
SOME RESULTS ON ADDITIVE NUMBER THEORY'

PAUL ERDÖS

Let 0 <a 1 <a2< . . . be any infinite sequence of integers . Denote
by N(ai , n) the number of ai S n . I conjectured that to every sequence
ai there corresponds a sequence b ; of density 0 (i .e ., such that
lim n (1/n)N(b;, n)=0) so that every sufficiently large integer is of
the form a i +b;. Lorentz 2 in a recent paper proved this conjecture ;
in fact, he showed that there exists a sequence b1 with the required
property satisfying for every n

i
log N(ai, k)

(1)

	

N(bj, n) < c i
k=1

	

N(ai, k)

where c1 and later c2 , c3 ,

	

denote suitable absolute constants .
Lorentz communicated this result to me and also asked : If the se-

quence ai consists of the primes, what is the thinnest sequence (i .e .
N(bj, n) should be minimal) b 1 < b 2 < • . . for which p+b1 will repre-
sent every sufficiently large integer .'

From the fact that 7r(x) <c2x/log x it immediately follows that
N(bj, n) must be greater than c 3 log n . Lorentz's formula (1) gives
that there exists such a sequence b l < b2 < • • • so that N(bj, n)
<c 4(log n) . 3
After I received Lorentz's letter, I observed that a method which

I applied in a recent paper' applies here . Since my method is more
complicated than that of Lorentz and in general does not give better
results than (1), it is not worthwhile to work it out for general se-
quences, but in the case of the primes it gives better results than (1) .
In fact, we shall prove the following

THEOREM 1 . There exists a sequence {b1} satisfying N(bj, n)
< cb(Iog n) 2 for all n so that all sufficiently large integers are of the form
p+b;.

If the sequence ai has positive lower density (i .e . there exists an
a>0 so that for all large n, N(a i, n) >an) then (1) gives that there

Received by the editors March 16, 1954 .
' This paper is written with partial support from O .N .R .
2 This paper of Lorentz appears in Proc . Amer. Math . Sec . vol . 5 (1954) pp . 838-

841 .
a The paper in question will appear in Acta Univ . Szeged . I prove there the

existence of a sequence { ai } so that every large integer is of the form a,H-a1, but the
number of solutions of n=ai+a, is less than c log n .
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exists a sequence b; satisfying for all n the inequality (Nb;, n)
<cs(log n) 2 so that all sufficiently large integers are of the form
ai+b ; .

We shall prove that this result is best possible by proving

THEOREM 2 . There exists a sequence fa i l, so that for all large n,
N(ai , n) > an, and if { b2 } is such that all sufficiently large integers are
of the form ai+b ;, then for all n, N(b ;, n) >c7(log n) 2.

Buck and Volkman 4 call a sequence A = { ai } pseudorational if to
every c there exist two sequences S 1 and S 2 both of which are finite
unions of arithmetic progressions (such sequences are called by Volk-
man rational sequences) such that for large n

S1 C A C S 2 ,

	

N(S 2 - S1, n) < En

(i .e . the number of of integers contained in S 2 and not in S1 is < En) .
It was conjectured' that there exist two pseudorational sequences

{ ai } and { b ; } whose sum (that is, the set of all integers of the form
{ ai+b ; }) is not pseudorational . We are going to prove this conjec-
ture and also make some remarks about a few similar questions .
PROOF OF THEOREM 1. We first prove the following :

LEMMA. One can find x integers d 1 <d2 < . . . <dx satisfying x
= c 8 [log n]2, n 518/2 < d1 < d2 < . . . < d x <n518 , and so that every in-
teger n 518 <u<n is of the form p+di .

Put T=n 5 / 8/2 . The number of ways one can pick the d's clearly
equals CT , x . We shall show that for almost all (i .e . except for o(CT, x))
choices of the d's every integer n5 / 8 <u<n is of the form p+di.

First we estimate in how many ways one can pick

n 5 / 8/2 < d1 < d2 < . . . < dx < n 518 ,

	

x = c8 (log n) 2
so that u~p+di, where n 5 / 8 <u=<n is any given number .

Consider the interval (u-n518 , u-(1/2)n5/8) . By a theorem of
Hoheisel-Ingham6 the number of primes Q1 i q2, , • • , qy in this in-
terval satisfies y>c9n 518/log n . If u54p+di, then clearly none of the
integers

u - qi,

	

1<i=<y,
can be a d . Thus the number of possible choices of the d's so that
u5~4-di+p is not greater than

4 R. C. Buck, Amer. J . Math . vol . 68 (1946) pp. 560-580 ; see also E . F. Buck and
R. C. Buck, ibid . vol . 69, p . 413-420 .

5 Volkman, ibid .
6 Ingham, Quarterly Journal of Mathematics vol . 8 (1937) pp . 255-266 .
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y \ x

	

2c9 C 8 (log n)2

	

1
CT-v.x < CT, x 1 - 2, I < CT' . Cl to J

	

< n2 CT,xg
for sufficiently large c 8. Thus the number of possible choices of the
d's so that at least one of the u's, n518 < u _<n, should not be of the
form p+di is less than (1/n)CT,x=o(CT,x) .

Thus for at least one choice of n5 / 8/2<d1< • • • <dx =<= nn all inte-
gers sa 5 I 8 <u5<n are of the form p+di .
Now to complete our proof let n1 be sufficiently large . Put nk

= nk!51 and let

6/8

	

(k-1)

	

(k-1)

	

5/8

	

2
nk_ 1/2 < d1

	

< . . . < dxk_1 < nk-1,

	

xk-1 = c8 (log nk)

be such that every integer nx!81 <u <=nk is of the form p+d1k-1) . Such
a sequence dlk-1) exists by our lemma. Now if we form a sequence
b1 < b 2 < . . . of the d1k) , 1 <= j 5 xk, k =1, 2, • • • , then a simple com-
putation gives N(b5, x) <c5(log x)', and every integer greater than
ni/8 is of the form p+bi ; thus the proof of our theorem is complete .

It would be interesting to know if our result is best possible .
Lorentz also asked the question : Does there exist a sequence b5 satis-
fying N(b;, x) <c1ox 1 " 2 so that every large integer is of the form
k2 +b;? Using (1) or the method which I just developed one obtains
N(b;, x) <c11x 1 / 2 log x .

Let a 1 , a 2 , • • • , a x be x distinct residues mod n. Both Lorentz and
I proved that there always exist residues b 1r b 2 , • • • , b,, so that

n
(2)

	

y < c12 - 109 x
x

and every residue (mod n) can be written in the form ai+b5.
PROOF OF THEOREM 2 . Let 0 < t < 1 be any real number . Put

°°

	

El (t)
t =

	

1

	

e t (t) is 0 or 1 .
t=1

	

2 1

We define the sequence A as follows : A t consists of all integers l
satisfying et(t) = + 1, 8 11 <1 :_!S: 2 .8k, k =1, 2, • • • . Roughly we can de-
fine the sequences A t as follows : In the intervals (8k, 2 . 8k)
k=1, 2, • , we choose each integer with probability 1/2 to belong
to At .

We shall show that for almost all t, A t satisfies the conditions of
Theorem 2 . First of all it is easily seen by standard probability theo-
rems that for almost all t,

(3) lim inf N(A t , n)/n = 1/14
n-.
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(since asymptotically half the integers of the interval (8k, 2 . 8k) be-
long to A t ) . Thus for almost all t, A t has positive lower density .

Next we show that for almost all t, A t has the following property :
Let b1, b2, . . . be a sequence B such that the sum of A t and B con-
tains all sufficiently large integers ; then for all n > n o

(4)

	

N(B, n) > ca (log n) 2 .

(3) and (4) clearly imply Theorem 2 .
To prove (4) we shall show that for almost all t, A t has the prop-

erty that if the sum of A t and B contains all sufficiently large integers,
then

(5) N(B, 8 k+1) - N(B, 2 .8 k) >_ k

holds for all but a finite number of values of k .
(5) clearly implies (4), thus it will suffice to prove (5) . Because

of the Borel-Cantelli lemma it will suffice to show that for k > ko the
measure of the values of t for which (5) does not hold is less than 1/2k .

Every integer of the interval (4 .8k, 8k+ 1 ) must be of the form
ai+b;. Since all the a i less than 8k+ 1 are less than 2 . 8k, only the b's
in the interval (2 . 8k, 8k+ 1) give (ai+b;)'s in (4 . 8k, 8k+ 1) . Assume that
the number of these b's is less than k . The total number of possible
choices of the b's is thus less than Co . sk,k .

Let 2 . 8k < b 1 < b2 < . . . <b,<8'+' be an arbitrary set of r b's . We
shall estimate the measure of the set { t } so that the sum of A t and the
b's should contain all integers of the interval (4 . 8k, 8k+ 1 ) Let
u1, u2i . . . , ux be a maximal set of integers in the interval (4 .81;, 8k+1)
with the property that the integers

u8 -b ;,

	

1<s<_x ;1<j <_r,

are all distinct. The condition of maximality means that every
integer of the interval (4 .8k, 8k+ 1 ) is of the form

(6)

	

us + b11 - b72 , 1 <_ s < x; 1 < ii, j2 < r .

For if not then there is a number say ux+1 in the interval (4 .8k,
8k+1) which is' not of the form (6) . But then all the integers us -b;,
1 :5_:s< x+1 ; 1 <_j< r, are distinct, which contradicts the maximality
of u1, u2 , . . . , u x .

The number of integers of the form (6) equals xr2 <xk 2 , and since
every integer in (4 . 8k, 8k+1) is of the form (6) we have

(7)

	

x > 4 . 8k/k 2 .

Now since each of the u's must be of the form ai+b ;, at least one
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of the integers u8 =b;, 1 <j<r, must be an a and this must hold for
each 1 < s <_ x . The measure of the set in t so that at least one of the
integers u 3 -b; is an a is less than or equal to 1 -1/2T < 1-1/2k and
since for different values of s the sets u3 -b5, 1-<_j <r, are disjoint,
the x events : "u s -b;, 1 _<j<=r, contains at least one a", s=1, 2, . . . ,
x, are independent. Thus the measure in t of all these events happen-
ing simultaneously is less than (for k > k o )

(8)
i x

	

1 4'
gk

t k2

	

1 4k

C1-2k~ < ~1-27)

	

< C1-2k~ <
2k.

Since the number of choices for the b's is less than C6.sk,k<8
k(k+ 1)

we obtain from (8) that the measure of the set in t so that (5) should
hold is less than

e2k8k(k+1) < 1/2 k

for k > ko, which proves Theorem 2 .
By the same method we can prove that under the assumption

N(ai, n) >n1-E, e small enough, (1) gives the best possible result
under fairly general conditions . Similarly, if x>n1-E, (2) gives the
best possible results. We do not formulate these results precisely
since they are somewhat complicated and no doubt very far from
being best possible . (2) in fact may be best possible for every x .

One might be tempted to define the sequence A t as follows : Let
t= ~ 1 et(t)/2 1 , l belongs to A t if and only if et(t)=+1 . Unfor-
tunately (4) fails to be true here . In fact, it is not difficult to show
that if the sequence B consists of the integers 2k, 2k + 1, k = 1, 2, . . • ,
then for almost all t all large integers are of the form a+b, aC-At,
b EB .

It is immediate that the Schnirelmann sum of two rational se-
quences is again rational . Next we show that the Schnirelmann sum
of two pseudorational sequences does not have to be pseudorational .

It is obvious that the squares form a pseudorational set of density
0. (This follows immediately from the fact that there are (p-1)/2
non-residues mod p.) If the integers of the form x2+y2 are not pseudo-
rational we already have an example of a pseudorational set S so
that S+S is not pseudorational . Thus we can assume that the set of
integers S1 of the form x2+y2 is pseudorational . As a matter of fact,
Ruchte proved this . His proof follows easily from the well-known
characterization of the integers which are of the form x 2+y2 and can
be left to the reader. Also it is well known that the density of S 1 is 0
and that every integer is of the form S1+S1 (i .e. every integer is the
sum of 4 squares) . Now to complete our proof we show that if A is
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any pseudorational set of density 0 so that all integers are of the
form A +A, then there exists a subset B of A so that B +B has upper
density 1 and lower density 0, thus B +B can not be pseudorational .
(B is pseudorational since it is a subset of a pseudorational set of
density 0 .)

We construct B as follows : Let n1 <n2 < • • • <nk < • • • tend to
infinity so fast that

(9)

	

nk+l/nk -* co and Ilk • N(A, nk+1)/nk+l - * 0.

Since the density of A is 0, (9) can be satisfied . The sequence B now
consists of the integers of the sequence A in the intervals (n2k_1 i n 2 k) .
Clearly N(B +B, n2k_1) < 2nk (since if b is in B and b < n2k+1 , then
b <_n2k) . Thus from (9)

(10)

	

lim N(B + B, n2k-+)/n2k+i = 0 .

Further since all integers are of the form A +A

(11)

	

N(B + B, n2k) >_ n2k - N(B, n2k_1) • N(B, n2k)

(i .e. we have to omit the integers of the form ad-a5, a tiEA, a;EA,
where one of the summands is <--_ n 2 k_1 , thus does not have to belong
to B) . Thus from (11) and (9)

(12)

	

N(B + B, n2k) > n2k - n2k-i •N(B, n2k) = n2k - 0(n2k) .

(10) and (12) show that the lower density of B+B. is 0 and its upper
density is 1, thus the construction of our counter example is com-
pleted .

Define B as the sequence of integers in (222k 2 22k+1
) k=1, 2,

which are of the form x2+y2. A simple computation will show that
B+B is not pseudorational, in fact has upper density 1 and lower
density 0. We leave the simple proof to the reader .

Now we state a characterization of those sequences S of density 0
for which there exists a pseudorational set B so that S+B is not
pseudorational. First of all it easily follows from (1) that if S is any
sequence of density 0 there exists a sequence B of density 0 so that
S+B has lower density 0 and upper density 1 . In general of course
B will not be pseudorational .

Denote by

(13)
(k)

	

(k)

	

(k)
U1 , U2 ,

	

' Usk 9 k=2,3, . . .,

those residues (mod k!) which contain at least one element of S. It is
easy to see that S is pseudorational if and only if



I

If the sequence S is such that the system (13) belonging to it con-
tains a branching system, then there always exists a pseudorational
sequence B of density 0 so that the Schnirelmann sum S+B has
upper density 1 and lower density 0 .

The proof uses (2), is somewhat lengthy but straightforward, and
will be omitted . Incidentally it is easy to' see that if S is not pseudo-
rational, the system (13) always contains a branching subsystem .

If S is such that the system (13) does not contain a branching
subsystem, then S is easily seen to be pseudorational and if B is any
pseudorational sequence, then S+B is also pseudorational. We omit
the proof, which is not difficult .

To give examples : for the pseudorational sequence 2k, k = 1, 2,
the system (13) contains a branching subsystem ; for k! it does not .

One final remark . The rational sequences S have the property that
if B is any sequence, then S+B has a density (in fact, is again
rational) . As remarked before, to every sequence S of density 0 there
exists a sequence B so that S+B has no density. One can ask : Are
there any nonrational sequences S so that, for any B, S+B has a
density.' A simple probability argument shows that almost all se-
quences have this property. To every sequence a1, a2, • • • corre-
sponds the real number Ek I 1/2 ak = t and our statement means that
for almost all t the corresponding sequence has the required property .
In fact, if B has infinitely many elements, the density of S+B is 1 ;
if B has k elements, the density of S+B is 1-1/2k+I

After finishing this paper I noticed that it is indeed easy to show
that there exists a sequence bI <b2< • . . satisfying N(b;, x) <c10x' 12

so that every large integer is of the form 1 2 -Fb ; . It suffices to take as
the b's the integers of the intervals

2k < b < 2k + 4 .2

	

k = 1, 2 , . . . .

E
An analogous example shows that there is a sequence b I < b 2 <
satisfying N(b;, x) <ckxl-"k so that every sufficiently large integer is
of the form lk+b;. The following question seems more difficult : Does
there exist a sequence b I <b2 < • . . satisfying N(b;, x) <clox/log x so

that every sufficiently large integer is of the form 2 1 +b1?

UNIVERSITY OF NOTRE DAME
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lim Sk/k! = 0 .
t= W

The system of residues (13) is said to contain a branching subsys-
tem if there exists an infinite sequence kI < k 2< • •

	

• <k,< •

	

• • of
integers and 2'' residues u,krl (mod k,.!), 1=<i<=2'',
that each u,kr) is congruent to two u(kr+1) (mod kr !) .

r=1, 2 , so
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