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EQUATIONS.*

By N. C . ANKENY and P . .Eons .

Introduction. Consider the non-trivial rational integer solutions in the
variables X, X,, - - - , X,, of the equation

a,X,"" + a2 1̀ 2- +

	

+ a.X,

%-here m, aj , a,, - - - , a, are non-zero rational integers, and m > 0 . By a non-
trivial solution we mean one in which not all A'-'j - 0, .4 = 1, 2, - - -, n . -

Let U be a large positive real number tending to infinity, and let
D (b4 a, a ,, , - -, an ) = D (U) be the number of ii for which (1) has
a non-trivial rational solution. Putting a mild but necessary restriction on
the coefficients, something may be said about the order of magnitude of D(U) .

THEOREM I . If, for every selection of ej - 0 or ± 1, (j = 1, 2, - - -, n)
except (e,, . . . , e„) (0, Q 0), we have a,e, ± a.e. yL 0, then
D(U) =o(U) as U-+-j-oo .

Theorem I could be interpreted as stating that equation . (1) is " almost
always'` unsolvable ; or the density of m, for which (1) has a non-trivial
solution, is zero .

One very important case that the hypothesis of Theorem I excludes is
when a, - a. ~ a, - 1 . However, our methods still yield a result of some
interest in this case,

THEOREM 11 . The density of integers in, for which, the equation
X,' + X, + X,' - 0 has a rational solution and for which (XX.,X,, m)
- 1, is zero.

The restriction (X,X,X,, m) = 1 is sometimes referred to as the first
case in Fermat's equation .

The result M(U) = o(U) can be strengthened to JI(U) = O(U(log U) - c)
for some positive constant c . The proof of this stronger inequality requires
a good deal more effort and will not be presented in this paper .

The result of Theorem I can be generalized from the rational number
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field to any algebraic number field P . The restriction on aj , which are now
any non-zero algebraic integers contained in F, is that a,e, + - - - + a.c,, =A. 0
where t j - 0 or any root of unity contained in F. The proof of this generaliza-

tion will not be given in complete detail, but will be briefly outlined at the
end of this paper.

In Section 1 we shall present some introductory Lemmas and in Section 2,
the proof of Theorems I and II will be presented .

1 . Notations . U denotes a large positive variable. c,, c~, - - - denote
absolute constants . p, q are rational primes. C, is a primitive g-th root of
unity .

LEMMA 1. Let a,, -

	

a„ satisfy (2), g > 2, and 4 f g . If (e,,

	

, e„)
any one of the W - 1 n-tuples referred to in the statement of Theorem I

and if h, - r7 - , h„ are any non-negative integers then

(3)
nY. akekt, Ilk -7Z= 0_
k=1

Proof . Suppose first that g = p or 2p where p is an odd prime . Since
app- ± 1, the assumption that (3) is false leads to a relation

P-1
Y, bjtj - 0, where bj- Y, a ke 4 ,

	

G - 0, - ' .P -
j-0

	

kc,

and Sj is a (possibly void) subset of the set of numbers (1, n} . The
sets So, 8,,-, are non-overlapping and their union is the set (1, n)
Thus, because of (2), there is an i such that bi =,4 0 and, for every i 7" il
bi , =,/-- b i . On the other hand, .4Q is a root of either Xp-1 + Xp-2 + - . - + x 4- 1
or Xp- I __ Xp-2 + _ . .

. ± (- 1) v -1 , both off which are irreducible polynomials
over the rational field R . It follows that b o

	

b,

	

b,-.,,, a
contradiction.

To complete the proof of the lemma, let g = p , 4~p,d' . . . p d. or

2p,d-P,4 - • - P.d- where the p's are distinct odd primes aid the d's are
positive integers . Assume by induction on d, + - - - + d, that the lemma
holds for g'- g1p, (> 2) . Since C#, the assumption that (3) is false
leads to a relation

pi -,Y sic) = 0, where

	

I akekC g',
J-0

	

MI.

the f's being non-negative integers and the sets So, . - .,S,,-, having a
meaning similar to that in the first part of the proof .

By the inductive hypothesis there is an i such that 6i 96 0 and, for every
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i' :7(-- i, pi . _A f3{. On the other hand, the irreducible equation satisfied by Zc
in the field R(Cy.) is either x-1 -}- + x + 1 =0, (d, =1), or xP- fir • = 0,
(d, > 1) . Thus 8,, - .8,

	

a contradiction .

LEMMA 2. I f 3 j' g then, for any non-negative integers h,, h 2g h3,

(4) Cghi + S9h" + tph, T 0 .

Proof. Assume there exist h,, h2, t, such that r9h1 + CI- + ~s

Divide through by C ks, yielding

(5)

	

Gki + cvk2 + 1 - 0,

for 2 integers k,, k, . Taking the imaginary parts of both sides of (5) yield
that sin(21rk,/g) + siu(2,rk2/g) = 0 . This implies k, --7c, or k, + g/2
(mod g) where only the former is possible if 2 T g.

Now taking the real part of (S) yields cos (2 wk,/g) + cos (2?rlc 2/g) =-1
or, on substituting k 2 -- k, or k, 4, g/2 (mod g), yields that

2 cos (27rk,/g) =-1, or cos (2rk,/g) -}- cos (21r(k, -{- 29/9)) =-1 .

This last equation is clearly impossible . The former equation implies that
3 1 g, which is contrary to our hypothesis .

THEOREM III . If a,, a,, • ° • , a, satisfy condition (2), then for a given
m, there exists no non-trivial rational solutions of (1) provided we can find

a rational prime p such that

( 6 )

	

m divides p -1,

	

mr = p -1,

( . )

	

4

(g)

	

(r) < a-I loge,
where a - log( I a, I + I a 2 -}- • • - + ( a„ ~ ), and S6(r) is a Euler S6 function .

Proof. (cf . [[41, II. S. Vandiver) . Assume there exists a pp which
satisfies (3), (4) and (5), and that (1) has a rational solution such that
X,X, • • X. g--'= 0 (mod p) . Without loss of generality, assume (X,, X2i ,
X„) - 1 . Then consider (1) in the field R(tr) .

As p =-1 (mod r), the ideal factorization of p is (p) = P,P,. - P. in
R(Cr ), where s=+¢(r), and NR(s,).R(P,) .,=p . Hence, the group of m-th
power residues of the multiplicative cyclic group of residues (mod P,) has
(p -1) /m = r elements . One sees that the elements ;r/, j-0, I,- • -,r-1
are incongruent (mod P,) . So $+•' form a subgroup of r elements in a multi-
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plicative subgroup of residues (mod P,) . Hence, these two subgroups must
coincide .

As a,X,m -)- • . -}- a„Xnm = 0, it fortiori, a,X1m + • . + a„X*m - 0
(mod P,) or, by the coinciding of the two subgroups, a,tar tl + •-+ a,,Qrt*= 0

(mod P,) for some n-tuple of integers (t,, • , t .) . Hence, p - NR(s,),R (P,)
divides NR(i,) .R(a,C,11 + . . ..F+ a.C,.*-) . But,

I NR(t,) .R(a1$rt1 ..}. . . + a.C,'-) C (I a, I + .

	

. + I a, I)0(r) •

Thus p <" (I a, I + + I a„ I) OW, which is a contradiction to our hypo-
thesis unless a,Zrt1 + • + a.C t* = 0 . This case, however, is impossible by
Lemma 1 .

	

,
Hence, we have shown that X 1X. . . . X„-0 (mod p). Hence, p divides

one of the variables, say X,. However, proceeding in the same way with the
truncated equation a,X,'" + a2X? + • • • -(- a,,X*_,- we will see that p will
divide each X,, i == 1, 2, • , n. This is a contradiction to (X,, X2, , X„)
- 1 . This proves Theorem 1 .

COROLLARY. If n = 3, a, - a2 - a, = 1, m square free, and a prime p
exists that satisfies (6), (7), (8) in Theorem III, 3tr, then (1) has no non-
trivial solution relatively prime to m .

Proof, Using the proof of Theorem III and Lemma 2, we immediately
infer that there exists no solution of X,m + X,m + X,me 0 (mod p) and
X,X.X, i~6 0 (mod p) . Hence, if there exists a rational solution X,11d + X2-
+ X,m - 0, then p I X,X.X, .

If q denotes any prime factor of 9n, and (X,X2X,, in) =1 we have, by
using Furtwangler's criterion on Fermat's Equation (cf. Landau [2]), that
for any p I X,X.X;,, pq-1- 1 (mod q2 ) . As p ~-m 1 (mod m), p-1 (mod q) .
Therefore, p =- 1 (mod q 2 ) . As m is square free, p = 1 . (mod m 2 ) ; therefore
p-1 ' m 2 .

By hypothesis, qs(r) < log p/log 3 . Thus r < (log p/log 3) 2. Now
1,42 ~ p - 1 = Mr < ( log p/log 3) 2m. Hence, m < (log p/log 3) 2 or p --1

(log p/log 3) 4 .
This last inequality is clearly contradictory and this completes the proof

of the corollary .

2 . To prove Theorems I and II, we shall derive a set of integers m
which satisfy Theorem III and such that almost all integers are divisible by
at least one element of our set.

Denote by A(n) the least prime diivsor of n .
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LEMMA . 3 . If -y denotes Ruler's constant,

Y, I-e-'YU(logloglogU)-"4-0(109U),
nij,(U)

where J,(U) denotes the rational, integers lying between U and 2U which
here all their prune factors > log log U .

LEMMA 4 . If d < 174, then

1 e-O(d, log log U)U(Iog log log U) -1 + O(log U)
, co(U)

where 0,(d, V)

	

d 11 (1--1/p), and J, (U) is the set of integers n between
pid
p<V

U and 2U, and it-1 (mod d) .

LEMMA 5 . For any constant c,, and U sufficiently large,

2

	

1 I>C 'U(log loglogu) - ',
log U<r<21Ogt7 J,(U,r)

where J, (U, r) denotes the set of primes p < e,U log U, p -1 (mod r), and
A( (p - 1)/r) > log log U . The constant c 2 depends only upon the choice
of c_ .

Lemmas 3, 4, and 5 are quite elementary in nature. The proofs of them
are very similar . We shall give here only a proof of Lemma 3 .

Proof of Lemma 3 . Let d be any square free number < log log U,- and
let f (d, U) denote the number of integers which lie between U and 2U and
which are divisible by d. Then f(d, U) = U/d + 0(1) . If p(d) denotes
the Moebius function

f 1- 1

	

E p, (d)
n e Jz(U)

	

U<n<2U d I (n,h)

where h = 11 p, as this last inner sum is 1 if n has no prime factors
PANg tog U

log log U, and zero otherwise. Hence,

1-2j-,(d)f(d,
.
U)

ncJ,(U)

	

dl h

	

U<n<2U

	

dl h,In

_Y-(I.(d)Uld+0(1))=Ullp(d)ld+O(-Ml)
C h

	

I p1h

	

elk

== ,III (1--I/P)A-O(h)==e-Ll(log loglogu) -l-Fo(log ?7)
Y h



proof of Lemma 4 is almost identical to the above . Lemma 5 is again the
same as above using the Siegel-Walficz theorem on primes in arithmetic
progressions .

Lemma 4 implies that to the primes < c3U log U there corresponds at
least c2U(log log log U) -1 numbers m < U, m = (p -1)/r, A(m) > log log U.
However, this correspondence is not necessarily unique, and possibly many
primes could correspond to the same m . With this in mind we prove

LEMMA 6 . Let H(U, g) denote the number of integers m, U < m < 2U,
A(m) > log log U, and such that there are exactly g distinct primes p,, P2, • -, Ps
where p ;- I (mod m), and p; < c1U log U .for j = 1, 2 . • , g . Then
H (U, g) = 0 (g -2U log log log U) .

Proof. The function g -2 in the above Lemma could easily be replaced by
a function of g which tends to zero far more rapidly as g increases, but this
improvement is not needed for this present paper .

To prove Lemma 6 we shall derive an upper bound on the number of
times that* (r,m + 1), (mr2 + 1), (mr 3 + 1) can simultaneously be primes
where A (m) > log log U, U - m< 2 U, 1 : r,, r2, r, < log U .

Now for the moment regard r,., r2j r3 as fixed and m varying as we
described. Then the problem is to derive an upper bound on the number of
elements

(9)

	

(m•r , ± 1) (mr2 + 1_) (mr,, --{- 1)

which have no prime factors { Uk. This corresponds to the slight generaliza-
tion to the twin prime problem where there the number we sieve is (m)(m + 2) .
In our problem we have a polynomial in m composed of 3 linear factors .
Utilizing the general method developed by Selberg (cf . [31, especially pp .
291-292), we can easily prove that there are less than

c4U(log loo, logU)-1(log U) 34(r,)kp(r,)0(r,)

element of (9) with r,, r2 5 r& fixed which have no prime factors < U', where
~a(r) = II (1 --- 1/p) .

sir
Hence, summing over r,, r,, r3 , we have that the number of elements of

log U
(9) is less than c 4 U(log log log U) -1 (log U) -R( S .(r) ) 3 . Now
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by using Merton's Theorem on prime numbers . This proves Lemma 3 . The
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11 (1 -- I/p)-'
r

(1 + j1p) (j--j1p'-)-1 < 1- 1 (1 + 1/p) H (1 -- 1/p 2 ) -1

72/6

	

+ c,,

	

1/d.
Wr

Hence

QU

	

I U

	

log U

	

QU

(r) < C5

	

n I I /d Y, I L C5 log Z.% /rd' < C" log U.
I=t

	

all-
r<Ng U

Hence, the number of elements' of (9) which have all their prime factors
< Ui is < C , [T (l og log log U) -_1 . However, if c is the binomial coefficient,

this number is equal to

	

cf111 (U . g) where g > ? . Therefore
0=3

c,qH (17, g) < c,,U (log log U)
g=3

Lemma 6 follows immediately from (10) .
Lemmas (4) and (5) showed that to the primes-Corresponded various

numbers m. Lemma 6 shows conversely that to each m there cannot corre-
spond too many primes . -

Therefore, if we define the set M(U) to be all integers m < U,
(m) > log log U, and m satisfies the conditions of Theorem III, then

2 1>c-,U(logloglogU) -1
NY(U)

3. In this section we shall establish that almost all rational integers
are divisible by an integer of the set .41 where M-= U M(U) .

o<U<-
Let D(M(U)) =D(U) denote the density of integers not divisible by

any integer of our set M(U) . Let U, be some large real number .

LEMMA 7 . There exists a constant 0 < c,, < I such that D(U 1) < c,,,.

Proof. As 1)(U,) denotes the density of integers not divisible by any
n?, e M (U, ) . I -1)(U,) denotes the density of integers which are divisible
by some m a M (U,) . Hence

1 - D (U l
m'-M(ul)

where S(m ) denotes the density of integers divisible by tit but by no other
integer of our set M(U,) except a divisor of m which might be contained in
M(U,) . Now., the density of integers t which have no prime factors between



log log U 1 and U,, is well known to be > -1 (log log log U 1 ) (log U,) -1 . Now
the set mt is divisible by m and no other element of our set M(U,) except
possibly a divisor- of m, as all numbers of M(U,) have all of their prime
divisors lying between log log U, and U,, and hence to divide mt implies,
by our definition of the integers t, that it would divide m. Therefore,

(13)

	

8(m) E:-= j (log log log U1) (log U' ) -IM -1 .

By (12), (13) and (11),

I-D(U,) %' 4,(logloglogU,)(log U l ) -' Y. 11?n > c,, > 0.
(U,)

Letting c1 - I cg, we have proved Lemma 7 .
If U 2 is another large constant, then by Lemma 7, D(U2) < c,, also .

If U2 > exp{exp{2U,} ), then the elements of M(U,) are relatively prime to
the elements of 31(U 2 ) . As all prime factors of Af (U 2 ) are greater than
log log U2 > 2U,, and all prime factors of the elements of 3(U 1 ) are less
than U1 .

As D(M(U)) denotes the density of integers not divisible by any element
in _41(U),
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D( U JI(Uj))'- 11 D(J1(Uj)) < C n ---> 0
5~1

	

j~j

as it -4 Co . Hence,
R

D (M) ~ lira D U 31(U,))
%-+ W

	

J=1

where D(M) denotes the density of integers not divisible by any element
of M .

Conversely (14) may be interpreted as saying that almost all integers
are divisible by some element of our set M. If an integer n is divisible by
an rn, m e 31, we see that the equation (1) has no non-trivial solution for in,
and hence, no non-trivial solution for n . This completes the proof of
Theorem I .

To prove Theorem II we would need to add to our conditions on M
that the (p -1)/m be relatively prime to 3, and that in be square free.
These additional assumptions could easily be incorporated in Section II, and
present no real difficulties .

To establish the generalization of Theorem T to an algebraic number

D(M (U0 U 1) (M(U0 ) ) = -D PJWO - -9(MWO ) < C."

Similarly, defining U $ =-exp(exp[2U2)} i
S that

K="eXP{eXP{2Q)}1 . . .
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field F we merely sum in Lemma 5 over the rational primes which are norms
of prime ideals in F. Theorem III can be bodily carried over by changing
the definition of a to (F R) log (I a l I + - - - + I a,, 1) where (F : R) denotes
the degree cf F over the rational number . The remainder of the proof is
almost identical.
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