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Introduction
The object of the present paper is to prove the following result:
THEOREM. Let ny<ny<...<n,<... be an infinite sequence of positive
numbers, satisfying the lacunarily condition n,.y/n, > q>1 (r=1,2, ...).
Then

N
| ¥ exp 2nin, x|
lim sup 2~e0e—x=—«— =1
N—»00 } Nloglog N

for almost all .

This result is not unexpected in view of the law of the iterated logarithm
for the sum of independent functions and the well known resemblance of
{exp 2mimn, x}; m,y/n, = q>1 to a sequence of independent functions
(see [1]). However, the proof oi the above result presents considerable
difficulties.

Previously R. SarLEm and A. ZyeMUND [2] proved that

N
| 3 exp2ain, x|

p=1

lim sup ——————
N—oo JNloglog N

for almost all 2. In some special cases, for instance when n,= 2" this upper
estimate can be proved more easily.
Our proof is based on the asymptotic evaluation of the integral

g N
I=[|3 exp2nin,z[*d
@ y=]1
where 0 < a<f < 1. p=0 (loglog N) and N — oco. This is done by
finding an asymptotic formula for the number of solutions of the diophan-
tine equation
LtZpt ot =Yttt

and the inequality
- < (@t t2)—(n+...+Y) <s+3

(s=arbitrary real), where the unknowns z,,....z, and . ....y, are
restricted to the values 7y, n, ..., ny. These investigations make up the
first. section of the present paper.
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In the second section we use our asymptotic formula for / to obtain
upper and lower estimates for the measure

N
#(t) =meas E {x|x < x < §;| 3 exp 2ain, x| > ViN loglog N}.
=1
These estimates are somewhat sharper than necessary for the rest of the
paper but their proof is no more difficult than that of the weaker in-
equalities.
The third section contains the proof of the “>= 1 inequality”. Having
a lower estimate for ¢(t) and noticing that the total length of those inter-
vals of E the length of which is less than 1/n, is very small, the “>1
inequality” can be proved rather easily. The last section is devoted to
the "< 1 inequality”. There are no new ideas involved here. we apply the
“dyadic procedure concerning higher moments™ to the case of our partic-
ular sequence {exp 2xi n, x}. The literature concerning this method can be
found in [3] and [4].
A number of questions can be raised in connection with our theorem
and possible generalizations thereof. First. suppose f(z) is a smooth
function satisfying [} f(a)dx=0. [} f(x)’dx=1. Is it true that

| 3 fine)|
r—1

L limsup —— =

) _\'-mp | Nloglog N

for almost all z. whenever n,,.,/n, =g = 1? It is easy to see that this
equality fails even for trigonometric polynomials; in fact, the example of
Erpios-Forrer (see [1]) shows that

5
2 finyz)
r=1

VN

does not necessarily have a Gaussian distribution. It seems likely that (*)
holds with some correcting factor ¢, but ¢ will depend in general on both f(z)
and the sequence {n,}.

Let {/,(x)} be a sequence of independent functions satisfying [} f,(x)dz =0,
[§f,(x)*dx = 1. The function ¢(n) is said by P. LEvy to belong to the upper
class if for infinitely many N's

) | 3 1) > $()

and it belongs to the lower class if (**) holds only for a finite number of
N’s. In the same way functions of the upper and lower class can be defined
for the sums YY., exp 2xin, 2 (n,_;/n, = q > 1). The question can be
asked whether or not these two classes of functions coincide. Our methods
developed in this paper are not sufficiently strong to decide this question,
though we could sharpen our theorem considerably.
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Let 372,a;=cc. We can prove by the methods of this paper that

bIN)
| 3 exp2ain, x|

limsup—2=21 __________ —

N=o© JB(N)loglogb(N)

where b(N)= >, al. For the sake of brevity we omit the proof, which
would contain no new ideas.
The authors thank Prof. W. H. J. Fucus for his help and corrections.

1. Number theoretical investigations

In this section let #n,=1<n,<mn;<...<ny be a finite sequence of real
numbers satisfying the lacunarity condition n,,,/n, = ¢>1(1 < v<XN),
We keep this sequence fived throughout this section. Our object is to estimate
the number of solutions of the diophantine equation

Az, y)= (2 + @+ ...+ &) — (Y1 + Yo + v T Yp) =0,
where ), @,. ..., @, and ¥, ¥s. .... y, are restricted to the values n;=1,
. ..., Ny. Moreover we want a sharp estimate for the number of solutions

of the inequality s —3 << A(2. ) < s+ 4: A(x. y)# 0 where s is an arbitrary
real number. (If s[> { the condition A(x, y)== 0 is automatically satisfied.)
The proof requires several steps. First we prove the following estimate for
the number of #,’s lying in a given interval:
Lemma 1. [f O<a<f then
| < logB/xg

1 =

( ) asn, <p loggq

and if « s real then

{2) 1€10g2q'
@< ny = atl logg

Proof of Lemma 1. In order to prove (1) let », be defined by the
inequality », <x < 0, (n,=0) and ¢ = 0 be defined by the inequality
Ny < <M, 44y If i=0 then (1)is true. If ¢ = 1 then we have

B=ny= g? Rygi1 = g
Hence fig/x = ¢* and (1) follows immediately. Now we prove (2): Since
ny=1 (2) is trivial for negative values of . If 0 << x << 1 we have

1< ¥ X
aSmSatl lsw,<2

whence we obtain (2) by using (1) with a=1, §=2. If a>1 then (2) is an
immediate consequence of (1).

Next we want to prove that the number of n,+n, pairs satisfying the
inequality s—% < n,—n; < s+4% is uniformly bounded for every real s.
More precisely we prove the following:

Lemma 2. Let s be an arbitrary real number and let ¢(1, N, s)
denote the number of those ni+mn, pairs which satisfy the inequality

s—% <mp—m < s+l
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Then there exists a posilive constant ¢=c(g) independent of s and the choice
of the sequence ny=1, ng, ..., ny such that
(3) 0 < (1, N,s) <e.

Remark. In fact we shall prove that (3) holds for any c=c¢(g) satis-
fying

g 2 o —
(4) i 9 llog2q . log 2¢%/(q 1),
0gg logg
whence the independence is obvious.
Proof of Lemma 2. First of all ¢(1, N, s)=¢(1, ¥, —s), hence we
may assume that s > 0. If 0 < s << § then }¢(1. N. s) is not more than
the number of »,, %, pairs satisfying 0<n,—n,; < 1. Since & = 14 1 we get

12 n—n =0 (1l —g77),
and on the other hand #, = 1. Therefore the possible n,’s satisfy the
inequality 1 <C #, < ¢/(¢—1) and their number can be estimated by (1):

_logg*i{g—1)
z 1< logg ’

For a fixed value of n; the number of possible #,’s can be estimated by (2).

Namely we have n,—1 < n, <0y, and so by (2)

Z ] - _log 2¢g
= logg *

Consequently we have for 0 <s < §

o log 29 logg¥/(g—1)
96( N 8) < logq loggq !

Now let s = L. We have n,>n; and so
8+3 = m—ny 2= m (1—g7).

On the other hand wn, = max (1,s—1). Hence if s =% we have the
inequality

- 2(s—1)
8—F << my = < 0=¢-75
and if 1 <<s < § then
2
1< ny, < i

In the first case we may use (1) with xa=s—1, g=2(s—1)¢/(g—1) and in
the second case with a=1, §=2¢/(g—1). Consequently in either case

z | < _ log 2¢*/(g—1)
St

For a fixed value of #;, the number of possible »,’s can be estimated by (2):
We have (n,—8)—% < n, < (m,—s)+ 3, hence

Zl _ log2g
~ Togg -




(=)
=

Therefore we have for s = 1

g = _log2¢ log 2¢%/(g—1)
qb(.l._f\-.s)-ﬁ_-;] Rl .
0zq ogg

This completes the proof of (3) and (4).
Now we consider the inequality

s—3 < A(v y) <s+3
where A(z, y) denotes the linear form
A(a:, f/) = (3’1;-‘"'2"' “:_‘}st) = (?)’14‘3/3‘:" +yp)-

We want to prove that the number of distinet (x,, y,) pairs which occur
among the solutions is at most O(N') uniformly in s. (Here the restriction
Az, y)+0 is omitted. Hence choosing s = 0 we obtain a similar result for
the solutions of A(x. y)=0.)

More precisely:

Lemma 3. Let p =1 and s arbitrary veal. Let ¢,(s) denote the number
of distinct x,=mn;, y,=mn, patrs which occur among the solutions of

(5) s—3 < A y) < s+3

where the x's and y's take the values ny=1, ny. ..., ny and are subject to the
conditions x; =<, < ... < x, and Yy, <Yy < ... <<y, Then we have

(6) ‘i'brr(‘f") < 8pN bilé:?;_@ .

Proof of Lemma 3. Since ¢,(s)=¢,(—s) we may assume that
s = 0. We must distinguish between two types of solutions: 1? those for
which &, << 25+ 1 and 2° those for which a,> 25+ 1, Let us consider solutions
of the first kind; let 2,=#n; be a possibility. Then using (5) we get

(s—3) < pny, and so
g
P

[

Enps st 1,

From this we conclude for s > 2

L. P (s —3)
724
and for 0 < s < § we obtain 1 < »n; = 4. Hence we may use (1) in both
cases and get in either case
1. log 4pg %5 ]og(l-}-g}.

mg£23+1 ) |qu logq

For a fixed value of a,=mn; there are at most N choices for 3, (namely

Nys Mg, ..., By) DA 8O
- 1+
S 1<4pN 10—%(“—-‘?—’.
[EITS ogq
fy=2a+1

Next we consider the solutions of the second kind. Here we first estimate
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the number of possible y,’s. Let y,=n, be a possibility. Then using
x,>2s+1 we obtain from (5)

mvépyvfs_l"‘}{ f-:yp_!_%!
that is to say x,/2p<y,. On the other hand we obtain again from (5)

Yo < pr,+i—s < pr,+ <2pax,.

Hence x,/2p < y,=n; < 2px,. Consequently (1) can be used and it follows
that if 2,>2s+1 then

S1< log d4p?q plog(l+e)

< 4p
- = logg logg

There are at most N possibilities for 2,>2s+1. hence
log (1+9)
1<4pN —=——+,
{x,,zy,,; PR oz
=281
This establishes the inequality (6).

Now we are able to prove two inequalities concerning the number of
solutions of A(w, y)=0 and of s—} < A(x, ) < s-+1; A(x, y)#0. These
inequalities form the basis of the whole proof of the law of the iterated
ogarithm. They read as follows.

Lemma 4. Let p; 1 << p << N be a positive integer and let ¢(p, N)
denote the number of solutions of the diophantine equation A(x,y)=0.
Furthermore let $(p. N. s): s=arbitrary real number, denote the number of
those solutions of the inequality s —% < A(x, y) < s+ 3 for which A(x, y)+0.
In both cases x,, ..., v, and ¥y, ..., y, can take the values ny=1, n,, ..., ny and
they are subject to the conditions x;, < ¥y, < ... < x, and 3y < Y < ... < Ype

Then there exvists a positive constant c=c(q) independent of p, s and the
choice of the sequence ny=1, ny, ..., ny such that

(7) (5) <éw. M < (3) oy ¥
and
(8) 0 < ¢(p, N, 5) < (cpPN*

for every 1 < p << N and real s.

Remark. The following proof shows that (7) and (8) holds for any
¢>0 which satisfies (4) and
(9) o> 3210

29
Hence ¢(g) is clearly independent of p. s, and {m,}.

We shall prove the inequalities (7) and (8) by induction on p. First let
p=1. In this case ¢(1, N)=N and so (7) is obviously true. For p=1 (8)
had been established in Lemma 2, inequality (3). Hence ¢(g)>0 must
satisfy (4).

Induction step on (7). Let us assume now that (8) is true for
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1,2,.... (p—1) and let us prove (7) for p =2. Let » (2 <v» < p) be fixed
and let ™ denote the number of those solutions of
(10) Tyt =Yt Yy
which satisfy » <o, < ... <2, and y, <y, < ... <y, and also the
additional condition
(11] &€, Ti?f»- a‘nd Tyry = Yor: 810 = Yoia:enns R'p = yp-
Using Lemma 3 we can estimate the number of possible z,, y, pairs. For,
(10) and (11) imply
—i<d@y)=(n+...+0) - +...~ %)<}

thus (5) is satisfied for every solution and so by (6)

: » log (1+4)
(12) 1< 8N B T9

izgw logg

Now we fix one possible a,. y, pair; x,=n, and y,=n,. say. Let ¢"(n;, n,)
denote the number of those solutions of (10) and (11) for which ,=n,
and z,=n;. Obviously

(13) $9 = 3 ¢ (ng m).
Ty=1y,

In order to estimate ¢"'(n,. n;) we consider the equation system

1P 2+ =Y T Y Yy — 1)
20 < S S8 B SYh< Sl
30 Cyii = Yyi (1' =1. ) ves P—l')

It is obvious that ¢"(n;. n) is maiorized by the number of solutions of
this system. However #,sn,.. and so the number of solutions of 10 subject
to the condition 29 is at most ¢(r —1, N, n,—n,). The number of solutions
of 3% is exactly (,%,). Hence using our assumption (8) we get

P (ng, 1)) < b(r — 1, N, e, — n,) (pfv) < ¢ ~l1yp—1 No-2,
Now we use (12) and (13) and obtain the estimate:

-1 -1 Np-2 g log(l+g) ,_ Tp—
iv}gcv 11,? 1;\ 1 _C"I";\ 1_
9!’ ,E.,,ﬁ logg !
¥=m
Consequently ¢ < } (ev)” N7~ provided ¢(g) satisfies (9). Finally we sum
with respect to »=2,3, ..., p:

§ =347 <1ON SV < H(epp N,

Here ¢’ denotes those solutions of (10) for which at least one 2,5 y,. The
number of remaining solutions is between () and (%)+N?*1p%, hence
in fact
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Induction step on (8). We assume again that (8) is true for
1,2, ..., (p—1) and we prove (8) for p = 2. We are interested in those
solutions of

s—3 <A@ y)=( o)~ (oY) S8+3
for which A(x, )0 and &, <2, << ... <o, and ¥, < Y < ... < 7,. We
must distinguish between two types of solutions: 19 those for which @, =y,

and 2° those for which a;#,.
If #;=y, i» fixed we have
S=F S (T ) — (e TH) = s+3%
and p—...+&,=Yp+ ... +¥, Hence using our assumption, for fixed
=y, the number of solutions is at most d(p—1. N, s) < P 1p?N?-2,
There are N possibilities for ;= ;. hence the number of solutions of the

first type is
(;bl < ¢P=1 i Ne-1

Now we consider the solutions of the second type: If z,,,, .... x, and

Ypizs -oo» Yp ave fixed then the number of possible x,, y, pairs can be estimated
by Lemma 3, inequality (6). Hence using (9) the number of choices for
Tgy Tye «ovy &y ANA Yy, Y. -... Y, can be estimated by

Viyeoilly
For tixed z,, .... x, and ¥,. ..., y, the number of possible z;+y, pairs can

be estimated by Lemma 2, inequality (3). Hence the number of solutions
of the second type is at most

bo<}orgp N,
Finally &(p. N.s)=¢+ ¢, < (ep)’N*~1. This completes the proof of
Lemma 4.

In the following section we need a slightly modified form of Lemma 4,
Namely we must drop the conditions o) <<a, << ... <<, and y; <y <<...<y,.
Since every solution leads to at most p!* solutions when we drop the addi-
tional conditions we get immediately from (7) and (S) the following final
estimates:

Lemma 5. Let 1 <p <N and

A, yy=(@+x+ . =) — (U T Yo T o)
where . ..., x, and y,. ...y, ure restricted to the values ny=1, ny, ..., ny.
Then there exists a c=e(q) =0 independent of p. s and the sequence ny=1,
Ny, .... Ny Such that

N N
4 12 N 1 = pl2 — (e SpA‘u—l’
(14) p2(,) <, 3 1=p2(y) - n)
and for every real s
(15) 0< < [ep)e N1,

s—isdx, s+
Aig, =0
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2. On the measure of the set where the exponential sum lies befween given
limits
Let throughout this section 0<n,<...<ny be a fixed sequence of real
numbers satisfying the lacunarity condition n,.,/n, = ¢>1 (1 <v<N).
(Notice that the condition n;=1 has been dropped.) First we give an
asymptotic expression for the value of the integral

(16) I=[|exp 2ninx+exp 2mingy + ... +exp 2mnye | de
#

when p=0(loglog N); f—x = 1/n, VN and N — oco. Using this asymptotic
expression we are able to obtain sharp upper and lower bounds for

(17) B(t)=meas B{rx <a < p; F(N;a) = Vi N loglog N},
where for simplicity

F(N:2)=|exp 2min,x - ... exp 2minya.
First we prove the following:

Lemma 6. Let x, 3 be real and such that §—x = 1/n, VN. Further-
more let p be a positive integer satisfying 1 < p < 3 loglog N. Then

(1s) 1—(B—xp! N?| < (B-a)N"-

for every N = Ny(q) where Ny(q) is independent of x. 3, p and the sequence
Nys Mgy voes Ty

Proof of Lemma 6. We have from (16)
I= > J'e‘(p )—mZ(nst —my ) xde.
1<k, <N =

Hence introducing the notations of the previous section we have

8
=(B—a) ¥ 1+ by [exp 2aid (x, y) £ d&
Alz, y) =D —imf2is Az, vh=m, /2 x
Atz =0

7
=% [exp 2mid (x, y) EdE.
FED myfs— usmirx.vl%n (s+ 4 &
A, y)+0

The dash in 3’ indicates that there are at most N2” distinet values for
s==+1, +2, ... for which the contribution is not zero.
In the first sum we estimate the integral by

8
|[ exp 2midEdE| << f—o

and in the second sum we use the inequality

8
|£exp 2aiALdE| < ATAT”
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Hence applying the inequalities (14) and (15) of Lemma 5 we obtain

N "
I-(-a)pt(})| <@B-) PN+ @-n 3 1
P — R A P2
+ 3 3 Az, y)t
a+0 myls— b= dAfe, ¥y <nla-+ })
< 2(f —a) (cp)® N?~1 + bep) 8 NPT Ry 1

"y I'F =0 |8_é't '

Since there are at most N% distinct choices for s= + 1, +£2, ... in >’ we
get from above

I-(p—o)p (})] < 6(3— ) (cp)™** No=log ¥,

provided f—ux = 1/n, V'N. If p satisfies the inequality 1 <p <3 log log N
then the right hand side is less than L(§—x)N?-* for N = Ny(e)=Ny(q)
and p!?(Y) can be replaced by p!N? which introduces an error less than
1N?-t Hence (18) follows.

Now we prove the following upper bounds for the measure (t) (0 <t < N)
defined in (17):

Lemma 7. We have

(i 18 log log N
(Jd —_— OC) W fOI' 0 = f= 3, and

(19) b (f) =< i s
og log 1 . ,
{ﬁ—:x) “-Eg—h%-ro%r— for 3<!{<N

provided §—o = 1/n, VN and N = N,(q) where Ny(q) is indenpendent of
w, i and the sequence ny, Ny, ..., Ry.

Proof of Lemma 7. Obviously we have

- ¢ F(Niz) % 5
"o u{,\‘a}r]{gi ) ( |'tN log log NJ (tN lTog log N)?
= 0g [

for any t>0, p=1, 2, .... Hence using (18) and replacing p! by p(p/e)* it

follows that
() < 2( —x)p(p/et log log Ny,
provided N = Ny(q), po < p < 3loglog N and f—« = 1/n, VN.
If 0<t < 3 we choose p=[!loglog N] and obtain

18(f—ao)loglog N

(ﬁ(t) <6 (/3 _ oc) (log Iog ;\'Y) g~ [tloglog N] Tog N)?

If t = 3 choose p=[eloglog N] and get
(1) < 6(8 — ) (log log N) t~telwrosm B2 loglog ¥

t2loglog N
This proves the statement of Lemma 7.
Using (18) and (19) we can find a lower bound for ¢(t); 0<¢< |. Namely
we prove the following:

Lemma 8. Let g O0<e<l, be arbitrary. Then

(20) (1 —e) > bt



i
for any x, § satisfying f—x = V/n, VN and every N = Ny(q, €). This bound
Nylq, &) is independent of x and j.
Proof of Lemma 8. For the sake of simplicity let
B(x)=F(N:x)}N log log XN.
Let us introduce the following subsets of the interval x <<z < §:
E={zlag<e<<p; 1-e< <1}
By—{zlx < x < f; 0<R(x)~<1—s}
By={alx <z <p; 1<R(x) <3}
E,={rjxa <x <f; 3<B(x) <NV

According to Lemma 6

B
B » '—"‘—p_ p
{ R(z)de > (f—a) (e]oglogN)

for 1 <p<3loglog¥N. pg—=x = 1/n N and N > Nylg). Hence
d(l —e) = meas K = j R(ay de =

> (f- )(m,) (= +]) Rlzy du.

that is to say

(21) $(1—)(B— 2= () — i+ L+ L),
where
I, =3—L [Rx)yde (i=1.2.3).
=

We choose p=[(1 —(¢/2))log log N] and estimate I;, I, and [; from
above, First of all using Lemma 7 we obtain

2p 17 1= 181loglog N
11-—;¢vd¢(t) P jzv ‘é(r}dra-p_{rplﬁi—dt=

1—-eiloglog ¥
=36 p(loglog N)y'=» [  wP~le~“du.

0
Since #?! ¢~ has its maximum at u=p—1 and (1 —¢) loglog N << p—1
we get for N = Ny(q, )
I, < 36 (log log N)2(1 — g)p g—(1—eloglog ¥

= ‘,2 (log ]Dg ‘_\?) (1 —_ e)[l—[:fQJJ]OE]BgN (]Og j\}')—[l—s}.
Finally for N = Ny(q. &)
_ 72(log log N)*
5 h<—cgmp
where

==1—-8-—(1——-;§—-)10g(1-—-€).

Next we estimate /, by using the same procedure:

Jloglog N
I, < 36(loglog Ny*=*p [ wle“du.

loglog N
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Since p—1<u=loglog N we obtain

72 (log log N')*

e3) I, < BOES

<

2

for all N = Ny(q. «).
In order to estimate I, we proceed in a similar way. but we must apply
the second., weaker estimate of Lemma 7:

F &8 J‘ o= 16!15’561]2‘5!\ di < 12(log log N) tp—2lolog X' |1

< 12(log log N) ¢~ lowlos N
go that
12 log log N
i ————
(24) Iy < ey

Now we combine the inequalities (21). (22). (23) and (24). Since
p=1[(1—(g/2)) log log N] we have for N = Nyq. ¢)

(rarem) = (1~ ogmgm) =)
eloglog N/ = loglog N

- loglog X } (1—1{&/2} log log N
= .
- ( IOUIOg ) ( )
]
(s > s
elaglog N 9 (log N)?

1=(1- - (- (1-9)

An easy computation shows that ¢<1—(e?/4) for O0<e<1, hence we
have from (23) and (24)

1 P ) i
'_.Z(eioglog;\-') =1+ Iy

for N = Ny(g, ). Consequently we obtain from (21) and (22)

Hence

where

d(l—e) 1 _ 72(loglog N')*
f—a ~ 18(logN)? {log N)¢

In order to establish the statement of the lemma it is sufficient to show
that 9<f. i.e
k — (gl
3< (l ~3)log e

where O<e<1. This last inequality clearly holds, as can be seen by
expanding each side of the inequality in a power series.
This establishes Lemma 8.

(To be continued)
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