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THE NUMBER OF MULTINOMIAL COEFFICIENTS
PauL Erpds, National Bureau of Standards, and Ivax NiveN, University of Oregon

The problem is to find the number of multinomial coefficients
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which are less than x, excluding the cases r=1=1; and r=1=F% for which (1)
assumes the value #. The values of (1) are thus restricted by
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(2) uUS=Hh=--"=i,.=n—k=n-—2

One of the writers [1] proved earlier that these multinomial coefficients have
density zero; we now prove the following stronger result.

THEOREM. The number of multinomial coefficients (1) which satisfy (2) and
which are less than a fixed x>0 1s (14 4/2)x"240(x12).

To prove this we divide the values (1) into 3 classes and treat each class
separately. The first class, fi(x) in number, contains those having k=2; the
second class, fy(x) in number, those with 3=<k=n/2; the third class, fiz(x) in
number, those with 2>n/2. We prove that

(3) fi(x) = (1 4+ 4/2)x"2 4 o(a1/2), fa(x) = o(x1/?), fs(x) = o(xV?),

which will establish the theorem.

Class 1. For k=2 the values (1) are the two types, n(z—1)/2 and n(n—1).
Now n(n—1)<x for x'*+4o0(x'?) values of 7, and n(n—1)/2<x for (2x)1?
+o0(x'?) values of n. We must eliminate duplicates, that is cases where

(4) n(n—1)=m(m—1)/2.

We show that (4) has at most ¢ log x solutions <x, and this will establish the
first equation (3). Solving (4) for m we find that solutions exist if and only if
8n?—8n-+1 is a perfect square, say u?, and replacing 2n—1 by 2z, we have
(4) reduced to u?—2z?=1. The positive integral solutions of this equation are
given (¢f. [3]) by u+24/2=(3+4+2+/2)" for r=1, 2, - - -, and the number of
these less than x is of the order of ¢ log x.

Class 2. For any fixed k and #, the equation k= »_i; indicates that the num-
ber of values of (1) is p(k), the number of partitions of k into positive integers.
The smallest of these p(k) values is (1), and so the admissible values of # and k&
will satisfy (}) <x. Now

n _“—ln—j n\*
& (k)"ﬁk-f(?)'

Hence the admissible values of # and % satisfy (})*¥ <x or # <kx'*. Thus for each
k the maximum number of values of # is kx* and so

(6) fa(x) < 22 (kai/®)p(k),

the sum ranging over the admissible values of k. By definition of fy(x) the small-
est kis k=3. To get an upper bound of k in terms of x we observe that the larg-
est k corresponds to n=2k. Using (}) <x again, we have that admissible values
of k satisfy (}*) <x and so satisfy 2% <x since 2*¥ < () by (5). Thus the range in
the sum (6) can be taken as k=3 to k=c¢ log x.

Now [2] p(k) <ea1¥E, so p(c log x) <ecrle log 9 < xe for arbitrary €>0 with x
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sufficiently large. Maximizing each part of (6) gives
fa(x) < (¢ log x)(c log x)x'/3x¢ = o(at/?).
Class 3. Every value (1) in this class is clearly

n!

-

Thus each admissible value of #n satisfies # <2kh+1 where & is chosen so that
}) exceeds x. Replacing (3") by 2" as previously we see that # <c log x. For any
fixed » the number of values of (1) is maximized by p(n). Thus fi3(x) <
¢ log x-p(c log x) =0(x'?), and the proof of (3) is complete.

A more careful analysis would improve the theorem to yield the estimate

(1 4+ V2)5 2 4 a3 + - -« + cualt!™ 4 o(x1/™)

for every m. This could be proved by isolation of the cases k=2, 3, - + -, m for
special treatment, where here we stopped at k=2.
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