
SOME REMARKS ON SET THEORY III 

by 
Paul Erd8s 

This paper continues the treatment of some problems which were 

discussed in two unnumbered earlier communications [l], [Z] of the same 

title. 

1. ON A PROBLEM OF TURAN. Suppose that with every real num- 
ber x there is associated a set S(x) of real numbers, called the picture 
of x, and subject to the restriction that x is not contained in S(x). A pair 
of points x and y is then called independent provided neither point is con- 
tained in the picture of the other; a set E is called independent if each 
pair of points in E is independent. 

In an oral communication, P. Tur& asked whether the hypothesis 

that each of the pictures S(x) is finite implies the existence of an infinite 

independent set. Gr&wald [5] showed that the answer is in the affirmative. 
LQzar [7] proved that there exists an independent set of power c. Fodor 
[3], [a] pointed out that L&r’s proof gives a stronger result: if no point --- 
x is a limit point of its picture S(x), there exists an independent set E ------- --- 
with z = c (throughout this paper, 

berof E). 

the symbol I? denotes the cardinalnum- 

The remainder of this section deals with other hypotheses on the 

pictures S(x), and with the question whether or not these hypotheses imply 

the existence of independent sets of certain cardinalities. 

THEOREM 1. The hypothesis S? C c does not imply the existence -- 
of an independent pair. -- 

Let f2, be the least ordinal of power c. We arrange the real num- 
bers in a transfinite sequence 

1x0> X1’ .. I xc, . ..!(c< fi,) * 

andfor x=x we define a 

S(x) = {xp I B< al. 

The example proves the theorem. 
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THEOREM 2. The hypothesis that each picture S(x) is not every- --- w-e 
where dense does not implv the existence of an independent pair. - --- -- 

To prove this proposition, it is sufficient to consider the casewhere 

S(O) is empty, while for x # 0 the picture S(x) consists of the openin- 
terval (-(xl, lx]) together with the point -x. The same example proves 
the following result: 

THEOREM 3. The hypothesis that each picture S(x) is not every- --- -- 
where dense and has finite measure does not imply the existence ofan in- ----- -- --- 

dependent & 

I conjecture that if S(x) is not everywhere dense and the measureof 
S(x) is bounded, there exists an independent pair, probably even an infinite 
independent set. Also, that if S(x) is not everywhere dense and has meas- 
ure less than l/2, there exists an independent pair of points in the interval 

[O, I]. 

THEOREM 4. If, for each x, -- S(x) C c and S(x) isnot everywhere -- 
dense, there exists an independent=, but not necessarily an independ- -- - 
ent triplet. 

To prove the first part of the theorem, let M be any countable, 
dense set, and let M’ be the union of the pictures of the points in M. By 

the theorem of J. Kkig (see, for example, p. 6 of [S]), M=‘< c, since M’ 
is the union of countably many sets of power less than c. Let z be any 
point in the complement of M’. Because the picture S(z) is not every- 
where dense, its complement contains a point x in M, and the points x 
and z constitute an independent pair. 

The following example shows that the hypothesis of the theoremdoes 
not imply the existence of an independent triplet. Let the set of real num- 
bers be well-ordered according to type cl,, and for each x. let S(x) be 
the set bf numbers y which precede x in the well-ordering and which 
satisfy the following additional condition: 

if xc 1, then y 5 1, 

if -1 <xCl, then y 2 -1, 

if 1 (=x, then Iy] L 1 

Clearly, no independent triplet exists. 

Vie turn next to the hypothesis that no point is a two-sided limit point 
of its picture. That this hypothesis does not imply the existence of an in- 
dependent pair is seen from the example given in connection with Theorems 

2 and 3. 
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THEOREM 5. If no point is 5 two-sidedlimit point of its picture, and -- -- 
the power of S(x) is less than c for each x, then there exists an infinite - --- -- p-p-- 
independent set but not necessarily 2 non-denumerable independent s&. -’ -- 

In the proof, we can assume without loss of generality that there 

exist c points x such that x is not limit point of S(x) from the right. 
Moreover, by Kgnig’s theorem we can assume that there exists a positive 
constant p and a set I of c points x with the property that S(x) has no 
points in the interval (x, x + p); furthermore, the set I can be assumed 
to have diameter less than p. Let xl in I be a condensation point of I 

from the left. Since the power of S(x1) is less than c, there exists a 
point x2 in I which does not lie in S(x1) and which is a condensation 

point of I from the left. By mathematical induction, there exists a de- 

creasing sequence {Xi) in I such that each point xi lies in the comple- 
ment Of S(Xj) for j = 1,2, . . . , i - 1. Because of the properties of the 

set I, each point xi also lies in the complement of S(Xj) for j > 1. In 

other words, the set (xi) is independent. 

It remains to show that the hypothesis of the theorem does not imply 

the existence of an uncountable independent set. We well-order the real 

numbers and define S(x) to consist of all numbers less than x whichpre- 
cede x in the well-ordering. If the set (2 

aY 
) (al < z < . . . ) is indepen- 

dent, then z a 1 >za2> 1.. . Since every monotonic sequence of real 

numbers is at most denumerable, every independent set is at most denum- 

erable, under our definition of S(x). 

THEOREM 6. If the picture of every x -- & nowhere dense, there -- 
exists a denumerable independent set. -- 

On the one hand, I am unable to establish a stronger conclusion, even 
under the additional assumption that S(x) is denumerable and that 

on the other hand, I do not know of an example which shows that the theorem 

cannot be improved. 

Let S-l(x) denote the set of points in whose picture x occurs. Let 

M be any set of the second category. We will first prove the preliminary 

assertion that there exists a point x such that the set M - S-l(z) is also 
of the second category (here the symbol A-B denotes the set of points 
which belong to A but not to B). If the assertion is false, let izii be any 

set which is dense in M. Since each set M - S-l(Zi) is of the first cat- 

egory and 
W 

PI S-‘(Zi) II M - G [M - S-‘(Zi)] 3 
i=l i=l 
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the set n S-‘(Zi) is not empty, that is, it contains at least one point y. 

By construction, the picture S(y) contains each of the points zi. It follows 
that the picture S(y) cannot be nowhere dense, contrary to the hypothesis 

of the theorem. This proves our preliminary assertion. 

We now prove our theorem. Let Ml be any set of the second cat- 

egory, and xl a point in Ml such that Ml - S-1(x1) is also of the second 
category. Since S(x1) is nowhere dense, the set 

M2 = Ml - s(x1) - S-1(x1) 

is also of the second category. Moreover, each pair composed of x1 
and a point in M2 is independent. Let x2 be a point in M2 such that 

M2 - S-l(x2) is of the second category, and let 

M3 = M2 - S(x2) - s-1(x2) . 

Clearly, the construction can be continued indefinitely, and the set (Xij 

thus obtained is independent. 

2. ON DISSECTIONS OF THE REAL-NUMBER CONTINUUM. 
SierpiAski [8] constructed two disjoint sets A and B whose union is the 
set of all real numbers, and which have the additional property that every 
translation of A intersects B in a set of power less than c. The latter 

property can be described thus: for every real number z, the equation 
x - y = z has fewer than c solutions with x in A and y in B. 

THEOREM 7. There exist two sets Ai( i = 1,2) whose union is the -m- ---- 
set of all real numbers, and such that each of the sets Ai has theproper- v-- - -- p-e-- v- 
k that for every real z the equation -- -- 

Xty =Z(Xs y&Ai) 

has fewer than c solutions. 

To prove this theorem, let {a,) ( a< 0, ) be a Hamel basis [61. 
Let the number 

2= ,f yk a"k ( 61 < 62 C . . . dn ; yk rational; n = nz) 
k=l 

belong to Al if Yn > 0, to A2 if 7,<0. Then, if z=xtyand x and 
y belong to the same set Ai, no a a with a> a, can occur in the 
representation of either x or y, and therefore there exist fewer than c 
choices for x and y. This proves the theorem. It is easily seen that our 
sets Al and A2 also ha:le the Sierpmski property. 

In an oral communication, P. Lax proved that if 

i) Al U A2 is the set of all real numbers, 

ii) AT = AT = c , 
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iii) m is a cardinal less than c, 

then there exists a translation of A1 which intersects A2 in a set whose 
power is at least m (see [l], p. 646). A na o ously we canprove that under 1 g 
Lax’s conditions there exists a number z such that, for a suitable choice 

of i, the equation z = x t y has at least m solutions with x and y both 
in Ai. In fact, we shall prove a slightly stronger result: 

THEOREM 8. I_ 

i) AlU A2 is the set of all real numbers, ------ 

ii) Al = AT = c , 

iii) m is a cardinal less than c , -- -- 

iv) for every z the equation z = x + y has fewer than -- - 
m solutions with x and y both in Al , - - -- 

then for some z the equation z = x + y has c solutions with x and y --- - -- 
both in AZ. -- 

LEMMA. Let m < n be two infinite cardinal numbers, let ?= n, --- 

and let {S,j(l 5~ < Qn ) be a collection I?f n subsets of S, each of car- __ -- --- 

dinality less than M. Then there exists a subcollection -- ---- 

isa,) (1 Ik<nn) 

of n subsets whose union is &proper subset of S. 

To prove the lemma, we need to show that there exists a point x in 
S and a collection of n sets S a k ( 1 <_ k < n,) nom of which contains x. 

Suppose that such an x does not exist. Then to every x in S there cor- 
responds a set F(x) of ordinals a < n, 9 with Pm < n, and such that 

x belongs to S, whenever a does not belong to P(x). 

Two cases arise. If n is not the union of m or fewer smaller car- 
dinals, let {xr} (1 5 r < a,) be an arbitrary collection of elements of S. 
Since the union of the sets P(xr) has cardinality less than n, there exists 

an ordinal /!I (1 LB < 0, ) which is not contained in this union. But this 
implies that xr isin S P - for l<r< am, contrary to the hypothesis 

that ST < m. 

We proceed to the second case. If n is the union of m or fewer 

cardinals, let (nil (1 5 i C am) be an increasing sequence of cardi- 
nals whose limit is n. For each index i, let S(i) be composed of the 
points x for which the cardinality of P(x) does not exceed ni. Clearly, 
U Sti) = S; also, since m2 =m, there exists an i for which di) has 
power greater than m. Let S* be a subset of S(i), with cardinality m, 1f 
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x is in S*, then the power of P(x) is at most ni; because mani < n, 

there again exists an ordinal p (1 <, P < Qn ) such that P is not con- 

tained in P(x) for any x in S*. But this implies that S,JZST contrary 

to the hypothesis that Sp has power less than rn, The proof of the lemma 

is complete. 

Before we go on with the proof of the theorem, some digressions on 

the lemma are appropriate. The proof of the lemma really depended on the 

following fact: 

Let m C n, E = n, Sa C S for 1 <_ a < fin , and Fa < n for 

each a . Then there exists a cardinal p < n and a subcollection of m --- - -- - 

sets S - ak (Ilk< flm), each of power at most p. -- -- 

If we assume the generalized continuum hypothesis 2 
‘k = Nk+l , 

we can strengthen the lemma as follows: 

j& m C n be two infinite cardinal numbers; let g = n, --- and let - -- 

Is&i (1 L a c fin) b _e 2 collection of n subsets of S, each of power - - - -- 
less than m. -- Then there exists a subcollection {St] (1 5 k < ;~n) of n ---- - 

of these subsets such that the complement relative to S of their -- union --- - -- - 

has power n. 

We well -order the elements a, (1 5 a < an ) of S. With each S& 
we associate the element of at least index which is not contained in it and 

which does not correspond t0 any S 
b 

with p < a . There may be some 
points of S which are not associated with any set Sa ; but the set of these 
points has power at most m; we now suppose that these points are deleted 
from S. The remaining set S* clearly has the power n, since with each 
set SQ there is associated a point of S*; that is, with each x in S* there 

is associated an S “x , x not in S a x, S ax < m. A pair of points x 

and y of S* is independent provided x 4s a y and yh S a x. By a previous 

result of mine (see Theorem V, pp. 133-137 of [2] ), there exists an in- 
dependent set S** of power n. Let {S a k} (1 5 k < fin ) be the collection 

Of sets Se associated with points x in S**. The union of the comple- 
ments of the sets S a k contains S**; therefore it has power n, and the 
modified version of our lemma is extablished. 

We now return to the theorem. Suppose that for every realnumber t 
the equation t = x + y has fewer than m solutions (m < c) with x and y 
in Al. If the power of Al is less than c, then for every t the equation 
t = x + y clearly has c solutions with x and y in A2, and the theo- 
rem holds. We may therefore assume that the power of Al is c. 

Let Al(t) denote the set of real numbers x in Al for which either 
t - x orl-t - x is in Al. Clearly, Al(t) has power less than m, since 
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by assumption there exist fewer than m solutions of the equation t = x + y 

with x and y in Al. Since T can run through the set of all realnumbers, 

we thus obtain c sets Al(t) in Al. And since Al(t) has power less than 

m and Al has power c, our lemma implies the existence of a z in Al 

and a set IQ) (1 LB < !J cl of real numbers such that z is not in 

A(t p ) for 1cficn,. But this means that, for each p, tp - z and 

1 -t 
P 

- z are in A2. We conclude that the equation 

1-22=u+v 

has c solutions with 

u=tp -2 E A2, 

v = 1 - tfi - z iA . 

This proves the theorem. 
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