THE INSOLUBILITY OF CLASSES OF DIOPHANTINE
EQUATIONS.*

" 8

By N. C. AxgexY and P, Envls,

Introduetion. Consider the non-trivial rational infeger soluliong in ﬂu"
variables X, X, - ¢ -, X, of the equation

(1} " g X m - -+u.1("."—{}_.
where m, a;, 8z, © - -, fly 8T8 hon-zero rationsl integers. and m > 0. By & mon-
trivial eolotion we mean one in which oot all Xy, =0, j=1,8,- - -, n. -

Let U/ be a large positive real number tending to infinity, and let
DU, 6.8y, - *, @) == D{U} be the number of m = {7 for which (1) has
& non-trivial rational solution. Puttiog & mild but necessary restriction on
the coefticients, something may be said about the order of maguitude of D(I).

Tasorem 1. If, for every selection of e;=00r =1, (j=1,2, - -, 0}

excepl (€5,- - -, 80) = (0,0, -+, 0}, we have e, + - - + Guty 55 0, then
DTy =o(U) as U — 0.

Theorem I could be interpreted as stating that equation (1) is “ almoest
always” unsolvable; or the density of m, for which (1) has & non-trivial
solution, is sero.

One very important case that the hypothesis of Theorem I excludes is
when g, == a, = a, = 1. However, our methods still yield 2 resnlt of some
interest in this ease.

Treorem II. The density of integers m, for which the equation
A" X4 X" =0 has o rational solution and for which (X, XX, m)
-1, 45 zaro.

The restriction (X, XX, m) =1 is sometimes referred to as the firsh
case in Fermat’s equation. 3

The result M(I7) — o(U) can be strengthened to M) = O(U(log U)<)
for some positive constant ¢. The proof of this stronger inequality reyuires
a good deal more effort and will not be presented in this paper.

The result of Theorem I can be generalized from the rational number
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field to any algebraic number field F. The restriction on a;, which are now
any nen-zero algebraic integers contained in F, is that aies 4 - © « 4 Guea i 0
where ¢; = () or any root of unity contained in F. The proof of this generalisa-
tion will not be given in complete detail, but will be briefly outlined at the
end of this paper.

In Section 1 we shall present some introductory Lemmas and in Section 2,
the proof of Theorems I and TT will be presented.

1. Nofatiens. U denotes a large posifive variable. ey, €5+ ¢ - denote
hsolute constante. p, g are rational primes. {, is & primitive g-th root of
unity.

Lemma 1. Let ay,- - - ay salisfy (2), g > 2 and 44 g. H (e, -, 6:)
& any one of the 3*— 1 n-tuples referred o in the siatemend of Theorem 1
and if by, c <L ha tre any non-pegative inlegers then

(8) Eﬂktﬂn"‘ ¥ 0.

Proof. Suppose first that g = p or 2p where p is an odd prime. Since
$ = £ 1, the assumption that (3) is false leads to a relation

1
S0,/ =0, where b— 3 ases, I S T, | 5
i=o Ee S

und §; is.a (possibly void) subset of the set of numbers {1,: - -, n]. The
sets 8, - + -, 85y are non-overlapping and their union is the set (1, -+, n}.
Thus, because of (2), there is 4n ¢ such that b =0 and, for every ' 554,
b =£ b,  On the other hand, , is a root of either 2 4 x#* 4 - - - 341
grao?l—agrt 4 - L (—1)7, both of which are irreducible polyromials
over the rationsl field B. It follows that dy=+ b =- - =% By, a
contradiction.

To complete the preof of the lemma, let g = pfip-. - -p% or
2p1%p% - - - p% where the p’s are distinet odd primeés and the d' are
positive integers. Assume by induction on d, 4+ : -+ d, that the lemma

holds for g" —g/p; (> 2). Bince §M = &y the assumption that (3) is false
leads to a relation

=1 .
X Bt — 0, where Bi= % tily, (j=0,- -, pp—1),
i-a 2 keSS,

the = being non-negative integers end the sets §,,- - -, &, having &

meaning similar to that in the first part of the proof.
By the inductive hypothesis there is an i such that f; 5= 0 and, for every
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' ki, By 5% B On the other hand, the irreducible equation satisfied by {,
in the field R(Z,) is sither 22 4+ - - - 24 1 = 0, (d; = 1), or 22— ;- =10,
(di =>1). Thus By==fi =" - »==fig,1, & contradiction.

Lemuma 2. If 3% g then, for any non-negalive infegers by, hs, hs,
(4) Lo 4 L+ =0

Proof. Assume there exist Ay, ke, % such that M - LM 4 L0
Divide through by I, yielding

(6) L+t 1=0,

for ¢ integers k;, k.. Taking the imaginary parts of both sides of (5) yield
that sin{2«k,/g} + «in(2=ks/g) = 0. This implies &, =—F, or k, 4 g/2
(mod g) where only the former is possible if 21 ¢.

Now taking the real part of (3) yields cos{2ak,/g) + cos{2aks/g) = —1
or, on substituting k.=—k, or k, + ¢/2 (mod g), yields that

2 gos{2wky/g) = — 1, or cos(2xk,/g) 4 cos{2x{k 4 2g/0)) =—1.

This last equation is tlearly impossible. The former cquation implies that
% | g, which is contrary to our hypothesia,

Taeorem ITL [ ay, 0. - - -, iy salisfly condition (2), then for a given
m there exists no non-trivial rational seluftons of (1) provided we can find
a yational prime p such that

(6) m divides p—1, mr=—p—1,
(7) ifr
(%) . oelr) <atlogp,

wheve @ ==log(| @ | + |az| 4 - -+ | ax|), and $(r) is a Euler ¢ funclion.

Proof. (ef. [4], I. 8. Vandiver). Assume there exists a p which
satisfies (3), (4) and (5), and that (1) has a rational solution such that
X:X.r+ - X.pa0 (mod p). Without loss of generality, assume (X, X500 -,
X} =1. Then consider (1) in the field R({/).

As p=1 (mod r), the ideal factorization of p is (p) =P,Py- - - P, in
R(L:), where s==¢(r), and Ng(,.2(F:) = p. Henee, the group of m-th
power residues of the multiplicative cyclic group of residues (mod P,) has
(p—1)/m = r clements. One sces that the clementa &/, § =0,1,-- -, r—1
are incongruent (mod P,). 8o {/ form a subgroup of v elementa in a multi-
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plicative eubgroup of residues (mod P;). Hence, these two subgroups must
eoineide.

As 3 X 4o o o agXo® =0, & fortiorl, 6, X 4 - - 4 e XM=
(mod P,) or, by the coinciding of the two subgroups, a5 + - - - 4 auf"* =0
{imod P;) for some n-tuple of integers (£, -, %a). Henee, p = Npg,).0(P1)

divides Ve, (@b 4+ © 4 Gale™*). But,

| Nag,s.oll 4+ o anle®) = (Jua | 40 ¢ - 4| o ]) 00

Thus p = (|aw| +- - -+ | aa )", which is a contradiction to our hypo-
thesis inless m,ff 4+ + * 4 Gule' = 0. This case, however, is impossible by
Lemma 1. o

Henee, we have shown that X' ¥, - - - X, =0 (mod p). Hence, p dividea
one of the variables, say X,. However, proceeding in the same way with the
truncated equation &, X,™ 4 0. Xy™ b ¢+ - o @p X e ™ we will see that p will
divide each X, i = 1.2," + -, n. This is & contradiction to (X,, X, -, X.)
= 1. This proves Theorem 1.’

COROLLARY, Jf n=23, Gy = ay == 0y = 1, m square frec, and a prime p
exists that satisfies (8), (7), (B) in Theorem III, 31 r, then (1) has no non-
trivial solution relalively prime fo m.

Proof. TUsing the proof of Theorem 11T snd Lemma 2, we immediately
infer that there exists mo solution of X,™ 4 X,™ 4+ X,;»=10 (mod p) and
X, X.X;==0 (mod p). Hence, if there exists a rational solution X, 4 X ,™
+ X =0, then p | X, X.X,.

If g denotes any prime factor of m, and (X, X,X, m) w=1 we have, by
using Furtwangler’s criterion on Fermat’s Equation (cf. Landau [2]), that
for any p | Xo X Xe pti=1 (mod ¢°). As p==1 (modm), p=1 (mod g).
Therefore, pe==1 (mod g*). As m ie square free, p=1 (mod m*) ; therefore
P—1=ms

By hypothesis, ¢(r) <logp/log3. Thus r< (logp/log3)’. Now
m=p—1=mr< (log p/log 8)°m. Hence, m < (log p/Tog 3)® or p—1
< (log p/log 3)°.

This last inequality is clearly contradictory and this completes the proof
of the corollary,

2. To prove Theorems I gnd II, we shall derive a set of integers m
. which satisfy Theorem III and such that almost all integers are divisible by
at least one element of our set.

Denote by A{n) the least prime diivsor of n.
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Lesmma 3. [If v denotes Euler's constant,

sl = U Gog loglog )™ 4 0(leg 1),

whore J (IT) demotes the rational $nlegers lying belween U and 2O which
have all their prime factors > log log U. j
Lasmsa 4 If d < U%, then

Ev:] = &% (d, log log U') U/ (log log log '} * +- O(log U)
LR

where ¢(d, V) =d JI (1 —1/p), and Jo(U7) 15 the set of inlegers n belween
pid
s
Fand 207, and n=1 (mod d).
Lemua & For any constant ¢, and T suffictently large,

3 1> el (log log log T) %,

lng Uratlog U Jafifrd
where Jo(T7, ) denoles the set of primes p < ;U log U, p=1 {mod r), and
A {p—1)/r) >Toglog 7. The constant c. depends only upon the choice

of .61,

Lemmas &, 4, and 5 ave quite clementary in nature. The proofe of them
are very similar. We shall give here only a proof of Lemma 3.

Proof of Lemma 3. Let d be any square free number < log log U/, and
let {(d, I7) denote the number of ini:egm‘a which lie betwean I7 and 217 and
which are divisible by d, Then f(d, IF) = /d + O(1). 1f u{d) denotes
the Moebius function

Z lem F 2T p(d)
nel(T) | Dwe2l df(mi)

whera h = TJ p_.,nsthml.a&tmnnaumml if n has no prime factors
p=loglog U
= log log U7, and zero otherwise. Hence,

S 1=3u@) 3 1=Sa(@f(d0)
medy B dih I'.-i:’_,;n‘.'EEU ]

“"’E‘,.{FM}H‘M-{‘GU”_Uﬂﬁfd}fd+ﬂ{.‘%1j g

mad Ir[n“ —1/p) + O(h) = e U (log log log U)* + 0 (log U)
¥
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by using Marton's Theorem on prime numbers. This proves Lemma 3. The
proof of Lemma 4 is almost identical to the above. Lemma 5 is again the
sime a8 above using the Biegel-Walfics theorem on primes in arithmetic
progressions. .

Lemma 4 implice that to the primes < 7 log I7 there corresponds at
least ¢.0/(log log log ) numbers m < U, m = (p — 1)/r, Afm) > log log [T,
However, this correspondence iz not necessarily unique, and possibly many
primes could correspond to the same m. With this in mind we prove

Lemma 6. Lel H(U, g) denote the number of infegers m, 7 < m < 207,
Alm) > log logU, and such that there are exactly g distinet primes p., pa,- - -5 Py
where pye=1 (modm), and p <<, Ulogll for j=1,2:--.g. Then
H({lU, g) = 0({g*l log loglog U7).

Progf. The function g-* in the above Lemma could easily be replaced by
a function of g which tends fo zero far more rapidly as g increases, but this
improvement is not needed for this present paper.
| Te prove Lemma § we ghall derive an upper bound on the nuwmber of
timea that*(r;m 1 1), (mr; 41}, (mry 4 1) ean simultaneously be primes
where A(m) S>loglog N, T=m=2T, 1=r,r = log U7,
Now for the moment regard ry, a7, 83 fixed and m varying asz we
deseribed. Then the problem is to derive an upper bound on’ the number of
elements :

(9) {mry 4+ 1) (mry + 1) (mr; 4 1)

which have no prime factors == [7%, This eorresponds o the slight generaliza-
tion to the twin prime problem where there the number we sieve is (m)(m 4 2).
In vur problem we have a polynominl in w composed of 3 linear factors.
Utilizsing the general method developed by Selberg (ef. [3], especially pp.
£91-202 ), we can easily prove that there are less than

colU (log log log U} *(log U7) ¢ (7:) ¢ (ra) (7a)

element of (9) with ry, v, rs fized which have no prime factors < U, where
Yalr) = H (1—1/p).
Hence, summing over ry, ra, 5, we have that the number of elements of

(9) is less than o,U (log log log 1/ )*(log rra-ﬂfh:?,"mr}}-. Now
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w(r) =-=!,Iri1 —1/p)"
— 1:!'1 (1+1/p) (1—1/p")* < III {14 1/p) 11 0 —2/p")"
id pir "

=70 I}[ (14 1/p) =0 2144,
Bir dir

Hence

=i rt‘:_"ill r 5

|
log ©© [ 5 loge £F i)
i#{l‘]{c:‘g‘. IEEM-=='=.E1M > l‘.‘—F.E:kluez!'UfF{ﬂuhsﬁ- ‘
r=l ol F al=i =1

|

Henee. the number of ¢lements’ of (9) which have all their prime {actors
< U8 iz < 007 (log lo log I7) . However, if ¢, ia the hinomial coeflicient,

this number is cqnal to i{er (U, g) where g == 2. Therefore
=1

(10) *iﬂn’H{U.y} < el (log log T1Y 2,
=1 c

Lemma 6 follows immediately from (10).

Lemmas (4) and (5) showed that to the primes-corresponded various
numbers . Lemma 6 shows conversely that to each m theve cannot corre-
gpond too many primes.

Therefore, if we define the set M(IT) o be all integers m < U,
Afm) > loglog U7, and m eatisfies the conditions of Tliearem TTI, then
(11) 2 b= .U (log log log ITY .

nie MLy

3. In this section we shall establish that aliaost all ratioual integers

are divisible by an integer of the set M where M = tt_,l M(T).
o g ]
Let DH{AM(T) ) = D(U) denote the densify of integers not divisible by

any infeger of vur set M(I'). Tet U, be some large real number.
Levwma 5. There cxists a constand 0. ¢ < 1 such that D{U,} < e

Proof. As D{U;) denotes the density of integers not divisible by any
me M(U,). 1 — D(U,) denotes the density of integers whieh are divisible
by some me M (U,). Hence

2 I —DU)) = 5 ’
) @2, Fp b
where 8(m ) denotes the density of integera divisible by m but by no other

integer of our set M(U7,) except a divisor of m which might be contained in
M), Now, the density of integers ¢ which have no prime factors between
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log log ¥/, and 7, is well known to be > }(logloglog U/,) (log /). Now
the set m? is divisible by m and no other element of onr set M(T/,) except
postibly & divisor of m, as all numbers of M (I/,) have all of their prime
divisors lying between loglog I/, and U,, and hence to divide mt implies,
by our definition of the integers f, that it would divide m. Therefore,
(13) 8(m) = ¥(log log log U,) (log U,) *m~".

By (12), (13) end (11),

1—D(Uy) = §(loglogleg U (g U1)* B 1/m > 6> 0,

Letting g5 = 1 —- ¢4, we have proved Lemma 7.

If U, in encther large constant, then by Lemma ¥, D(U7.) < c. also.
I Uy > exp{exp{2l7,}}, then the elementa of M(U;) ara relatively prime to
the elements of M(U.). Ae all prime factors of M(U,) are greater than
log log I7; == 207, and all prime factors of the elements of M(I,) are less
than I7,.

As D(M(U)) denotes the density of integers not divisible by any element
in M(U),

B{H{Uﬂ U D{H{Uﬂ” —D{H[ﬂ]]} 'D{H‘-Ez“ = 0y

Similarly, defining U, = exp{exp{2U.}}, U, = exp{exp{2l/;}},- - -,
gives that

D MUY =TI D (T)) < ar 0

#8 n—»o0. Henece,
(14) D{M}gnmﬂ{;__'jmm})-n,

where D(M) denotes the density of integers not divisible by any element
of M. & :

Conversely (14) may be interpreted as saying that almoest all integers
are divisible by some element of our set M. If an integer » is divisible by
un m, m ¢ M, we see that the equation (1) has no non-frivial selution for m,
and hence, no non-trivial solution for n. This completes the proof of
Theorsm 1.

To prove Theorem II we would need to add to our conditions on M
that the (p—1)/m be relatively prime to 3, and that m be sguare free.
These additionsl assumptions could easily be incorporated in Section IT, and
present no real difficulties.

To establish the generalization of Theorem 1 to an algehraic number
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field ¥ we merely sum in Lemma 5 over the rational primes which are norms
of prime ideals in F. Theorem IIT ean be bodily carried over by changing
the definition of & to (F: B) log(|a: |+ - -+ | a4 |) where (F: R} denotes
the degree of F over the rational number. The remainder of the proof is
almoet identical. '

TeE Jorrs HopKIxe UNIVERSITY
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