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Introduction

The object of the present paper is to prove the following result :
THEOREM . Let n1 < n2< . . . < v, < . . . be an infinite sequence of positive

numbers, satisfying the lacunarity condition q > 1 (v =1, 2, . . . ) .
Then

N
X exp 2ni n, x

Jim sup	 "=1	 = 1
N-0o

	

j/NloglogN
for almost all x .

This result is not unexpected in view of the law of the iterated logarithm
for the sum of independent functions and the well known resemblance of
{exp 2.ni n„ x} ; n,+1/n, > q > 1 to a sequence of independent functions
(see [1]) . However, the proof of the above result presents considerable
difficulties .

Previously R . SALEM and A . ZYGMUND [2] proved that
v

exp 2.za n,, x ~
lull slip v-1 -	

,%I-00

	

j/N log log N
1

for almost all x. In some special cases, for instance when n,=2" this upper
estimate can be proved more easily .

Our proof is based on the asymptotic evaluation of the integral
#

	

IV,
I = f I exp 2'ri n, x 1 2P dx

a -1

where 0 < a < f < 1 . p = 0 (log log N) and N -> oo. This is done by
finding an asymptotic formula for the number of solutions of the diophan-
tine equation

xl+x2+ . . . +xP=y1+y2+ . . . +yP
and the inequality

s-12 < ( XI+ . ..+xP)-(yl+ . . .+yp) <s+z

(s=arbitrary real), where the unknowns x1 , . . ., x P and y	yP are
restricted to the values n1, 722, . . ., nN . These investigations make up the
first section of the present paper .
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In the second section we use our asymptotic formula for I to obtain
upper and lower estimates for the measure

x
(t) = mess E {x x < x < j3 ; I exp 2zi n yx >. 1 tN log log N} .

V=1

These estimates are somewhat sharper than necessary for the rest of the
paper but their proof is no more difficult than that of the weaker in-
equalities .

The third section contains the proof of the "> 1 inequality" . Having
a lower estimate for ~(t) and noticing that the total length of those inter-
vals of E the length of which is less than 11n 1 is very small, the "> 1
inequality" can be proved rather easily . The last section is devoted to
the "- 1 inequality" . There are no new ideas involved here, we apply the
"dyadic procedure concerning higher moments" to the case of our partic-
ular sequence {exp 2-ri n.v x} . The literature concerning this method can be
found in [3] and [4] .

A number of questions can be raised in connection with our theorem
and possible generalizations thereof . First, suppose I(x) is a smooth
function satisfying fo f(x)dx = 0 ; f o f(x) 2dx = 1 . Is it true that

cc
I f(nvx) I

lim slip v 1	 = 1
v->~

	

N log I og N

for almost all x . whenever n, +,/n, > q > 1 ? It. is easy to see that this
equality fails even for trigonometric polynomials : in fact, the example of
ERDÖS-FORTET (see [1]) shows that

G
1: An,X)
V=1

does not necessarily have a Gaussian distribution . It seems likely that (*)
holds with some correcting factor c, but c will depend in general on both I (x)
and the sequence {n,} .

Let { f,(x)} be a sequence of independent functions satisfying fl i (x)dx= 0,
fo jv (x) 2dx= 1 . The function ~(n) is said by P . LEVY to belong to the upper
class if for infinitely many N's

~fv(x)I >~(N)
v=1

and it belongs to the lower class if (* *) holds only for a finite number of
N's . In the same way functions of the upper and lower class can be defined
for the sums w l exp 2~i n x (-n.v_1 rzv > q > 1) . The question can be
asked whether or not these two classes of functions coincide . Our methods
developed in this paper are not sufficiently strong to decide this question,
though we could sharpen our theorem considerably.

(*)
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Let 1~t1 ay = oo . We can prove by the methods of this paper that
bf?1)

exp 2-ri nv x
lim sup v-1	 = 1.
x-oo [-b(N)loglogb(N)

where b(N)=Y,-=1a2. For the sake of brevity we omit the proof, which
would contain no new ideas .

The authors thank Prof. W. H. J. FUCHS for his help and corrections .

1 . Number theoretical investigations
In this section let n1= 1 < n2 < n3 < . . . < n,, be a finite sequence of real

numbers satisfying the lacunarity condition n +llnv > q > 1 (1 < v < N) .
We keep this sequence fixed throughout this section . Our object is to estimate
the number of solutions of the diophantine equation

A(x, y) _ (x, x2

where x1. x2	XP and y1, y2' . . . . yp are restricted to the values n1= 1,
n2	nv. Moreover we want a sharp estimate for the number of solutions
of the inequality s < A(x, y) < s+ I : A(x, y)T 0 where s is an arbitrary
real number . (If ~sI > ~ the condition A(x, y) :76~ 0 is automatically satisfied .)
The proof requires several steps . First we prove the following estimate for
the number of n,'s lying in a given interval :
Lemma 1 . If 0<a<f3 then.

(1)

	

1 \ log (#fa) q
a<n,Sfl

	

logq
and i f a is real then

(?) 1 < log 2q
a ny 5 a+1

	

log q

Proof o f Lemma 1 . In order to prove (1) let vo be defined by the
inequality nvo < a < nvo+1 (no = 0) and i > 0 be defined by the inequality
7awo+. < P < nvo+i+1. If i = 0 then (1) is true. If i > 1 then we have

P % nvo+a % qi-1 nvo+1 % qi-1a .
Hence l3gj a > q° and (1) follows immediately . Now we prove (2) : Since
n1= 1 (2) is trivial for negative values of a . If 0 < a < 1 we have

1 1 ~< ~ 1,a<ny<a+1

	

1<_n,,_<2
whence we obtain (2) by using (1) with a=1, f3=2 . If a>l then (2) is an
immediate consequence of (1) .
Next we want to prove that the number of nk. =An a pairs satisfying the

inequality s - 12 < nk -nl < s + ~ is uniformly bounded for every real s .
More precisely we prove the following :

Lemma 2 . Let s be an arbitrary real number and let ~(1, N, s)
denote the number o f those nk= nt pairs which satisfy the inequality

s-z <,7z -ni <s±2.



The;? there exists a positive constant c=c(q) independent of s and the choice
o7 the sequence n1 = 1, n 2 , . . ., n ., such that

(3)

	

0 < ~(1, N, s) G C .

Remark . In fact we shall prove that (3) holds for any c=c(q) satis-
fying

(4)

	

c ' '
log2q log 2g 2/(q-1)
logq

	

logq

whence the independence is obvious .

Proof of Lemma 2 . First of all ~(1, N, s)=0(1, N, -s), hence we
may assume that s > 0 . If 0 < s < 1 then 10(1, N . s) is not more than
the number of it,,, n i pairs satisfying 0<nk -n1 < 1 . Since k > l+ 1 we get

1 > 7~a .-

	

1n l ~ !tk (1 - q - },

and on the other hand ,nk > 1 . Therefore the possible nk 's satisfy the
inequality 1 < nk < q /(q - 1) and their number can be estimated by (1)

1 \ log g2 i(q-1 ) .
nk

	

log q

For a fixed value of nk the number of possible ?it's can be estimated by (2) .
Namely we have nk - 1 <- n, n,,,, and so by (2)

1

	

1og 2q
~<n,

	

log 4

Consequently we have for 0 < s < 1
~(1, v s) < 2 log2q logg2/(q-1)g

logq

	

logq

Now let s > . We have nk > nt and so

s {-? > 72k-n, > nk (1-q -1 ) .

On the other hand n, > max (1, s-1) . Hence if s
inequality

and if 1 < s < then

68

2(s-1)s-1<nk <
(1-q- 1)

1 <'nk

> ; we have the

In the first case we may use (1) with a = s -1, fl= 2 (s - )ql (q -1) and in
the second case with x= 1, ED' = 2q,; (q -1) . Consequently in either case

1 <
log 2q2/(q-1) .

nk

	

log q

For a fixed value of n, the number of possible n i 's can be estimated by (2)

We have (nk -s)-1 <i i < (nk -s)+ 1 . hence

1 < log 2q .
ni

	

logq
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Therefore we have for s > 1
log 2q log 2q'l(q-1)c~ (1 . l", s) ~	 .to°q

	

logq

This completes the proof of (3) and (4) .
Now we consider the inequality

s-2 <A(.x,y) < + 1

where A(x, y) denotes the linear form

-4' (XI y)=(x1-X2+ . . .+"'l)-(yl+y2+ . . .+yP) .

We want to prove that the number of distinct (xp, y p ) pairs which occur
among the solutions is at most O(X) uniformly in s . (Here the restriction
A(x, y) ,-- 0 is omitted. Hence choosing s = 0 we obtain a similar result for
the solutions of A (x, y) = 0 .)

More precisely
Lemma 3 . Let 1~ > 1 and s arbitrary real. Let 0,(s) denote the number

o f distinct xp = n, , y,= n, pairs which occur among the solutions o f

( )

	

s_I <-4 (x.y) <s+1

where the x's and y's take the valves n 1 =1, n2	nn and are subject to the
conditions x1 < x2 < . . . < ,xp and Y1 < y2 < . . . < yp . Then we have

log (t +q)
( 6 )

	

P (5)

	

8!'

	

logq

Proof of Lemma 3 . Since ~p(s)=~~(-s} we may assume that
s > 0 . We must distinguish between two types of solutions ; 1 0 those for
which xP < 2s + 1 and j 0 those for which xP > ?s + 1 . Let us consider solutions
of the first kind ; let xP =n, be a possibility. Then using (5) we get
(s - 1) < pnk, and so

From this we conclude for s

n < 4(s-1)
p

and for 0 < s < we obtain 1 < n 4. < 4. Hence we may use (1) in both
eases and get in either case

log 4pq

	

log (1 +q)
xp<2s+11

	

log q

	

4p	logq

For a fixed value of xp = n there are at most A' choices for yp (namely
n1, n 2	n,) and so

log (1=q)
1

	

41

	

log q
LTP, y7P J

x,<2s-1

Next we consider the solutions of the second kind . Here we first estimate
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the number of possible yr 's . Let yp = it, be a possibility . Then using
xP > 2s+ 1 we obtain from (5)

X V <py"-s+ 1 <1,yn -1 ,,

that is to say x,/2p < yp . On the other hand we obtain again from (5)

yP \ pxx + 9 -s < pxt, + < 2pxp .

Hence x,/2p < yp = ni < 2px; . Consequently (1) can be used and it follows
that if xp > 2s + 1 then

11 < log4p 2q < 4p log1+q)
Up

	

log q

	

log q

There are at most N possibilities for xp > 2s + 1, hence

1 c 4 pN log (I+ q)

(x, ii)

	

log q

xD>2s=1
This establishes the inequality (6) .
Now we are able to prove two inequalities concerning the number of

solutions of A(x, y) = 0 and of s - 2 < A(x, y) < s z ; A(x, y) + 0 . These
inequalities form the basis of the whole proof of the law of the iterated
ogarithm. They read as follows .
Lemma 4 . Let p ; 1 < p < N be a positive integer and let 0(p, N)

denote the number of solutions of the diophantine equation A(x, y)=0 .
Furthermore let ~(p, N, s) ; s =arbitrary real number, denote the number of
those solutions of the inequality s

	

< A(x, y) < s+ 2 for which A(x, y)+0 .
In both cases x1 , . . ., xD and y l , . . ., yp can take the values n1 =1, n2	nn and
they are subject to the conditions x1 < x2 < . . . < xp and yl < Y2 < . . . < Ml-

Then there exists a positive constant c=c(q) independent of p, s and the
choice of the sequence n : 1 =1, n2 , . . ., n, such that

(7)

	

lpl < Y(p , 1") < 1pl :(cp)" ~'p 1

and
(8)

	

0 < 0(p . X. s) < (cp) 1'NP-1
for every 1 < p < N and real s .

Remark . The following proof shows that (7) and (8) holds for any
c > 0 which satisfies (4) and

( 9 ) c ;3~: 32 log (1 +q)
log q

Hence c(q) is clearly independent of p, s, and {n„} .
We shall prove the inequalities (7) and (8) by induction on p . First let

p=1 . In this case ~(1, IV) =X and so ( 7) is obviously true. For p=1 ( 8)
had been established in Lemma 2 . inequality (3) . Hence c(q) > 0 must
satisfy (4) .
Induction step on (7) . Let us assume now that (8) is true for
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1, 2, . . ., (p-1) and let us prove (7) for p ->- 2 . Let v (2 < v < p) be fixed
and let ~(v) denote the number of those solutions of
(10)

	

,x1-x2+ . . .+xP=yl+ys+ . . .-yP

which satisfy x 1 < :z'2 < . . . < .XP and y1 < y2 < . . . < yP and also the
additional condition
(11)

	

xv

	

•J,v and xv+1 = yv+l' xv=z = yY+z :

	

, XP = yP .

Using Lemma 3 we can estimate the number of possible x v , yv pairs. For,
(10) and (11) imply

-?<A(x,y)=(x1- . . . x,)-(yl+ . . .-yv)<2:
thus (5) is satisfied for every solution and so by (6)

(12)

	

:S 1<8vNlog
(1 +q)

(x u„)

	

log qv
Now we fix one possible x,,, yv pair ; x,, =n, and y, = v,, say . Let

	

n1 )
denote the number of those solutions of (10) and (11) for which x,.=n.k
and yv =n1 . Obviously
(13)

rY=mk
U Y-nj

In order to estimate

	

n 1 ) we consider the equation system
10

	

x1+x2- . . .

	

y1+y2 - . . .+ yv-1+(n1 - rlk)
2 0

	

x1 < x2 < . . . < xv-1 ; y1 < y2 < . . . < yv- 1 .
30

	

xv+i=yv+i (i=1 . 2,

It is obvious that 0 (Y) (n, ., n,) is majorized by the number of solutions of
this system . However n, =An,, and so the number of solutions of 1 0 subject
to the condition 20 is at most y (v-1, N, n,-n,) . The number of solutions
of 30 is exactly

	

Hence using our assumption (8) we get

Y' w) (nk, n,)

	

(v - 1, N, d - n .)
N )

	

Ov-1 Yv-1 ]\TP-2 .

Now we use (12) and (13) and obtain the estimate :

04) \ cv-1 vv-1 IATP-2 ~ 1 < 8 log (1+q) CV-1 V ATP-1 .Y

	

zv=aak

	

log q

v,. = n,
Consequently ~"') < 11 (cv)v 1'P-1 , provided c(q) satisfies (9) . Finally we sum
with respect to v=2, 3 ; . . . . p

P

	

P,~l =

	

~(v)

	

4\ 1 CPAT-1 vv < 9 (Cp ) P ATP - 1 .Y

	

Yv=2
Here ~' denotes those solutions of (10) for which at least one xvo yv . The
number of remaining solutions is between ( ) and (-1") +N,11-1 p21 , hence
in fact

\p/ <~(p, 1' )

	

( \T (cp)P 's7P-1 .
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Induction step on (8) . We assume again that (8) is true for
1, 2, . . ., (p-1) and we prove (8) for p > 2 . We are interested in those
solutions of

s - 1 ~ A(x, y)-(x1+x2 . . .-

	

- (yl y2 . . .+yp) < S+2

for which A (x, y) ~ 0 and xl -- x	and y1 - 92 < . • . < yp . We
must distinguish between two types of solutions : 1° those for which x1 = y1
and 20 those for which x1= y1 .

If x1 = y 1 is fixed we have
S-1

	

(t'2- . . .-Z'P) - 0/2

	

-- ) < S+y

and X2---' -i- "t", = y2 - . . .-191" Hence using our assumption, for fixed
x1 =y1 the number of solutions is at most cb(p-1 . N. s) G C11-1pDNp-2

There are N possibilities for x1 = y1 , hence the number of solutions of the
first type is

O 1 < ( 11-1 LS E \P 1 .

Now we consider the solutions of the second type : If x,,ll, . . ., xP and
X+v

	

yP are fixed then the number of possible x, y„ pairs can be estimated
by Lemma 3, inequality (6) . Hence using (9) the number of choices for
x2, x 3	x, and y2, y3 , . . ., yP can be estimated by

log (I+q))1'-11

	

< 1

	

pP1, 8		~

	

~1"

	

c

	

1ti
x_ xD

	

log q

	

4

For fixed x2 , . . . . xp and y 2 , . . ., yP the number of possible x 1 y1 pairs can
be estimated by Lemma 2, inequality (3) . Hence the number of solutions
of the second type is at most

02 <- 4 C

Finally 0(p, A', s)=c1+~•2 < (op)Pil'P-1 . This completes the proof of
Lemma 4.

In the following section we need a slightly modified form of Lemma 4 .
Namely we must drop the conditions x •1 < .,r., < . . . ~ :x,, and yl <y2 < . . . -<_Y,, .
Since every solution leads to at most 11 2 solutions when we drop the addi-
tional conditions we get immediately from (7) and (8) the following final
estimates
Lemma 5 . Let 1 < p < N (mad

A(x,y)=(XI+.i2

	

(Y1 -'I - Y2

	

Y,)7

where a1 , . . ., x. and y1 , . . . . yp are restricted to the values ?a1= 1, n 2	n, .
Then there exists a c=c(g) > 0 independent of 1p . s and the sequence n1 =1,
n,,, . . . . n. such that

( 14 )

	

p!2 ( )

	

1 p 2 ('') - (cp)3P VIP-1,

and for every real s

(15}

	

0 <

	

(cp)'3" A",

d u . a =u
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2. On the measure of the set where the exponential sum lies between given
limits

Let throughout this section 0<n,< . . . < ,n, be a fixed sequence of real
numbers satisfying the lacunarity condition n„+ ,_ fn v > q > 1 (1 < v < IN) .
(Notice that the condition n1 = 1 has been dropped .) First we give an
asymptotic expression for the value of the integral

a
(16)

	

I= f exp 2.-rim1x+exp 2nin2x+ . . .+exp 2,-rinxx, 2vdx
d

when p=O(logloo, N) ; -x > I In, I/-NT and N -* oo . Using this asymptotic
expression we are able to obtain sharp upper and lower bounds for

(17)

	

0(t)= .meas E{x,'a < x. < F3 ; F(N ; x) > I'tNloglogN},

where for simplicity

F(N ; x) = exp 2 rin1x + . . . exp 2rin,,,x' .

First we prove the following

L e m m a 6 . Let x. /3 be real and such that 0 -, > 1 /n1 jN. Further-
more let p be a positive integer satisfying 1 < p < 3 log log N. Then

(18)

	

~I-((3-a)p! NP 1 < (fl-a)Np-'

for every N > N0(q) where N0,(q) is independent of X, 13, p and the sequence
nl . n2 , . . ., n-V .

Proof of Lemma 6 . We have from (16)

P
I =

	

f exp zi

	

(n1 . - nry ) x dx .
l<-k,,,1,<NT a

	

v=1

Hence introducing the notations of the previous section we have
0

I = (/3 - a)

	

1 +

	

f exp 2 iA (x, y) s-' d~
A(x.v)=0

	

-(n,!2)<A(x,Y)6n,12 a
A(x,v)=0

-r ~

	

f exp 2 zaA (x, y ) ; 5 .
s*0 n,(s-§)<A(x.v)S%(s+U a

A(x.,Y)*0

The dash in ~7,' indicates that there are at most N 2v distinct values for
s=+1 . =2, . . . for which the contribution is not zero .

In the first sum we estimate the integral by
p

I f exp 2:ziA$ d5 < fl - ny
a

and in the second sum we use the inequality

f exp 2 ziA~ d; ~< :T	 I A	 I .
h



Hence applying the inequalities (14) and (15) of Lemma 5 we obtain

f I - (i3- a)p! 2

	

w (}I

	

-A)(cp)3p1 v'

	

l+ (i3 -A)P

	

1
- (-n, ;2)( A(x, v) <_r,, 12

1 1

	

1

	

A (x, y) -1
s$0 %(s-2)<A(x.v)<_n1(s+1)

-12

	

a) (ep)3P NP
+ cp

3P
n1 1N

P - i

S~o ~

	

z~s--;
Since there are at most N 2v distinct choices for s = ± 1, ±2, . . . in ~' we
get from above

p!2 Cp/

	

6 ((~ - a) (cp)3P+1 Nil-, 10(y N,

provided -a > 1/n1 J'N. If p satisfies the inequality 1 <p <3 log log N
then the right hand side is less than (/i - x)NP-} for N > N0(c) = No (q)
and p! 2 (p) can be replaced by p! N which introduces an error less than
2NP- ~ . Hence (18) follows .

Now we prove the following upper bounds for the measure ~(t) (0 < t < N)
defined in (17)
Lemma 7 . We have

18 log log N
(/3 - a)(log	

)t

	

for 0 c t

	

3, and
( 1 9)

	

~(t) 6 log log N
(~ - a)		for 3 t Nt2 log logN

provided /9 -,x > 1 /n l /N and AT > N 0(q) where N0(q) is indenpendent o f
a, /9 and the sequence n1 , n2	nN .

Proof of Lemma 7 . Obviously we have

~(t) <
	 F(N;x) 	22,

dx <	I	
!%tN log log N j

	

(W log log N)v
(F'~tloglogN)

for any t>0, p=1 . 2	Hence using (18) and replacing p! by p(ple)P it
follows that

0(t) < 2(/3-A, , )p(plet loo, log N)11 1

provided N > No(q), po < p < 3 log log N and /9-a > 1/n1 y'N .
If 0 < t < 3 we choose p= [t log log N] and obtain

(t) < 6 ((9 - a) (log log N) e - tloglogNJ < 18(#-a)logtlogN
(log N)

If t > 3 choose p= [e log log N] and get
[e log log Nl

	

6 (fi- a.) log log 117
(t) < 6 (fl - x) (log log N) t -

	

<

	

t2 log logN

This proves the statement of Lemma 7 .
Using (18) and (19) we can find a lower bound for 0(t) ; 0<t< I . Namely

we prove the following :
Lemma 8 . Let s, 0<8<1, be arbitrary . Then

74

(20) >

	

fl-cc
(log N)1-e' 4



l7

for any x . ~ satisfying 3-x

	

l ni y'N and every N > lA0(q, s) . This bound
N0(q, e) is independent of x and 13 .

Proof o f Lemma S . For the sake of simplicity let

R(x) = F(N ; V)2 ;N log 1og N .

Let us introduce the following subsets of the interval x < x

E ={xIx < < j3 ; 1-e < I? (x) < 1}
E1 =ixIx <x <l3 ; 0<R(x)<l-e}
E2={xjx < x < (3 ; 1 <R(x) < 3}
E3 =~xja < x < j3 ; 3<R(x) < N} .

According to Lemma 6

f R(x)0dx > ((3-a)	p	 p
z

	

eloglogN)

for 1 < p < 3 log log 4', 8 - x > l l n, y',' and N ~ N0(q) . Hence

q(1-is)>measE~ fR(x)Pdx>
lD

>(%3-x) elog,logNJ - ( f -f + f)R(x)Pdx,
E,

	

E z E,
that is to say

(21)

	

~(1 - e}/(j3

	

~elogPg 4')P
- ( I, -i- I2 ± I 3 ),

where

I l =

	

f R(x)P dx

	

(i = 1 . 2 . 3) .

We choose p_ [(1 -(e12)) log log N] and estimate I, : 1, and 1, from
above. First of all using Lemma 7 we obtain

1-s

	

1F

	

1 s--

	

lS loglog Ntp dq? (t)

	

px
f tp-1 (t) dt < 2p f t1-1	(log to l	 dt =

(1- e) log log V
= 36 p (log log N)1- P

	

f

	

up-1 e-u du .
0

Since up-i e -1a has its maximum at u= p -1 and (1- e) log log N < p -1
get for \' > N (q . s)

I, < 36 (log log N) 2 (1 - 8)P e -(1-e) loglogN

< 72 (log log N) 2 (1 - E) r1-(E12))loglogN (log V)

	

El

Finally for N > N0 (q, s)
(22)

	

72 (log log N)2
h <
	(log N)°

where
0J)log(1-s) .

Next we estimate 12 by using the same procedure :
3 log log N

12 < 36(log log N)1-v p f uP-1 e-u du .
1oglog V

we



Since p -1 < u = log log N we obtain
72 (log log N)2

(23)

	

Iz
<	

logN

for all N > N0(q, e) .
In order to estimate 13 we proceed in a similar way, but we must apply

the second, weaker estimate of Lemma 7 :

6 log toI3 C 2p f i~-1	g- ~It

	

1 2 (log loo, Xr) tp-2logtogNl _
taoglog-N

3

< 12 (log log N) e-1oglogN

so that
(24)

Now we combine
p= [(1-(e%2)) log log N] we have for N > N0(q ; e)

Hence

where

(
	 p	

eloglog N

76

12 log log A
I3
`

	

10--y

the inequalities (21), (22) . (23) and (24) . Since

1 -

	

2

	

P 1-(e/2) IV{

	

log log N} ( e

(1

-

	

2

	

_)10-' 10 9 X (1- (El2 )) f1-(e !2)loglogN
log log A

	

e

p

	

P

	

1	
(e log log A} > 9(10gN)~'

_ (1 - ) - (1 -
') )

log (1 - ) )
An easy computation shows that 0 < 1- (e2/4) for 0 < s < 1, hence we

have from (23) and (24)

(p

	 P
>1.

	

1
e log log 2 j

	

z
T 3

for A' > N0 (q, e) . Consequently we obtain from (21) and (22)

1	72(loglogN) 2
-a

	

18(10M N)°%

	

(log N)e

In order to establish the statement of the lemma it is sufficient to show
that 0 < 0. i .e .

e
< -

-((e/2)
_) log 1- 1-e '

where 0 < e < 1 . This last inequality clearly holds, as can be seen by
expanding each side of the inequality in a power series .
This establishes Lemma 8 .

(To be continued)
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