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A classical theorem of Steinitz [12, p. 125] states that the characteristic of an
algebraically closed field, together with its absolute degree of transcendency,
uniquely determine the field (up to isomorphism). It is easily seen that the word
real-closed cannot be substituted for the words algebraically closed in this theorem.
It is therefore natural to inquire what invariants other than the absolute tran-
scendence degree are needed in order to characterize a real-closed field."

For non-denumerable fields, the question is equivalently stated as follows:
what invariants in addition to the cardinal number are needed in order to char-
acterize a real-closed field? Now, it is well-known that any two isomorphic real-
closed fields are similarly ordered (i.e., as ordered sefs). Here we establish the
converse implication® for a particular class of non-denumerable,® non-archi-
medean, real-closed fields. Section 2 of our paper is devoted to the proof of this
theorem (Theorem 2.1).

The class of ordered fields to which our isomorphism theorem applies is quite
restricted. (In faet, in order that it not be vacuous, we must assume either the
continuum hypothesis, or some one of its generalizations to higher cardinals.®)
Nevertheless, we are able to find an application to a class of fields that is not
insignificant, namely, those that appear as residue class fields of maximal ideals
in rings of continuous functions (on completely regular topological spaces). This
discussion is the content of Section 3, and leads to the theorem that all non-
archimedean residue class fields (the so-called hyper-real fields) of power N, are
isomorphic (Theorem 3.3). As a rather interesting corollary to this theorem, we
find (using the continuum hypothesis) that all the non-real residue class fields
of maximal ideals of a countable complete direct sum of real fields are isomorphic
{Corollary 3.9).

Section 4 continues the discussion of non-archimedean residue class fields.
The development here leads to the construetion of various such fields that arise
from the same ring, but have different cardinal numbers (Theorems 4.4 ff. and
48 ff.). (A fortiort, not all such fields that arise from the same ring are isomor-
phie.) This section is almost entirely set-theoretic in character, and some of the
results obtained here have some set-theoretic interest in themselves (Lemmas
4.1 and 4.7). (No use is made of the continuum hypothesis in this section.)

Finally, in Section 5, we pose some unsolved problems.

1 The characteristic of every real-closed field is zero.
2 Similarity of order implies, of course, equality of cavdinal.
? The converse is false for denumerable fields.
4 Or the existence of the so-called strongly Tnaccessible cardinals (for definition, on fot-
note 12).
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1. Preliminary remarks

In this section, we recall some standard facts from algebra and set-theory.’

Every field is an algebraic extension of a pure transcendental extension of its
prime field. By the absoluie degree of transcendency of a field is meant its tran-
scendence degree over its prime field. The prime field of every ordered field is
the rational field @. It follows that for a non-denumerable ordered field, the
absolute degree of transcendency coincides with the cardinal number of the
field (since an algebraic extension of an infinite field does not inerease its eardinal
number).

An ordered field F is called real-closed if every positive element of F has a square
root in F and every polynomial of odd degree with coefficients in F has a zera
in F. (The adjunction of a square root of minus one to such a field yields an
algebraically closed field.) It is well-known that a real-closed field has a unique
ordering (in fact, ¢ > 0if and only if @ = b® for some non-zero b). It follows that
any isomorphism of a real-closed field is order-preserving.

We shall also need the following important theorem of Artin and Schreier
17, p. 232].

Tarorem 1.1 (Artin-Schreier). For every ordered field F, there is a unique (up
to isomorphism) algebraic extension of F that is real-closed and whose order pre-
serves the order of F.

The real-closure of F will be denoted by ®#.

Turning now to abstract ordered sets, we introduce the following definition,
due to Hausdorff (see [4, pp. 180-181]).

DrermvitioN 1.2 (Hausdorff). Let « be any ordinal. A (simply) ordered set L
is called an n.-sel provided that:

(i) if A, B are subsets of L of power <N, , and such that 4 < B then there
isayeLwithd <y < B’ and

(ii) no subset D of L of power <N, is cofinal or coinitial with L.

Applying (i) again, there is a z e L such that y < z < B. Hence there is an
entire interval of L between A and B. Likewise, from (i1), there is an entire
interval of I that is > D, and an entire interval that is <D. With these remarks
in mind, the proof of the following lemma becomes evident.

Lemwma 1.3. Every dense subset of an na-set 18 an nq-set.

The cardinal number of any set % will be denoted by | E |.

2. A characterization theorem for real-closed fields

In this section, we establish the following theorem.

TueoreM 2.1. Let « be any ordinal >0. Any two real-closed fields F, F' that are
na-sets (Definition 1.2) of power N, are 1somorphie.

In connection with this theorem, it is known that any two 7.-sets of power

¢ For a general reference in algebra, see [17]; for set-theory, see [4]. The necessary defini-
tions in connection with rings of functions may be found in [7].
td <B{A<y<B)meansthata <b(a <y <b)forallaed andall b eB.
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N, are similar as ordered sefs. The set of rationals is an no-set (of power NoJ. On
the other hand, for every ordinal 8, the existence of an 7,:-set of power Nsy
is equivalent to the validity of the hypothesis 2% = Ny, . For singular V.,
1o g.-set of power N, can exist [4, pp. 181-182].

To establish our theorem, we first prove two lemmas.

Lemya 2.2, If a subfield E of an ordered field F contains any interval (a, b) of
F,then E = F.

Proor. Let ¢, , e be elements of E such that a < e; < e, < b. Putd = ¢; — e,
Since E is a field, the closed intervals I = [0,d] and J = [1/d, )" of F are con-
tained in E. Now the interval K = [d, =) of F is the translate of ./ by the ele-
ment d — 1,/d of F; therefore K, too, is contained in . Thus F contains Ju K =
[0, =), 1.e., E contains every non-negative element of F. It follows that £ = F.

Lemma 2.3, Every non-denumerable ordered field F' has a transcendence base over
the rational field @ that is dense in F.

Proor. Well-order the set of all intervals I = (a, b) of F (a, b e F) into a se-
quence {Z:}:c., , where N, = | F' |. Let 8 be any ordinal <, , and suppose that
a sequence {f:}:cs of independent transcendentals has been chosen, such that
t; ¢ I for each § < B. Let K3 denote the subfield of F consisting of all elements
of F that are algebraic over the field Q(#, - -, f:, - - )ecs. This latter is of
power <N, : hence E; , too, is of power <N, , and therefore Ej is a proper sub-
field of F. Accordingly, by Lemma 2.2, Es does not cover any interval of F.
Hence we may choose a transcendental #5 e I3 that is independent of the set
{te}i<s - In this way, we construct a set 8§ = |f;};<., of independent transcenden-
tals, with S dense in F. We then extend S to a transcendence base for F.

Proor or THEOREM 2.1. For convenience of notation, we identify the prime
fields of £ and F' with the rational field Q. By Lemma 2.3, there exist tran-
scendence bases 7, 7”7 of F, F’ that are dense in F, F’ (resp.). Clearly, | 7| =
| 77| = N.. List the elements of T in a sequence

{.1) “E=€{ma 3

and list the elements of T” in a sequence |[f:}ic., . Let 8 be any ordinal < w,,
and suppose that we have defined a sequence

2 {8t} ecs

of elements of 7', and a sequence {s;}:cs of elements of 7", as follows. Introduce
the subfield

3) Eg=Q(s0,--+,8, s

of F, and the subfield Es = Q(sy, -+, st, -+ )ics of F', and denote their real-
closures by

Fs = REs, Fs = QRE;.

7 {x, =) denotes the set of all elements =z.
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Since F and 7' are real-closed, we may regard g, Fj as subfields of F, F'. Our
induction assumption is that there exists an (order-preserving) isomorphism
&5 of Fgupon Fs .

We now define s; and sy . To simplify the notation, we shall refer to these ele-
ments as « and 2/, resp.; furthermore, for any element or subset A of Fa, we
shall denote its image ®3(A) in F3 by A’

There are two cases, according as 8 is even or odd. If 8 is even, we define z to
be the element #: of (1) of smallest index ¢ such that #: does not appear in the
sequence (2):such an element exists, since the sequence (2) is of power | 8| < Na .
Since Fg is an algebraic extension of Es, the transcendental x does not belong
to Fy ; also, | Fs| = | Es |. Now from (3), we see that | £y | < N, (since « > 0);
therefore | Fs| < N, . Finally, the set-union 7" u Fj is dense in the n.-set F’
(since T alone is), and is therefore itself an y,-set (Lemma 1.3).

We are now prepared to apply the definition of an n.-set. Decompose the set
Fjsinto the sets A3, Bg , such that A3 < & < Bj (one of these sets may be empty).
The corresponding subsets Ag, Bs of Fg are both of power <N, , and, since &,
is order-preserving, we have A5 < B} . Therefore, by (i) of Definition 1.2, there
exists an element i’ of the n.-set 7" u Fj such that A3 < 3’ < Bj (or, in case one
of the sets of the decomposition is empty, we apply (ii) instead of (i}). We define
# to be any such element 3. Since Aju Bs = Fi, we have 2 ¢ Fg ; hence

(4) forall ceFs,2" >¢ ifandonlyif z= > ¢

In case 8 is odd, we proceed analogously, reversing the roles of 7" and 77
throughout.

To complete the induction step, we must extend the isomorphism $z of Fy
upon Fy to an isomorphism &5, of Fsy1 = ®Es(x) upon Fpu = ®Es)). Now
clearly we have Fay = GF3(x), Fsy = GFs(x’). Accordingly, we begin by ex-
tending ®; to an order-preserving isomorphism ¢z, of Fs(x) upon Fs(z'). Define
ds.ax) = 2/, and then extend ¢g4, over F(z) in the natural way (i.e., preserving
formal sums and produets). Since z and z” are transcendentals, ¢s41 will be an
algebraic isomorphism. Our first problem, then, is to verify that ¢s.1, thus de-
fined, preserves order.

To this end, it suffices to show that ¢s,. preserves order from the polynomial
ring Fylx] to the ring Fa[2'] (the extension to the desired quotient fields being
then automatic). Thus, we are to show that

(5) f=>riaa >0 implies f = > oa2z” >0

(a, e Fg, a, # 0). We may assume a,, = 1. If n = 1, then (5) holds by construc-
tion (cf. (4)). Turning to the case n = 2, write f = (& — h)° + k (h, k e Fg). If
k = 0, then trivially /' = (2" — &')* + k" > 0.If k& < 0, let a denote the positive
square root of —Ff; then a ¢ Fg, since Fj is real-closed. Then f > 0 implies
z<h—aorz>h-+a whenceby 1),z < h' —d orz’ > 1 + o (resp),
whence f > 0.

Thus (3) holds for n = 1 and for n = 2. Since any polynomial (in one inde-
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terminate) over a real-closed field is the product of linear and quadratic factors,
(5) holds in the general case as well. We have thus shown that ¢, is an order-
preserving isomorphism of Fs(z) upon Fs(z'). By the Artin-Schreier theorem
(Theorem 1.1), ¢g4s has an extension to an (order-preserving) isomorphism
@z, between their real-closures, i.e., of Fas, upon Fa,;.

This completes the induction step. By alternating in the induction between
the cases 8 even and 8 odd, we have ensured that both of the sets T and 77 will
be exhausted. Now put

G = U3<waFﬁ; G! = U.ﬂ‘{mQF; -

It is easily seen that (7 is real-closed. Obviously, G C F; and, as just noted,
T C @. Since F is real-closed, and algebraic over T', we must have G = F. Like-
wise, @ = F’. But clearly G and G’ are isomorphic. Therefore F' and F” are iso-
morphic. This completes the proof of the theorem,

It is clear that two real-closed fields may be similar as ordered sets and have
the same absolute degree of transcendency, and yet not be isomorphic. For
example, it is obvious (and well-known) that the smallest real-closed field con-
taining the real number ¢ is not 1somorphic with the smallest real-closed field
contaning 7. It may be, however, that a non-archimedean real-closed field is
characterized by its order type (together with its degree of transcendency over
the real field?). We have so far been unable either to prove this, or to find a
counter-example.

For examples of non-archimedean real-closed fields of arbitrarily large power
that are not n.-sets, see Sikorski [10, 11].

3. Hyper-real fields of power ¢ = 2%¢

Let € = C(X) denote the ring of all continuous real-valued functions over
a completely regular topological space X.” Hewitt has shown that if M is any
maximal ideal of €, then the residue class field C'/M i1s an ordered field that con-
tains the real field R. If C/M contains R properly (whence C/M is non-archi-
medean), then M is called a hyper-real ideal, and C'/M is called a hyper-real
field. A necessary (but not sufficient) condition that €' contain a hyper-real ideal
is that X be non-compact [7,, Theorem 41].

For every f e C(X), we write Z(f) = {2: 2z ¢ X, f(z) = 0}; Z(f) is called the
zero-set of f. For any ideal I of C, we writeZ(I) = {Z(f): fel}. It can be seen
without difficulty that the family Z(/) is closed under finite intersection; M is
a mazimal ideal if and only if Z(M) is a maximal such family that does not con-
tain the empty set [7, Theorem 36)]. An ideal [ is called a free ideal if N, Z(f)
is empty. Every hyper-real maximal ideal is free (but not conversely [7, Theorem
41]).

We digress for a moment to insert a definition and a lemma that will be needed
at various points in the sequel.

Dermrrion 3.1. By the minimal ecardinal associated with a maximal ideal
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M, we shall mean the smallest of the cardinal numbers of the dense subsets of
Z, for Z e Z(M).

Levua 3.2. Let p denote the associated minimal cardinal of a mazximal free ideal
M. Then | C(X)/M | £ 2.

Proor. Any two functions that coincide on an element of Z(M) are congruent
modulo M. Let Z be any element of Z(M) that has a dense subset Y of power p.
Since the values of a continuous function on Z are determined by its values on
Y, there are at most ¢’, i.e., 2" (since, trivially, p is infinite), continuous real-
valued functions on Z, hence at most this many mutually incongruent such
functions.

We return now to the central topic of this section.

Lemva 3.3 If X 15 any completely regular space, and if M is any hyper-real
ideal of C'(X), then the residue class field C(X)/M is real-closed, and its degree of
transcendency over the real field R is at least c.

Proor. See Henriksen and Isbell [6], Isbell (8], and Hewitt [7, Theorem 42].

For any maximal ideal M of C, the residue class modulo M that contains any
given f ¢ C will be denoted by [f]—or, for brevity, simply by [f]. The field C/M
is ordered as follows: [f] > 0 if and only if both (i) the set {z: f(z) = 0} is in
Z(M), and (ii) Z(f) ¢ Z(M) [7, p. 74]. Equivalently: [f] > 0 if and only if there
is a zero-set Z e Z(M) such that f(z) > 0 for all z € Z. Thus M is hyper-real if
and only if there exists a ¢ e C such that the set {z: ¢(x) = n} is in Z(M) for
alln =1,2,---.

TuroreM 3.4, If X is any completely regular space, and if M is any hyper-real
ideal of C(X), then the residue class field C(X)/M is an m-set (Definition 1.2).

Proor. Let {[f.]}, {[g-]} (n = 1,2, - +) be two sequences of elements of C/M
such that

(6) [f2) < [fapa] < [gmsa] < [gml (m,yn=1,2-:-).

In order to verify condition (i) of Definition 1.2, it is sufficient to find an h e C
Such that [fu] < [hl < [gm] (m! n = 1!' 2’ o ')'

First we note that we may assume, without loss of generality, that
fal@) £ foplx), and gma(z) = gulz), forall zeX

(7) (?n! n = ]-r 2: "')-

For if we put
fu@) = max {fi(@), -+, fu@)},  gul®) = min {@:(®), -+, gal®)},

for all z € X, then we will have [f,] = [f.] and [gn] = [g=], by (6) and the defini-
tion of the ordering of C/M. Obviously fa(z) £ fas(@) and gn(x) < gnl(x) for
every .

Secondly, we note that we may also assume that

8) falz) € ga(x) forall zeX (n=1,2---).
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For put f7(z) = fi(z), and g¢{(z) = max {fi(z), gi(x)}. If we have defined
f;f)'"' ).f:; Q'f, - gi so that

fi®) S -+ Sfa@) S gale) S <+« S ¢l (2)
for all z ¢ X, then we put

fra(@) = min{max{f. (@), faa(@)}, gu(2)},

grnir(®) = max{min{gh(z), gn+1(®)}, Fru(@)}

(all z e X). It follows readily from (6) and the definition of order in C/M that
[f7] = [f+] and [¢7] = [gn] foralln = 1,2, --- . Moreover, we have

Ja@) 2 frn®@) £ gun@) = ¢a(@)
for all z e X.
Resuming our original notation, we assume that (6), (7) and (8) hold. Since
M is hyper-real, there is a function ¢ e C such that for all z ¢ X, we have¢(z) = 1,
and, for every n = 1, 2, - -, the set

P, = {z:19(x) 2 n}
is in Z(M). We now define a function A as follows:’
hx) = (n + 1 — ¢(@)fu(z) + (¢(@) — n)fasle)
whenever n < ¢@) =n+1m =12, ).

Evidently, i e C(X). Clearly, fu(x) = h(z) £ fori(z) whenevern = ¢(z) = n + 1.
Since the sequence of functions {f.} is monotone increasing (7), we have h(z) =
fanar(z) for all x e®,41 . Now by (6), there is a Z,41 ¢ Z(M) such that f,.,(z) >
Ja(x) for all & € Z.11 . Therefore h(z) > fu.(x) for all z in the set ®, 1 n Z, 11—
which is in Z(M) (since Z(A) is closed under finite intersection). Thus [k] > [f.]
foralln =1,2 ---.

Next, it follows from (7) and (8) that for each fixed m, fri,(2) £ guu(z)
forallz e X and all p = 1, 2, - - - . It is easily seen from this that i(x) £ gmia(z)
for all x € ®,, . As above, there is a Z,, ¢ Z(M) such that gn41(z) < gm(z) for all
z € Zy , whence h(z) < ga(z) for all z e (Z,, n®,) e Z(M), ie., [h] < [gul. We
have thus verified condition (i) of Definition 1.2. Since the definition of A de-
pended only upon the f.’s—not upon the g,.’s—the arguments just given yield
the additional fact that C/M has no countable cofinal subset (and hence no
countable coinitial subset)$ Thus we have also verified (ii) of Definition 1.2.
This completes the proof that C'/M is an n:-set.

TueoreM 3.5. Under the continuum hypothesis ¢ = N1, all hyper-real fields of
power ¢ are isomorphic.

Proor. These fields are n;-sets (Theorem 3.4) of power 8, , and are real-closed
(Lemma 3.3). Hence, by Theorem 2.1, they are all isomorphic.

8 We are indebted to J. R. Ishell for the device used here, which was used by Isbell to
show that C/M has no countable cofinal subset [9] (written communication).




ISOMORPHISM THEOREM FOR REAL-CLOSED FIELDS 549

Another way of expressing this theorem is: all hyper-real fields of power ¥,
are isomorphic.

CoroLrary 3.6. If | C(X) | = Ny, then all the hyper-real fields C(X)/M are
isomorphic.

CoroLLARY 3.7. If ¢ = Ny, then all the hyper-real fields C(X)/M for which
some Z e Z(M) has a denumerable dense subsel are isomorphic.

Proor. Lemma 3.2.

CoroLLARY 3.8. If ¢ = Wy, and if X is separable metric or denumerable, then
all the hyper-real fields C(X)/M are isomorphic. _

CoroLLARY 3.9. If ¢ = R, then all the non-real residue class fields of maximal
ideals of a denumerable complete direct sum of real fields are isomorphic.

Proor. The direct sum in question may be identified with the ring of all (con-
tinuous) real-valued functions on the denumerable discrete space.

If it were true that every Z(#) contained a discrete set, then the proof of
Theorem 3.4 could be considerably simplified. Unfortunately, this is not true
even for the case X = R (the real line), as is shown by the following example
due to W. F. Eberlein [5].

ExamrrLE 3.10. Let I' be the family of all closed subsets of B whose comple-
ments have finite (Lebesgue) measure. Let T = {f: f e C(R), Z(f) eT}. It is
easily seen that I is a proper ideal of C(R). Let M be any maximal ideal con-
taining 7. It is easily verified that M is hyper-real (see also [7, Theorem 53]).
We shall show that Z(3{) contains no discrete set. In fact, Z(M) contains no set
of finite measure. For suppose that Z ¢ Z(}) has finite measure. Then there is
an open set V of finite measure contaning Z. But then wehave R — V e ' C Z(M)
contrary to the fact that Z(M) is closed under finite intersection but does not
contain the empty set.

A consequence of this construction is the existence of a point p in the Stone-
Cech compactification [13, 1] of R such that every neighborhood of p intersects
R in a set of infinite measure (see [2; 3, Theorem 1]).

4. Cardinal numbers of hyper-real fields

In this section, we establish some theorems concerning the cardinal numbers
of various hyper-real fields. The continuum hypothesis is not used (except in
a remark at the end of the section). The purely set-theoretic results that are used
in the proofs have some interest for their own sake, and, accordingly, are stated
separately as lemmas.

Lemma 4.1.° For every sei X of infinite power m, there exists a set of more than
m subsets of X, each of power m,"” and such that the intersection of any two of them
18 of power <m.

Proor. Express X as the union of m mutually disjoint sets S, (& < w )"

% This lemma was proved by P. Erdés in 1934, but has not been published heretofore.
For a large collection of results on almost disjoint sets, see Tarski [14, 1B].

19 In our application of this lemma, we will not need the fact that the sets are of power m.

1t Here (and subsequently) we use the symbol ww to denote the least ordinal of power m.
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each of power m. Well-order each S. in a sequence of type wwn, and, for each
8 < wn,form the set Ag consisting of all the elements of index 8 (one from each
set S.). Then the collection P of the m sets Az has the following properties:
(i) each A e P is of power m, (ii) each A ¢ P meets every S. in exactly one ele-
ment, and (iii) the intersection of any two distinet sets of P is of power < m.
(In fact, the intersection is empty.) By the maximal chain theorem of Hausdorff
(or Zorn’s lemma), there is a maximal family € containing P and satisfying (i),
(i1) and (iii). We shall show that | @ | > m, which will establish the theorem.
In the contrary case, | @ | = m (since @ O P), and the elements of @ can ac-
cordingly be enumerated in a sequence {B3}gc., . We define a new set B as
follows. From (ii), we see that for every @ < w, , the intersection of S, with the
set UseoBjs is of power <. Hence, since | S, | = m, the set S, — Uz, Bs is
not empty. We define x, to be any arbitrary element of this latter set. The set
B = {%.}acq, , thus defined, clearly satisfies (i) and (ii). To verify (iii), we ob-
serve that for eacha < wn, wehave Bn B, C {#3}s<« ; therefore | Bn B, | < m.
Thus @ was not maximal, as supposed. Accordingly, we must have | @ | > m.

As already noted, if M is any maximal free ideal of a ring C'(X), then the set
Z(M)is a maximal subset of Z(C') that is closed under finite intersection, does not
contain the empty set, and has total intersection void. If X is discrete, then, of
course, Z((') is the set of all subsets of X. In discussing this case, it has often been
found convenient to speak in terms of a non-trivial, finitely additive, two-valued
measure u on the set X; by this we mean: u is defined on all subsets of X, to each
it assigns the value 0 or 1, every one-element set has measure 0, the entire set
X has measure 1, g is finitely additive. Thus (if X is discrete) there is a natural
one-one correspondence between the set of all such two-valued measures u on
X and the set of all maximal free ideals M of C—under which u(Z) = 1 if and
only if Z e Z(M).

Let us call a cardinal m nonmeasurable if there exists no non-trivial, countably
additive, two-valued measure on a set of power m. Every m smaller than the
first strongly inaccessible cardinal is nonmeasurable.” Now for any discrete
space X, a maximal free ideal M of €'(X) is hyper-real if and only if the finitely
additive measure u corresponding to 3 fails to be countably additive [7, Theorem
50]. Therefore, if the cardinal of the discrete space X is nonmeasurable, the
maximal free ideals of C(X) coinecide with the hyper-real ideals. In particular,
this is the case whenever | X | = ¢,

Lemya 4.2, Let X be any set, and suppose that X has a subsel ¥ of infinile power
n. Then there exists a non-trivial, finitely additive, two-valued measure u on X such
that u(Y) = 1, and every subset of X of power <n is of measure zero—and if n
is nonmeasurable, then u 1is not countably additive.

Proor. Suppose first that ¥ = X. Let P be the set of all subsets § of X whose

12 This result is due to Ulam and Tarski. (A regular cardinal m > 8, is strongly inacces-
sible if 2" < m for all n < m. No such cardinal is known.) See [16].
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complements are of power <n. Then P is closed under finite intersection. Embed
P in a maximal system @ that is closed under finite intersection, and that ex-
cludes the empty set. Obviously, every element of @ is of power 1. Define u(E) = 1
if and only if E € @. If n is nonmeasurable, then by definition, x cannot be count-
ably additive.

Applying this result to the general case, let uy be a non-trivial, finitely addi-
tive, two-valued measure defined on ¥ such that every subset of ¥ of power <n
is of measure 0. Extend uy to a two-valued measure u on X as follows: for 4 C X,
p(A) = pr(4 nY). It is easily verified that the measure u has the required prop-
erties (ef. [16, p. 146]).

As a particular application of this lemma, we have:

CoroLLARY 4.3. For every infinite discrete space X, there exist hyper-real ideals
M of C(X) for which | C(X)/M | = ¢.

Proor. By Lemma 4.2, there exist hyper-real ideals whose associated minimal
cardinal (Definition 3.1) is Mo . The result now follows from Lemma 3.2.

TuroreM 4.4. Let X be the discrete space of power ¢. Then for every hyper-real
ideal M of C(X) for which every Z ¢ Z(M) is of power ¢," we have | C(X)/M | > «.

Proor. By Lemma 4.1, there is a set {4;}:; of more than ¢ subsets of X, the
intersection of any two of which is of power < ¢. Let ¢ be any element of C'(X)
that assumes no value twice (i.e., ¢ is a one-one mapping of X into the reals).
For each ¢ € I, define f; as any function on X that assumes precisely the values
o(4y), ie, fi(X) = ¢(4.). Then fi(z) = fi(z) = ronly if r e p(A ) np(A4;), hence
only if z e A;n A; . Consequently, if 7 # j, f; agrees with f; only on a set of power
<¢—therefore on no set Z ¢ Z(M). Thus f: # f; (mod M). Hence {f;}: is a set
of more than ¢ mutually incongruent (mod M) elements of C(X).

CoroLLARY 4.5. The hyper-real fields associated with the discrete space of power
¢ do not all have the same cardinal number—a fortiort, they are not all isomorphic.

Proor. Corollary 4.3 and Theorem 4.4.

Lemuma 4.6, Let {Eplscs, be a family of n sets of power m, where m ts infinile,
and 0 < n £ m. Then there is a set {Hg}p<w, of mutually disjont sets of power m,
with Hy C Es for all B < w, .

Proor. By repeating the set Ey m times, we can secure the condition n = m.
Let @ be any ordinal <w ., and 8 any ordinal =«, and suppose that a set of
distinet elements

Km.& = {xc.rla(a,sga U {xa,iléd

has been defined, such that every z, , ¢ E, , and every zo; € £; . Then | K. 5| <in;

we choose z, g as any element of Ez — K, s . We have thus defined a set of distinct

elements {Za}acons<a, With every z. s e Es. We put Hs = {Zapls<aca, -
LemMa 4.7, Let X be any set of infinite power m, and let q be any infinite cardinal

12 The existence of such ideals follows from Lemma 4.2,
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=<m. Then there exists a system K = {Xgslacaes of subsets of X, where | A | =
qand | S| > m, such that

9) forall seS, UspaXe.=X;
(10) forall seS, andforall a bed, with a Db,
Xosn Xy is empty,
for every s, { € S, with s # &, put
Yo = Vses Koo n Xo);

then
(11) every subset E of X that is the complement of the union of a finite number of
the sets Y, ; is of power m.

Proov. Certainly such a system exists for | 4 | = g with | S| = 2. By the
maximal chain theorem, there is a maximal system K for | 4 | = g; we shall
show that for such a K (for which, clearly, | S| = 2), we have | S| > m.

Suppose, on the contrary, that | §| = m. We shall find that then K is not
maximal. Let P denote the set of all finite subsets of the set of all two-element
subsets {s, ¢} of S. Then | P| £ m. Each p ¢ P determines a set £, = X —
Uis.jenYe.e as in (11). Conversely, to each set £ as in (11), there corresponds at
least one p ¢ P for which £ = E,. By Lemma 4.6, there is a set {f,}p of
mutually disjoint sets of power m, with each H, C E, .

Now let » be any index ¢S; we construct a set of sets { X, ,}aea , as follows,
Let 2 be any element of X. If # is in no H, , we assign x to an arbitrary X, . .
In the contrary case, there is exactly one p for which x ¢ H, . Let

SP = U[S-tlipgs) t}-

For each s € S, , there is, by (9) and (10), exactly one a, ¢ A such that v e X ..
Let a{p) be any element of the infinite set A distinet from each of the finitely
many elements a, (s € S,); we assign = to the set Xogp) o -

Write S = Su {u}. Clearly, the enlarged system K' = {X, .}acs sesr satisfies
(9) and (10) (with S therein replaced by S’). To verify (11), let p’ be any finite
subset of the set P’ of all two-element subsets of S'; we are to show that | B, | =
m. Since | S| = 2, there is a p” ¢ P’ that contains p’ and that also contains at
least one element of P; since E,» C E,, it suffices to show that | E,» | = m.
Let p be the element of P consisting of all the two-element subsets of the set

T}w = U[,J’fp'{s, t} n S,

then p is not empty (by definition of p”). The set H,, is contained in £, . Further-
more, by the construction above, we have H, C Xy ., whence none of the
sets Y, , (s e Tp) meets H, . It follows that H, < E, . Since | H,| = m, we
have | E,» | = m. As indicated above, this implies that the system K’ satifies
(11). Thus K’ satisfies (9), (10) and (11). Therefore K was not maximal, as sup-
posed. Accordingly, we have | S| > n.
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TurEoOREM 4.8. Let X be the discrele space of cardinal m = c. Then there exists
a hyper-real ideal M of C(X) for which | C(X)/M | > m.

Proor. Let the system K be as in Lemma 4.7, with ¢ = ¢. The set of all finite
unions F of sets Y, , is closed under finite union; hence if we define g = 0 on
all subsets of all such F, and p = 1 elsewhere, then x will be a non-trivial, finitely
additive, two-valued measure on X. Let M be the maximal free ideal correspond-
ing to the measure u. Let the set of all reals be indexed |{rilqs . For every s e S,
we define a function f; e C(X) as follows: given any x ¢ X, we have z ¢ X, . for
exactly one @ e A—we put f,(x) = r, . Then, for s # {, we have f.(x) = fi{z) = 7,
if and only if © € X.,. n X,.¢: . Therefore the set of all z on which f, agrees with
fiis the set ¥, .. Since u(Y, ) = 0, we have f, = f, (mod ). Thus {f,}.sisa
gset of more than m mutually incongruent (mod M) elements of C. Accordingly,
| C(X)/M | > m. And, since m = ¢, M must be hyper-real.

Observe that for the special case m = ¢, a stronger conclusion is given by
Theorem 4.4.

CoroLLARY 4.9. Let X be the discrete space of cardinal m Z ¢, and let n be any
cardinal such that m = n = c. Then there exists a hyper-real ideal M of C(X) such
thatn < | C(X)/M | = 2°.

Proor {ef. proof of Lemma 4.2). Let ¥ be any subspace of power n. By
Theorem 4.8, there exists a maximal free ideal My of C(Y') for which | C(¥)/M y |
> n. Define

M=|{f:feCX), (Z(NH)nY)eZ(My)}.

It is verified without difficulty that M is a maximal free ideal of C'(X). With each
fy € C(Y), associate the function fy e C(X) that agrees with fy on ¥ and vanishes
everywhere on X — Y. Clearly foy = ¢y (mod M) if and only if fy = gy (mod
My). Hence |C(X)/M | = | C(Y)/My |; therefore C(X)/M | > n = ¢, and
M is hyper-real. To establish the remaining inequality, we observe that Z(M)
contains the set Y, which is of power n. Hence, from Lemma 3.2, | C(X)/M | £ 2"

If we assume the generalized continuum hypothesis, then in Theorem 4.4
we can conelude that | C/M | = 2°) and, in Theorem 4.8, that | /M | = 2",
and in Corollary 4.9, we will have that for every 8 < o, where N, = m, there
exists a hyper-real ideal M with | C/M | = Nsy .

5. Some open problems

5.1. Is a non-denumerable real-closed field—in particular, if it is non-archi-
medean—characterized by its type of order as an ordered set? (See the remarks
at the close of Section 2.)

5.2. Are all hyper-real fields of the same power isomorphic? (This would follow
from Theorem 2.1 if every hyper-real field of power R, were an n.-set (Defini-
tion 1.2). On the other hand, this latter would imply that no hyper-real field of
singular cardinal can exist—is this true?)

5.3. Let m denote the minimal cardinal associated with the hyper-real ideal
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M (Definition 3.1); is the field C'/M necessarily of power > m? (We know this
is true if m = No, or if X is discrete and m = ¢.)

5.4. What, if any, of the various results that are obtained using the con-
tinuum hypothesis or its extensions, can be derived without the intervention of
these hypotheses? Specifically, are any two real-closed fields—in particular,
any two hyper-real fields—that are m-sets of power ¢, necessarily isomorphic?
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