalities

(a) &< H{m) <a+3

(3) 4— &< Him) < 4

Sinee at least one of (&) or (§) must occur for a sequence of &'s approaching 0,
at least one of these is the case for all § > 0. Since the treatment of the other
case is exactly the same, we assume (o). Thus we have that, for any § > 0,
there exist infinitely many positive integers # such that the number of
integers m < n for which

(4.7) 7 < Ei‘-’{’l—%m{ﬁ+a
=]

is greater than $dun.

Let oty < tte < ... < ;< n (> $dn) be the integers <n which satisfy
{4.7). Clearly #t41 — m; < 4/4 has at least }An solutions, Thus there exists
an integer | < 4/4 such that mi, —m =1 has at least A% /16 solutions,
Furthermore, by extracting a suitable subsequence from our infinite sequence
of #, we may assume that | is independent of %,

The above in turn implies that for any & > 0 there exists an infinite sequence
of # such that

mt-i—1
(4.8) bR - S )

o i T
has at least A%/16 solutions m < #. In deriving a contradiction from this,
the underlying idea is that this implies that the distribution function (it
exists, though we forego a proof of this) of

&(x) glx+1—1)
x e %=1

would have to have a discontinuity at 6//#% and this in turn would lead to
the existence of a discontinuity in the distribution function of ¢{x)/% (which
is known to exist and be continuous) (3).
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We set
sflele-))
e (n) il # is divisible only by primes p < D,
ppin) =

0 otherwise;

80 that
én (%) > @lx)
-

and

én(n) _frfl} {L(_} u(d }H

. Z{ ZVd ~ 4l

=z) @i'L;F_M+ O (log x)

| ”4%@'9*&-

From this it follows that, given 51, 93 > 0, we can choose D > D(y;, n,) suffi-
ciently large so that for all but 5% integers x < # we have

ﬂé%ﬂﬂiﬁ:ﬂ<m.

Thus, taking 5s = §/] and 5, = A%/32, we obtain from (4.8) that for each
sufficiently large D, there exist infinitely many positive integers # such that
ithe inequalities

m -1

(4.9) R —-%£| <2
cand
midk B=1

~ are satisfied simultanmuuly by at Iea.st .El’n,:"32 integers m < 1.

Lemma 4.1, There exist absoluie constanis p > 0, and 86 > 0 (independent
pj’ Ly such that for at least A*n/64 of the solutions m < n of (4.9) and (4.10)
- ae have for & << g

mt =1
@11 iy ey,
Proof. For if (4.11) is false, (4.10) implies
@.12) 0< M ¢t

nce the distribution function of ¢(m)/m exists and is continuous, for p and
iently small, (4.12) can have at most 4% /64 solutions m < .
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Thus we may restrict ourselves to solutions m of (4.9) for which (4.11)
holds. Also there is no loss of generality in assuming § < 3p, as we shall do
henceforth.

Next, we discard a certain “small" set of integers. Since

(4.13) 2‘.2——)2 ]HE = cm

m=1 plm
it follows that the number of m < n .sut:h that

(4.14) b D<igli—1,
pimti P

fails to hold is less than lewt/E, which [or E > 128l6,/A4® is in turn less than
A /128, Thus for such an E we have an infinite sequence of » such that
(4.9), (4.11) and (4.14) hold simultaneously for more than 42 /128 integers
"

We now attempt to show that the set of integers s which satisfy (4.9),
(4.11) and (4.14) has small density, thereby obtaining a contradiction. For a
given integer m define

Am) = [1 .
%
We then associate with each integer m an (I — 1)-dimensional vector i(m}
as follows; -
Am) = (A(m + 1), X(m 4+ 2),...,A(m +1—1)).
Next, for a given vector A = (A1, ..., A1), wherein each A; is an integer
which is a product of distinct primes <D, and
(4.15) Siam s WO =)
Pk f'

and
(4.16) St~ 5 20\ ""'{” o

fu=]
we estimate the number of m < # satislying (4.9) such that Am) = X
{possibly none). For such m we have
(4.17) m+4 =0 (mod A}, gom Yo b =1,

so that if there are any solutions they belong to a single arithmetic progression
mﬂdulnlx} = {X1, ...y A1), the least common multiple of the A, £ = 1,...,0—1.
Furthermore, in order that such solutions exist we must have

(4.18) arpli — i i#Zj1<4,j<i—1
Suppose then that the aforementioned progression is m =« {mnd[}_n:]], For
those m such that X(m) = X which satisfy (4.9) it follows that

=1
(4.19) _E”“ 5—': ¢'n(:'*f} ¢FD’E:?1:| < ;ﬁé‘! o ¥ ¢o(A)
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80 that for these m, ¢, (m) /m lies in a fixed interval of length 45 which we shall

‘deniote by Iy = I;{i.'}. Thus the number of m < n such that i{m} =X and
~which satisfy (4.9) equals the number of m < » which satisfy

(a) m=a (modX])

{f_‘_} igi‘:—ﬂlefﬂ-

LeMma 4.2, Given any 5 > 0, for D fixed sufficiently large, and & sufficiently
small (these requirements are however independent of ), the number of m < n
‘such that (a), (b) and (c) held is less than

(420) e/ I (1- 1)

Proof. Suppose that the above statement concerning the estimate (4.20) is
false, s0 that for infinitely many #, the number of m < # satisfyving (a), (b)
and (¢) is more than

i 1 =1
(4.21) (mf[ﬁ]}g (1 - ;) :

Let 21, 55, . . . be those integers, composed of primes <D, which can occur as
divisors of an integer m = & {mud[i]} and such that (we denote the g, generi-
cally by z)

(822) eole) _ 2G) ¢,

- From (4.16), (4.19) and our assumption § < p/3, (4.22) vields

fz g

| E_??ia’_ﬁn'aider the number of m < % such that (a), (b) above hold, and in addition
- for a fixed g,
(d) m = 0 (mod z},x(%, 4) =53
Clearly (d) implies (c).
lete from A/[] all prime factors <1 and any other prime factors of z:

the resulting integer by ¢. Then the number of m < % which satisiy
{d) is less than or equal to the number which satisfy (a) and

(m44,4) =1, fm L., 0—1

m = 0(z), (%. 1,!«) =k
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Setting m = 1z we have that the number of such m equals

(4.24) Eh ¥ %} wlde) p(dy) .. opldiy). X 1

Rn iz
frgpl=l te=ll .., Bl =0{de)
(oo 11=0 (i) o el by )
(re4-1.01=1 s i=1
i -1

Sinee {dy,z) = 1, (A, A)[§ — 4, and the primes which divide ¢ are >1, we see
that the system of congruences

v=0(dy), ve+i=0{dn), 1-Cigl—1,
has solutions if and only if
(4.25) (dad)) = 1, and {2, MJi; =7, 04, ji—1.
Furthermore, if (4.25) holds we have, since (d, 2,)) = 1,
b 1
1 == o1
e iz S {d ik dt—ls}"'l—lE + O
it W "l M) e Xia)
T4 1
# 1
= 1):
adpdy .o odisd .’",_};1__ Ay } O
£ TH LS - G Y
Inserting this in (4.24) we get
(4.26) M= 1: . i uldo) ... pldia) + 0(1).
i | 0+ s -]
R
Since

u(do) - wldis) _ 5~ i) o _ ( _,g)
g Go.o ol % ¢ ! -]3,._(! 1 i

{its oalp bl
I
< 'Ei]_.'[b (1 —

St g i —1
<aln) (142 (-2)

PlIn]

e R

and from (4.15), (4.23)

I (1 +§);m‘".

n)1h1 : .
ERPIOY

{4.26) vields (since (s, a0 lH
I I
M< ﬂ(%) TN (n /2[N]) (1 — l)
pab &
or .

= I
(4.27) M <eln/sD) T1 (l = l) ;
D &
where ¢z > 0 is independent of D.
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(4.27) together with (4.21) implies

(4.28) Eti;l(l—i)}ﬁ

On the other hand, the number of m < » such that (d) holds for some =,
is, for large n, greater than or equal to

ne~ 1 Y, &
3@&5(1 P)}Eﬂrﬂ'

using (4.28). Since for these m, ¢y (m)/m lies in a fixed interval [; of length
45, we see that for at least egn/4de; of these m, $(m)/m lies in a fixed interval of
length 85 (if D is large enough). Since caﬂc-: is independent of 8 (and of D},
this would contradict the continuity of the distribution function of ¢(m)/m.
Thus the lemma is proved,
Finally then, letting T denote the number of m < » which satisfy {4.9),
(4.11) and (4.14), we have

-1
T <m ] (1— 1) TR
P ; £ .::.
Since

Z?‘, R < ﬂa(%; i) i

we have
. T < cayn.

Ent far ¢ sufficiently small, cop < A*/128, so that we obtain a contradiction,
and the proof is completed.
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