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THE NUMBER OF MULTINOMIAL COEFFICIENTS

PAUL ERDÖS, National Bureau of Standards, and IVAN NIVEN, University of Oregon

The problem is to find the number of multinomial coefficients
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which are less than x, excluding the cases r =1 = iI and r=1 = k for which (1)
assumes the value n . The values of (1) are thus restricted by
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One of the writers [1 ] proved earlier that these multinomial coefficients have
density zero ; we now prove the following stronger result .

THEOREM. The number of multinomial coefficients (1) which satisfy (2) and
which are less than a fixed x>0 is (1+-V2)x 1 I 2+o(x 1 I 2 ) .

To prove this we divide the values (1) into 3 classes and treat each class
separately. The first class, fl ( x) in number, contains those having k=2 ; the
second class, f2(x) in number, those with 3 <--_ k -<_ n/2 ; the third class, f3(x) in
number, those with k > n/2 . We prove that

(3)

	

fl(x) = ( 1 +

	

2)x1/2 + o(x1"2),

	

f2(x) = 0(x12),

	

f3(x) = 0(x12),

which will establish the theorem .
Class 1 . For k=2 the values (1) are the two types, n(n-1)/2 and n(n-1).

Now n(n-1) <x for x 112 +o(x 1 " 2) values of n, and n(n-1)/2 <x for (2x) 1 % 2

+o(x 12 ) values of n . We must eliminate duplicates, that is cases where

(4)

	

n(n- 1) =m(m- 1)/2 .

We show that (4) has at most c log x solutions <x, and this will establish the
first equation (3) . Solving (4) for m we find that solutions exist if and only if
8n 2 -8n+1 is a perfect square, say u 2 , and replacing 2n-1 by z, we have
(4) reduced to u2-2Z2= 1 . The positive integral solutions of this equation are
given (cf. [31) by u+zV/2 = (3+2-\/2)r for r=1, 2,

	

, and the number of
these less than x is of the order of c log x .

Class 2 . For any fixed k and n, the equation k = >i; indicates that the num-
ber of values of (1) is p(k), the number of partitions of k into positive integers .
The smallest of these p(k) values is (a), and so the admissible values of n and k
will satisfy (,') <x. Now

(5)
\k/ = ~ k-j > \k/ k •

Hence the admissible values of n and k satisfy (r)k <x or n <kx1 k . Thus for each
k the maximum number of values of n is kxlik and so

(6)

	

f2(x) < L (kx 1I k)p(k),
k

the sum ranging over the admissible values of k . By definition of f2(x) the small-
est k is k = 3 . To get an upper bound of k in terms of x we observe that the larg-
est k corresponds to n = 2k . Using (r) <x again, we have that admissible values
of k satisfy (tg) <x and so satisfy 2k <x since 2k < ( f) by (5) . Thus the range in
the sum (6) can be taken as k = 3 to k = c log x .

Now [2] p(k) <ecl', so p(c log x) <ed1( lug x )1/2 <x° for arbitrary a>0 with x
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sufficiently large. Maximizing each part of (6) gives

f2(x) < (c log x)(c log x)xl/3Xe = o ( x '12) .

Class 3 . Every value (1) in this class is clearly

Z	
n!

CC2J I ~n- 2J~ !

Thus each admissible value of n satisfies n<=2h+1 where h is chosen so that
(2h) exceeds x . Replacing (h h) by 2" as previously we see that n < c log x . For any
fixed n the number of values of (1) is maximized by p(n) . Thus f3(x) <
c log x •p(c log x)=o(xl/2), and the proof of (3) is complete .

A more careful analysis would improve the theorem to yield the estimate

(1 + \/2) x1/2 + C3x113 +

	

+ Gmx1/m + o(x1/m)

for every m . This could be proved by isolation of the cases k=2, 3,

	

, m for
special treatment, where here we stopped at k = 2 .
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