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MATHEMATICS

ON THE PRODUCT OF CONSECUTIVE INTEGERS. III?)

BY

P. ERDOS

(Communicated by Prof. J. PoPREN at the meeting of November 27, 1954)

It has been conjectured a long time ago that the product
Ayn)=nn+1) ... (n+k—1)

of & consecutive integers is never an I-th power if k>1, [>1 2). RicGE 2)
and a few months later I 1) proved that 4,(n) is never a square, and later
Rigar and I4) proved using the Thue-Siegel theorem that for every
I>2 there exists a /k,(l) so that for every k>ky() 4,(n) is not an I-th
power. In 1940 SieGEL and I proved that there is a constant ¢ so that for
k>e, I>1 Ay(n)is not an I-th power, in other words that k,({) is independent
of I. Our proof was very similar to that used in?) and was never published.
A few years ago I obtained a new proof for this result which does not use
the result of THUE-SIEGEL and seems to me to be of sufficient interest to
deserve publication. The value of ¢ could be determined explicitly by a
somewhat laborious computation and it probably would turn out to be
not too large, and perhaps the proof that the product of consecutive
integers is never a power could be furnished by a manageable if Jong compu-
tation (the cases k& =< ¢ would have to be settled by a different method).
A method similar to the one used here was used in a previous paper ®).
Now we prove

Theorem 1. There exisis a constant ¢ so that for k>¢, [>1 A, (n) is
never an [-th power.

As stated in the introduction Ricee and 1 proved that A,(n) is never
a square, thus we can assume [>2. Further assume that

(1) Ap(n) = a*.
First we need some lemmas,

1) T had two previous papers by the same title, Journal London Math. Soc, 14,
194-198 (1939) and ibid. 245-249. These papers will be referred to as I and II,

2) A great deal of the early litterature of this problem can be found in the paper
of R. OsratH, Tohoku Math. Journal 38, 73-92 (1933).

%) 0. Ricee. Uber ein diophantisches Problem, 9. Congr. des Math. secand.
155-160 (1939) and P. Erpas 1.

1) P. Erpos II, As far as I know Rigges proof, which was similar to mine, has
not been published.

%) P, Erpos, On a diophantine equation, Journal London Math. Soc. 26, 176-178
(1951).
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Lemma 1. n>k.
First we show n = k. If n< kit follows from the theorem of TCHEBICHEFF
bl <p < n+k—1. Thus the

that there is a prime p satisfying n < 5
product A.(n) is divisible by p but not by p? or (1) is impossible.

Assume now n = k. A theorem of SYLvESTER and ScHUR °) then asserts
that there is a prime p>% which divides A,(r). But clearly only one of
the numbers n, n+1, ..., n+k—1 can be a multiple of p, say n+i =20
(mod p). But then we have from (1) n+1=0 (mod ') or n+k—1=n+it>
= (k+ 1)L Thus n>%' as stated.

Assume that (1) holds. Since all primes greater or equal to % can occur
in at most one term of (1), we must have

nti=qxl, 0i<<k-1

where all the prime factors of a; are less than & and a; is not divisible by
an I-th power,
Lemma 2. The products a;-a;, 0 =i, ] = k—1, are all different.
Assume a;-a;=a,-a,—A. Then we would have
(n+i)(n+7)=A(xa), (n+r)(nts)=A(xa)
First we show that (n+2)(n+j)=(n-+r)(n+s) implies ¢ =r, j=s. Assume
first i+j#r=+s, say i+j>r+s. Then
ni+ (14 fin+ij=nt+ (r+s)n+rs, or n = rs<k>
which contradicts Lemma 1, Hence i+j=r—+s, therefore ij=1s.
Assume now without loss of generality (n+r)(n-+8)>(n-+i)(n+7). Then
x,x, = @;2;+1 and we would have by Lemma 1
2hn> (n+k—12—n? =(n+r)(n+s)—(n+i)(n+j) = A [(a;2;+1)—(2,2;)"] >
> I (a2 [A ()W =1 (a2 PEZ 3,
Thus we would have n <3 which contradicts Lemma 1. This contra-
diction proves Lemma 2.

Lemma 3. There exists o sequence 0 =i, <i,< ... <t so thal
t = k—a(k) and
i
(2) ]—l; a; | k.
P

For each p<k denote by a; one of the a;’s, 0 =j<k, which have the
property that no other a,, 0 =/r <%, is divisible by p to a higher power

than a; (ie. if g; is divisible by p to the power d; then d; = max d;).
0=j<k

Denote by a;, @, ... a; the sequence of a’s from which all the a;’s
have been omitted. Clearly ¢ = b—=a(k—1) = t—n(k).

8  P. Erpés, On a theorem of Sylvester and Schur, Journal London Math. Soc.
9, 282-288 (1934).
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To show that (2) holds it suffices to prove that if p¢ divides the product

then d = [k/p]+ [k/p*]—+ .... This is easy to see, since the number of mul-
tiples of ;p“ among the integers n, n+1, ..., n+k—1 is at most [k/p*]+ 1,
or the number of multiples of 3’ amongst the a/s. 0=i<k—1, is at
most [kp?]+ 1. But then the number of multiples of 7’ among thea, . 1 <r=t,
is at most [k/p’], since if there is an ¢;=0 (mod p°), then a; =0 (mod p?)
and a; does not occur among the @;, 1 = r = . This completes the proof
of the Lemma.
By slightly more complicated arguments we could prove that

!
ar‘ (;" i
r=1

Denote now by N(x) the maximum number of integers | = b, <b, <
. <b, =z so that the products bb;, 1 =i, j = u, are all different.

Lemma 4. For sufficiently large v we have
N(x)< 2xflog x.
In a previous paper?) I proved

(3) N(z) <z(x) + 8a' — 2.

Using the well known inequality sz(x) <

L) =

mgx we immediately obtain
Lemma 4.

For the sake of completeness I will outline a proof of a formula similar
to (3) at the end of the paper.

Now we can prove our Theorem. Consider the integers a;, a;, ..., a; of
Lemma 3. order them according to size. Thus we obtain the sequence
by <by< ... <b, where by Lemma 2 the numbers b, b; are all different.
Let now i>1i, be sufficiently large. Putting b, =z and using Lemma 4 we
obtain

: 2b; B e
(4) =N < = b; > (i log 4)/2
Thus from (4) we have for sufficiently large ¢, and /> 24,
! t
(5) H‘r’t = 1! TI (ilogi)i2 > t! (log iy)¥3{2¢ > 1] 10¢,
t=1 =it 1
Now t = k—a(k)=k— . Thus
It 2z BN :
(6) > gm > kb b~ Zoek > [li5k,

) P. Erpés, On sequences of integers no one of which divides the product of
two others and on some related problems. Mitt. Forsch. Inst. Math, u. Mech. Univ.
Tomsk 2, 74-82 (1938).
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Thus finally from (5) and (6) we have for sufficiently large &

t 3 10t
(7) Hﬂ.i-’_=]:[bi};~'!*5r}k!
i=1

r=1

since
1 S
10t = 10" loek = 5F,

(7) clearly contradicts Lemma 3, and this contradiction proves the theorem
for sufficiently large k.

One could easily make the estimations more precise and obtain a better
value for e, but the method used in this paper does not seem suitable to
get a really good value for ¢. The problem clearly is to determine the least
constant ¢ so that for all k>c¢ one can not have integers a,, a,, ..., a;
satisfying (2) ¢+ = k—=(k) and the products a;-a; are all distinct.

It is clear from the proof of Theorem 1 that in fact we proved the
following slightly stronger result: For k>c¢ there exists a prime p>#k
so that if p?| A(n) then B =£0 (mod 1) (pf|| A(n) means: pf| A(n),
Pt A(n)).

By a slightly more careful estimation at the end of the proof of Theorem 1
we could obtain the following

Theorem 2. Let 1> 2, and e an arbitrary positive number. Then
there exists a constant c=c(e) so that if k>c, n>k' and we delate from the
numbers n, n+1,...,n+k— linanarbitrary way less than (1 — g)kloglog kflogh
of them. Then the product of the remaining nwmbers is never an l-th power.

The condition » >4’ can not entirely be omitted. In fact if n=1 it is
easy to see that one can delate r < z(k) integers from », n+1, ..., n+k—1
so that the product of the remaining numbers is an I-th power.

I can not prove Theorem 2 for I=2, I can only prove it with ckflog k
instead of (1—e)k log log //log I.

In the proof of Lemma 3 (1) was not used. Thus if we put

AP =TI 94 9| n+i.p<k0=i=k-1,
P

we can prove by arguments used in the proof of Lemma 3 that there

exists a sequence iy, iy, ..., 1) ¢>k—mn(k) so that
() T 4] (k— 1)L,
r=1

From (8) it easily follows from the prime number theorem that for
k> Iy =kee)

(9) min AM™ < (1 + &) k.
0<isk-1
It is possible that (9) can be sharpened considerably. In fact it is probable

that

w - k 3
lim - ( max min A{®) = 0.
k=00 l=n<co 0=ighk—1
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To complete our proof we now outline the estimation of N(x). Instead
of (3) we shall prove

(10) N(x) < m(z) + 3a' + 22",

It is clear that Lemma 4 is an easy consequence of (10).

Let 1 = b;<by< ... <b; = « be such that all the products b;b;, 1 =<1,
j = s, are different. Write b;=wu,v;, where u; is the greatest divisor of &,
which is not greater than z'’s. First of all it is clear that the numbers
Uy + Vg, Uy Uy, Up' Uy, Up-Vp can not all be b’s for if by =u,v;, by=uv,, by=uyp;,
by=uw, we would have b;b,=b,b,.

Now we distinguish several cases. In case I we have u; <z In this case
v; must be a prime. For if not let p be the least prime factor of v;. If p<a'
then pu;<a' which contradicts the maximum property of w. Thus
a'n < p < 2’ (since »; was assumed to be composite we evidently have
p = «'). But then p>w; which again contradicts the maximum property
of u. Thus »; must be a prime as stated.

Now we distinguish two subcases. In the first subcase are the b’s of the
form p u;, w,<a" for which there is no other 4 of the form pu]. The
number of these &’s is clearly less than or equal to m(x).

Consider now the b’s of the second subcase. They are clearly of the form

mud, 1 =ty 1551, [>1, ul <ol
By what has been previously said each pair of the sets U, 1 <: <r
U =vwp, 1sjsy
7
can have at most one element in common, or the pairs
(u,u), 1=§,fssl lsisr

are all distinct. But since w <z the number of these pairs is less than z's.
Thus (I;,>1)
r T
igl (2) <z or i§1 I, <2a™,

Hence the number of 5’s belonging to the second subcase is less than 2z,

In the second case " < u =< z'», Again we consider two subcases.
In the first subcase are the b’s of the form vu, for which there are at most
#'» other b’s of the form vu. From w; = 2" we have v; < 2", Thus the
number of b’s of the first subcase is clearly less than or equal to
(x4 1)-2" < 2270,

Denote the b’s of the second subcase by

vu', 1=t=r, 1=5j=l, L>o"+1.
Again the sets U;,, 1 =i =7r

Ui=vuf, 15js,
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can have at most one element in common. Thus the pairs (uf’, u{),
1=j, =1k 1 =i=r are all distinct. The number of pairs (u;, u;)
is clearly less than

[m‘f’-] x

( 2 )< .

Thus we have (l;>a"+1)
£ l{ T £ 7
<3 or I <ah.
3()<5 or 2L
Thus finally
N(x) < m(x) + 32 + 24"
which proves (10).
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