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§ 1. In this paper we shall be concerned with infinite series whose terms are
real numbers, Suppose that the series

“

(1) E s

n=1
is absolutely convergent and has the sum s. Then, as is well known, every rear-

o2
N ay, of (1) also converges and has the same sum s. If, however, (1)

_.
n=1

rangement,

converges, but not absolutely, then, according to Riemann’s classical rearrangement
theorem |3, p. 235, or 2, p. 318], for every real number s', there exists a rearrange-
ment of (1) whose sum is s’

Assume, now, that (1) is C)-summable [1, p. 7, or 2, p. 464], and that its (-
sum is g. Consider the set of all (';-summable rearrangements of (1); what is the
nature of the corresponding set of (',-sums? We are going to answer this question;
the answer turns out to be somewhat more complicated than Riemann’s rearrange-
ment theorem (and also more difficult to obtain). We shall show, namely, that, for
any C-summable series (1), the rearrangement set (cf. Definition 1 below) consists either
of « single number, or of all nwmbers of the form a+vpg (v="0, 1, +2, ...) jor some
particular real numbers =0 and «, or of all the real numbers. Moreover, given any
o, there exists o« C-summable series (1) whose rearrangement sel consists of the single
number o; and, given any [0 and o, there exists a C)-summable series (1) whose
rearvangement set consists of all numbers of the form atvf (v=0, £1, +2, ...).

We introduce
Definition 1. The set of numbers o such that the Ci-sum of some rearrangement

of (1) is 0. will be denoted by R and called the rearrangement set of (1).
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In case (1) converges, the answer to our question is immediate, because the
(';-sum of a series whose sum is s, is s [1, p. 100, or 2, p. 461]. Hence, if (1) con-
verges absolutely, every rearrangement of (1) has the Cj-sum s; if (1) converges
conditionally, then, for every real number ¢', there exists a rearrangement of (1) whose
(',-sum is ¢'. Since this case is seftled, we shall assume, from now on, that (1) is
not only ('j-summable, but is also divergent.

If lim @, =0, then the answer is again immediate: an examination of Riemann’s

MN=—o0
proof of his rearrangement theorem shows that, for every real number o', there
exists a rearrangement of (1) which actually converges to ¢, and hence has the (-
sum ¢’. An example of this case is theseries 1 -} -3+ +4 2L 4114 ..
where the nth group of consecutive terms with the same sign contains »n terms, each
of which is equal to (—1)" '/n; this series obviously diverges, and is easily seen to
have the €'|-sum }.

§ 2. Instead of assuming, as in the preceding case, that lim «,=0, let us sup-
N—po0

o0
pose merely that {a,} has a subsequence {a, | such thatlim a, =0and 3 |a,,|
L] ¥ kw0 k
diverges. We shall show that, given an arbitrary real number o', there exists a

o0

Sty ; :
rearrangement, > a,, of (1), whose C,-sum is o'

n=1

We shall employ the notation s, =ay +ay+ =+ +@n, 6y =(8;+ 8+ - +8,)/n
o

(n=1,2.3,...). and define s;, o), analogously for > ;. Our problem, then, is to
) n=1

oo
S ap, of (1), such that lim o, ="

n=1 ft—ron

Since (1) is divergent and C)-summable, the subseries of positive terms of (1)

show that there exists a rearrangement,

diverges, and the subseries of negative terms of (1) diverges. Furthermore, because

of our suppositions in the last paragraph but one, there is a divergent subseries of

-]
> a,, consisting exclusively either of non-negative or non-positive terms, and there
k=0 ) ’

is no loss of generality in assuming that the former is the case; this subseries, in
turn, contains a convergent infinite subseries. The sequence {a,} is thus seen to

contain infinite subsequences {b,}, {c.}, {d,} with the following properties:

(i) bp<0 (n=0,1,2, ...), and > b, diverges;
n=0

o0
(ii) e, =0 (p=0,1,2, ...), and > ¢, converges;

=0

(iii) d, >0 (n=0,1,2, ...), limd,=0, and > d, diverges.
0

N0 n=
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Now let &, >4 > >4 g >.->0, g >2|a,— ', and lim &, =0. We define

ko0

oo
a rearrangement, Ea;, of (1), by means of induction, as follows: Put m,=1,
1

n
! ’
am=ar=a,. Then s;=c1=a,;, so that |o;—0o'|<e, and |s;—o'|<e /2. Let k=1,

and suppose that the terms

(2) L HAE R (me=1)
have already been defined so as to constitute a finite subsequence of {a,} such that
(3) ]cr:,,k—c'|«:ek and |sp, — 0’| <é&/2

(these inequalities hold for k=1, according to the preceding sentence). There is a

1)

first term, call it ai* ", of {a,}, which has not been used in forming the sequence (2).

. A ) Exaa ; 5 3 il
It s:;;k-ﬁ-a‘f” V=o' + —,» then, according to (i), there exists a finite subsequence of

terms BV BT, L B Y of {b,} not already singled out of {a,} in the course of

this induction, such that

’ s 1y phesly | gk k+1y . Erk+1
Sm, + a0 pEFD L BESD L gD < g e
e ot sty v, Ek1 . . .
(if 8, +afF V<o’ 4 ~—. then simply ignore b{'", ... 8"V wherever they occur;

an analogous statement holds for d* 'V, ... d¥'" and ¢ ", ..., ¢} considered
below). If

ih } k- ¢ =
S A afFT N BEED L gD < gt

te| 7

then, according to (iii), there exists a finite subsequence of terms di* 'V, df**V, ..., qf+V
of {d,} not already singled out of {a,} in the course of this induction, such that
Y <gp00/2 (=1, 2, ..., ») and

’ F 1 L E . | . -+
[8m, +af PP e £ BEFD L dEFD s @D gt | < ZEELL

~ .)—
According to (ii), there exists a finite subsequence of terms ¢V, 0 ., B4 of
lex} not already singled out of {a,} in the course of this induction, the number, w:

E]

of these terms being as large as we please, such that

; A1) kA1) (etly o0 Bkl f : k4 c+
(4} 1 T O i +Cw J‘---I‘J o e ‘_{Smk‘!‘ﬂ-{l}"n @ btl b e o y;}'”"‘

2

A 4 D),
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If we put

k41 k1)

' o ¢ _ (k+1) )
App+1— 01 3oeees M b= Cy

:“:nk-w 1= 1a:nk wiz=0"", .,

ﬂ::rlk—i wcaei=bE Y, a:nk csair=drtY, ., ﬂ:nk+w cidvsr=dy ",
then it is evident, from (3), (4), and the definition of ¢, as the centroid of the
system of points s;, s;, ..., &n, that, by taking v large enough, we shall have
(5) |ot —o'| <ex (me=i=my+wt+u+rv+1)
On account of (4),

is' _g’lq:?kl_l.
mptwu iyl 9

As before, we can obtain a finite subsequence of unused terms L st R

of {e,}, with ¢ as large as we please, such that

4 . Eri1 '
: Y S 11,
(6) Cwil” T Tl =0 T 57 " Smpswstutvsl.

If we put
(k41

! _ ! RS o [
”’"k‘*""“""‘-2_(‘“’"'] y vy amk+w+ﬂ—l’+f—l_cﬁ.‘:l‘J my 1= ?Ilk-i—w—rl!.‘:‘l"l‘t_.l:

- . . . .y *’ - . .
(so that my < m; ) and bear in mind again the definition of ¢,, it is evident from

(5) and (6) that

(7) IO':—GW-ZE;L- (me Fwt+utv+1=i=me ),
and that, if ¢ is taken sufficiently large,

(8) (= [t

Moreover, on account of (6),

[, = |*M
s”’.’f%l U . 2
-] - =}
- - - . -~ ’ . - g
This completes the induction. The series > a, is obviously a rearrangement of > a,:
=1 n=1

and because of (5), (7), (8), and the fact that lim g =0, we have lim on=0', q.e.d.

i L

An example of this case, in which lim @, =0, can be obtained from the example
N

given at the end of § 1 by inserting the terms + 1 and —1 after each group of
negative terms:

I—}—4+l=l+3+d+§—b—d—p—351 =14y

the €j-sum of this series is evidently also §.
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§ 3. The next case to be considered is that in which (1), in addition to being
divergent and ()-summable to o, has the property that, if {a,,} is the subsequence

of non-zero terms of {a,}. then

(9) e |
kaowe Mg
and
(10) (J«z'é«:frs,,k| (k=0,1,2, ..,

for some fixed constant o independent of k.
We shall show that, under these conditions, given an arbitrary real number
¢ =@, there exists a rearrangement of (1) whose C-sum is ¢’. We may assume,

without loss of generality, that o¢<g¢’. For suppose that ¢’ <g, so that —g< —g".

The series i (—uy,), which also satisfies (9) and (10). has the ;-sum —¢ [l. p. 8,

=1

118

=; . ot o . .
or 2, p. 476], and if a rearrangement, say (—uy). of this series has the C)-sum

n

il
!

o
¢'. then the rearrangement la:, of (1) has the (';-sum ¢’. We shall also as-
1

n=

gume that

(11) 0<a —o<d.

o0
We shall obtain a rearrangement, > a,, of (1), whose C)-sum is ¢’, and which has
|

the property that, if {a;k} is the subsequence of non-zero terms of {a,|, then

lim #y /np=1 and &< |r.f:1ak| (k=0,1,2,...), so that the analogues of conditions (9) and

koo

(10) are satisfied by this rearrangement of (1). Consequently, the procedure for ob-
taining this rearrangement can be applied successively a finite number of times, if
necessary, so as to yield, finally, a rearrangement of (1) whose €';-sum is an arbitrary
' >a (6" not necessarily satisfying (11)). Thus (11). which at first appears to be a
serious restriction, entails no loss of generality either.

Since (1) is C;-summable, we have [1, p. 101, or 2, p. 484]

(12) Sy =0 (m)
and
(13) iUy =0 (m).

The fact that the C'|-sum of (1) is ¢ is equivalent to the assertion that

(14) lg:sk:-ra'—o(l).

Mg =1
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Suppose that #,, is a natural number (m=1, 2, 3, ...). Then (14) implies that

1 MMt ity ! -1[1 m 1 mty, l
Fo(ly=——— ¥ ._.=(1-1.-—"‘) — Y s
oto(l) m—+ty ¥a QF‘ : m) lmfﬁSh mym 13”
(o B 12 i
=1+ -—) ioeto(l)+ — > Spoiki,
(. m ! la ( ) 7?1.{-%1 kl

so that

t

m

D smik—=twotim-o(l)+t,-0(1)].

¥o1
If {m/t,} is a bounded sequence, or if m/t,—>oo sufficiently slowly, then m-o(1)+
+tn-o(l)=0(y), and hence

t m

{]5) zsmi-il;::‘md:_o(zm)'
k=1

An immediate consequence of (12) is that if {m/t,} is a bounded sequence, or if

mi/ty—> oo sufficiently slowly, then
(16) St =0 (tn).
Now let {a, | be the subsequence of positive terms of {a,}. Since (1) is (-

summable and divergent, {a, | is an infinite sequence. Furthermore, we bave

(17) Hig 2Py

m-sce P

For if (17) were false, there would be an infinite subsequence {p,,| of {p,} such

that, for some fixed constant ¢=0,

(18) Pmys1/ Py >1+6 (h=1, 2,3, ...).

[
For all sufficiently large values of 4, and for every natural number i= Iiépth

(where [x] denotes the greatest integer in x), let » (&, i) be the number of terms

] 5 - i / c ‘.
a; (?zprrih Tt Pmy, 1414, Py, 2413, oy [(] u _)) rp”"hil '5-1!-)

that are negative, and set

Ny= min v (h, ).

I—[: ym}e]
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Then relations (9) and (18) imply that

(19) lim Njp= + oo,

]

Bearing in mind (10) and (18), we see that

. e
R (U I (1= [57m)):

and hence

['{.;ﬂm!z]

20 o . e .
{ ) :'2] ( Gl o g[(l ; :73) l’mn] l) o [3 pmh] A h d.

It follows from (15), however, since {pmh;’[_—:p,,,h]} and {pmh_,f"[(l—kg)pmh]} are

bounded sequences, that

[."j » ]

5Py,

= «

> ""D,,,h i = I:_'th] U'i'ﬂ(pmh)

i-1 2
and
[; D"’n] 5
Z D ompd o™ |57, ] 70 .
s0 that

(5Pmal
< . i
= (S""‘J:"' ‘[(l':‘;)pmhl“l) 0 (Pmy,) -

This. in view of (19), contradicts (20). Therefore (17) must be true.
Because of (17), we can choose an infinite subsequence, {¢,}, of {p,}, such that,
as m—>oo, n.1/qu-—>1 as slowly as desired; let us do this in such a way that the

following conditions are satisfied:

(21) Semi1 T8qpszt 8, =(qmi1—qn) 0+ 0(gmi1—gn)

(this is (15) with ¢, replaced by ¢m 1 —¢n and m+k replaced by g, +k);
(22) Spms1 =0 (gms1—qm)

(this is (16) with ¢, replaced by ¢un.1—gn);

SU i v
. It I 1 integer
{33) lll]'l G . . 0 5 lf, for every m, v, 18 an int HE such that fm LU < Gm-1
m=roe Uy Q'm +1 !?m
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(this condition can be satisfied because, according to (12), as m—-co, s,,/m—~0 at a
certain fixed rate);
g 4
(24) i e, Gmer g
Moo Qm 1 Gmer — 4m
(this condition can be satisfied because, according to (13), a8 m—co. a,,/m—0 at a
certain fixed rate).

For every natural number m, consider the expression

a
(GJ_O’)‘F y 'Jm_—-lq
('—)"”) 'h‘-:,, = (q»:a 1 Qm) - $Lﬂ N J--
aam +1

and set [u,]=u,. Because of (24), (11), (10), and the definition of the sequence {"Fm}’
we have, for all sufficiently large values of m, say for m =m*, 1 < Uy < Gme1— Gm—1,

and hence

(26) l=wn <gmis—qum— L

It follows from (25), (24), and the definition of u,, that

(27) (m =~ 1) g, = (Gmer—qm) (6" —0) + 0 (¢m:1—gm).
Now. for every m =m"*, put

(_)*) fhy = iy (qm +1=k ;:Q!u 1 (H‘m i l)}~ ﬂum P11 m ""'-'fam.; 1?

Hf;:—zﬁ,lk- 1 (gm,‘l"{'ﬂfm _I)Eki:q;ml'i),

w2
’ - = LAY -
and let a; =a; for every natural number b =¢u.. Then > a; is obviously a rearrange-
k=1

ment of (1), and we are going to show that the C-sum of this rearrangement is ¢’.

According to (28), for every m =m",
s;m 1 4—.!¢;m O Lw;m 1 = Saps1 T8 prat 8, 1) 8a, g T (m+1) aq,, .,
29 =(gme1r—n) 00 (gm 1= gm)) T 0 (gmer— gm) + (gn 1 = gm) (6" = 06) + 0 (gmir—Gm))
=(gms1—gn) 0"+ 0 (gn1—qn);

the second equality is obtained by making use of (21) and (22), (23) with v, =

=@mi1— (U +1) (bearing in mind (26)), and (27).
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We shall now show that

(30) Ssp=nd ton),
k=1
which immediately implies that the C-sum of > ay is o’. If u is a sufficiently large

k=1
natural number, then there exists an m =m* such that

(31) G == Qi1

We have

n Tm n
. .y — ’
(32;! 2 8= Ry N Sk
k=1 k=1 k=gpm=1
Because of (29),
am Qe Tmw i1 Imeiz Tm
— .t - ¢ o b ~ ;o ¢
> sp= 2 s+ ( S skt D> sttt 2 sk)
k=1 =1 L P | k=gme g+l k=@ q+1

=0 (qn) + k=§;-:-1 (g — qr—1) 0"+ o(gx —ge 1))
(33) =0 (qm) + (qm — qms) - 0"+ 0 (@m — Q)
=m0 +0(qn)
=g ((Gm — )" g +o ['f.-.--:l]
=n-o' +o(n),
the third equality resulting from [2, p. 77. 4]. and the last equality being a con-

sequence of (31) and the fact that ¢, /¢m.1—>1 as m-—>cc. On account of (28), there

exists an integer r satisfving the relation

(34) 0=r=un+1,
such that
n
= 4 1 1
(35) 2 8p=(8q,s1+8grzt F 8 ) F ot rag, -
R=@pm+1

If we make use of (14), (31), and the fact that g,/q. 1—1 as m—-co, we see that
(36) Sqt1 T 8g, ot H 8 1 =0(n):
with the aid of (12), (34), (31), and (26), we obtain

(37) Sn r=0(n)l
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and (34), (31), and (27) yield

(38) rig, ,—o(n).

Combining (35), (36), (37), and (38), it follows that

(39) > sp=o(n).
Kegp+l
Relation (30) is now a consequence of (32), (33), and (39), and if we bear in mind
(28), it is evident, finally, that the assertion following (11) is true.
An example of this case is the familiar series 1 -1+1—1+ —---  whose (-

i Ak
sum is §.

§ 4. The case to be considered in this section, in contrast to those treated in
the foregoing sections, exhibits a departure from the Riemann rearrangement theorem,
We shall assume that (1) is divergent and C'|-summable. and satisfies the fol-

lowing condition:

)
For every (';-summable rearrangement, > a,, of (1). if {a}, »
(40) e

. - # = M-
is the sequence of non-zero terms of {a,}, then lim —~— >1.

ko R
We shall also suppose that
(41) the (f-sum of (1) is 0.

This entails no loss of generality. For if b is a real number, and the C';-sum of
iyt ty o tagtay - is o, then the Cl-sum of ap +ayt+ ot ap+b+ay g+
is ¢+h, and conversely [1, p. 102]. Hence, if the C;-sum of a, +ay+ -~ +a, +--- is
g, then a rearrangement of this series is '|-summable to ¢ if, and only if, a re-
arrangement of the series —ag-+a,+~ay,+ - +a,+ - is Cj-summable to ¢ o, and
the addition of a single new term to our original series (1) does not invalidate (40)
or the assumptions just preceding it.
We proceed to prove a series of lemmas,

o0
Lemma 1. Let > a, be a rearrangement of (1) and have the C-sum o, so that
=1

«€R (cf. Definition 1 in § 1), and let {(.r.’,,k} be the sequence of non-zero terms of {a,}.
Then there exists an infinite subsequence, {ny |, of {ny} such that

(42) lim s,

oo

= m_
¥y
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Proof: According to (40), there exists a constant ¢> 1 such that Eiln_{nk.lfnk):c.
220

Hence, there exists an infinite subsequence, {ﬂ"f;}' of {n,} such that }im (R;,j,-.l/’?h;:):c,
a0

so that we may write

(43) ﬂk,i'”:nfl'j{c—l_ef} (?l=1’2! 3: "‘)s
where
(44) lim Ej=0.

fee

It follows from the definition of the sequence {n:}, that a,=0 if ny <m<n. ;.
Using this fact as well as (43), we see that
l ’ ’ L4 ’ - + L4 s
E}Tl (sl+8=+“.+s“kf+8"k!*l+ ¥ B"kj-i—l)_-

r ’ ’
1 ‘91+"'+3"k, My —Ng,—1 LT
== (Sn,‘.jl e

(C T E‘,} ﬂkf ﬂk}._l

ﬂk,-l
Solving this equation for the 8;'&‘_, in parentheses in the preceding line, and making

oo
use of (43), (44), the fact that the C)-sum of > a, is &, and (12), the relation (42)
ne=1
is obtained.

Suppose that > by is an infinite series, and by, by, ..., bkp (fy<ky<--<kyp) is
k=1

a finite subsequence of the sequence {bij. Then we shall call by + by + -+ b, a

“p
subsum of Ebk.
K1

Definition 2. The number [} is initially accessible by JE:I by, provided that, for every
€>0 and every natural number n, there exists a subsum, by, +by + -+ +by , of Elbk
such that every by (k=n) is a term of this subsum, and |by, + by + - +b, — Bl <e.

Definition 3. The number B is terminally accessible by 2 be provided that, for
every £>0 and every natural number n, there exists a subsum, by, +by, + -+ +by , of
é,lbk such that no by (k=n) is a term of this subsum, and |by, + by, + - + b, — | <e.

Lemma 2. If a€R, then o is initially accessible by (1).

Prool: Let éla;‘ have the Cj-sum « and be a rearrangement of (1). According

to Lemma 1, there exists an infinite subsequence {s;} of the sequence {s.} of partial
sums of this rearrangement, such that lim s; =o. Now let £¢>0 and the natural

i
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number n be given. For all sufficiently large values of 1, ls:‘-i—o:] <e&. Moreover, since

=0
> ay is a rvearrangement of (1). every a, (k=n) is a term of the partial sum 8;1’
K1

provided that i is sufficiently large., The truth of Lemma 2 is now evident.

Lemma 3. If o is initially accessible by (1), then a€R.

Proof: We shall employ an argument which is similar to, but simpler than, the
one used in § 2. Let & be a positive number satisfying the relation &> |a, —a|.

We define a rearrangement, 3> a,, of (1), by means of induction, as follows: Put
n=1

!’ ’f !’ ’
my=1, am =a;=a,, so that s;=0;=a, and consequently |o}—o|<e and |s;—a|<e.

Let j=1, and suppose that the terms
(45) @1, G2y oev s O, (my=1)

have already been defined so as to constitute a finite subsequence of {a,} such that
&

(46) |0:,,J.—a|<:§ and s, —a| <

(note that these inequalities hold for j=1). Since, by hypothesis, « is initially ac-
cessible by (1), there exists a subsum, call it S;.;, of (1), such that, if »; is the
largest index possessed in (1) by any term of (45), then every a, (k=n;) is a term
of S;.1, and

(47) | Bs— &] £ =z

If there are any terms of S;.; which are not terms of (45), denote them by ai™v,
ad P, ..., al"P. On account of (40), infinitely many terms of (1) are equal to zero.
Let 2§V 299, ..., 2YY (w=1) be a finite subsequence of terms, all of them equal
to zero, of {a,}, not already singled out of the latter sequence in the course of this
induetion. It is evident from the meaning of oy, that, if w is chosen large enough,
and if we put

— i+1) G+1)

1 2 r =
g ): ee sy amj+w“zw » Omprws1=a1

4 _ D * —_
Amp+1 =21 "5 Omyi2 =723

(f+1)
?

’ - (f+1)
“m}+w1‘2"a'2 a

ey a:ﬂ;+?&'+0= v 3
then, because of (46),
' & T
(48) |O'¢-0t|€; (my =i =m;+w+v),

and, because of (47),
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€
j+1

(49) | 800 — | <

Referring again to the meaning of oy, it is clear from (48) and (49) that, if ¢ is

taken large enough, and if we put

! =1 5 — T+ ! e
""m_', wivtl T Fwsls (f-mj-‘.-u:-v-:-2_2w+2: ynny ("-ml-iw:-r.'-.-t_zw-l-ts

and set m;++w +v+t=m; , then, since w =1, we have m; ;>m;, and

(50) la:—m“i‘ E:; (my +wtv=i=m;),
(51) | o,

and |s, ,—«|<e/(j+1). This completes the induction. The series > «, thus de-
} n=1

fined is obviously a rearrangement of (1), and it follows from (46), (48), (50), and

(51) that lim o] = o, q.e.d.

Lemma 4. If aeR, then — o is terminally accessible by (1).

Proof: Let £>0 and the natural number »n be given. By hypothesis and Lemma 2,
o is initially accessible by (1). Hence, there is a subsum, S, of (1) such that every

a; (k=n) is a term of S, and

[-'-l"_)} |1q—-3{|'-i;'

According to (41) and Lemma 2, 0 is initially accessible by (1). Hence, there is a
subsum, 7T, of (1) such that every term of 8 is a term of 7, at least one term of

T is not a term of S, and

(53) 17| <.

Let U7 be the subsum of (1) consisting of those terms of 1" that are not terms of
S. Then

(54) U=T-8,
no «; (k=n) is a term of U, and (52). (53). and (54) imply that |U-+a|<e, which
means that —x is terminally accessible by (1), q.e.d.

Lemma 5. If x€R, then —2u is terminally accessible by (1).
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Proot: Let £>0 and the natural number n be given. According to Lemma 4,

there exists a subsum, S, of (1) such that no a. (A=n) is a term of 8, and
. : e
(55) |S+a|<;-

Let »' denote the largest index possessed in (1) by any term of S. Then there

exists a subsum, 7', of (1) such that no a; (k=n') is a term of 7, and
(56) 1T +a|< 5

Let U7 be the subsum of (1) consisting of the terms of § and the terms of 7. Then
(57) U=8+T,

no a, (k=n) is a term of U, and (55), (56), and (57) imply that lU -L:‘.’otiu..e, which
means that —2« is terminally accessible by (1), q.e.d.

Lemma 6. If o€ R, then — o is initially accessible by (1).

Proof: Let &> 0 and the natural number » be given, By hypothesis and Lemma 2,

there exists a subsum, S, of (1) such that every a; (k=n) is a term of S, and
€
(58) |S—ﬂ<§-

Let »' denote the largest index possessed in (1) by any term of S. By Lemma 5,

there exists a subsum, 7, of (1) such that no a; (k=»") is a term of 7', and
£
(59) |17 +2a|<5-

Let U he the subsum of (1) econsisting of the terms of § and the terms of 7. Then
(57) holds, every a; (k=n) is a term of U, and (58), (59), and (57) imply that
|+ «| <&, which means that —a is initially accessible by (1), q.e.d.

An immediate consequence of Lemma 6 and Lemma 3 is

Corollary 1. If a€R, then —a€R.

Lemma 7. If BeR and y€R, then f+yeR.

Proof: According to Corollary 1, —~feR, and hence, by Lemma 4, fi is termi-
nally accessible by (1). On account of Lemma 2, y is initially accessible by (1).
An argument analogous to that used in the proof of Lemma 6 now shows that fi+y

is initially accessible by (1), and then Lemma 3 implies that f§+y€eR, q.e.d.
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Corollary 2. If xeR, then maeR (m=0, =1, £2, ...

Lemma 8. The set R is closed.

Proof: Let I be the set of numbers that are initially accessible by (1). According
to Lemmas 2 and 3, R=1/. Suppose that A is a limit point of I; we have to show

that Ael. Let £-0 and the natural number n be given. Then there exists a number
wel such that

; % &
(60) le—4]<3-

There is a subsum, S, of (1) such that every a; (A=n) is a term of S, and

(61)

S—;f|<i-§'

From (60) and (61) it follows that |S— il*-‘;e, and consequently Zel, q.e.d.
It is evident now from Corollary 2 and Lemma 8, that there are only three

possibilities:
(A) R=10}
(B) R={ma}y_q o1, 22 .. for some a-=+0;
(C) R is the set of real numbers,

We shall show. by means of examples, that each of these possibilities can actually
be realized.

Example A, Let

92k g g — 02t
L ak U\: 1, 2, 3 )
@ 22k i p=9"" 11
0 if % is any other natural number.

Since lim a, + 0, (1) diverges.

LE -

Suppose that »=4. Then there is a k=1 such that 22365 "< 22k:]. We have

87— ’_l

lé o2k x ke
oh=— 2 = — k-2 =Fk-27F,

"o 92

[ 8]

and hence lim ¢, =0, so that (41) holds.

Tl

=
: . i
Let > a, be a Cj-summable rearrangement of (1). Then there exists an in-

n=1
finite subsequence, {n;}, of {n} such that

4 - 543808, Acta Mathematica. 92, Imprimé 1= 29 décembre 1954,
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’

(62) a;=0 (m<j=2n;i=1,2,3,..).
For if this is not so, then, for every sufficiently large n, there is at least one j
satisfying n<j=2n and a;+0; hence, for every sufficiently large k, there are at

- s gk . gkt ;i ;
least 2% values of j satisfying 2* <j=2% " and a;+0. There are precisely 2k -+ 2

141 and a,+0. Consequently, for every sufficiently

. . . . . gk k+1
large £, since 2%~ 2L +2. there is at least one my satisfying 2% <m, <2° and

values of n satisfying 1=

] Lak42 o g 4 i .
| @b, | =2% 7~ ¥ % which implies that

! k+2 g s
|a.mk 22 f-2

My 2

=22;"”—k-—2

I

gkl 2

so that lim |a,, |/m,= oo, contradicting the fact that > a, is C)-summable (cf. (13)).
koo n=1

An immediate consequence of (62) is that (40) holds,

Suppose that there are infinitely many values of i such that ‘9;’—-0 (throughout
the rest of this paragraph, let i represent only these values). Then, because of (62),
we have also s;=0 (n;<j=2n). Hence,
§1 4 85 4 -ee 8;'5 ) si+s.;+~-+s:lf—:[)

o = lim - = lim —— ——=1¢,

] Ty ] 2 Wi

so that ¢ =0.

Suppose, however, that s;i + 0 for every sufficiently large value of i. Then there

' - ' . . . .
is a largest value of &, call it k;, such that one of the terms a; (1 =j=mn) is cither
.)ﬁkl

: S < UL L
equal to 2° % or to —2% % but none of these terms is equal to —2% % 2% %

H

o0
. - T I . . -
respectively. Since > @, is a rearrangement of (1), lim k= cc. Now
n-1 i—soc
k al k ki-1 k-1 ki1
r ~— 3 L o offor g2 ok ga v k4 e ki+ D T A
|, |22 == 3 IV N (1) 2 ek gk ik (9% Y—ky+1),

Al
=1

which implies that lim |s, [|=co. Assume that o¢’'+0. Then, for every sufficiently
i—oe

large i,

(63) £

>2|d’|.

Because of (62), we have s =s:” (n=<j=2mn;1i=1, 2, 3, ...). Hence,

’ [ . ’ ’ ’ ’ ’
Sy Sy sy, LR 7T e o P o [T P
o' = lim —— — = lim =

l—sze {LH ] - T

. !
=30 +4§ lim s,,

i—oe
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and consequently
= ’ ’
lim s, =a’,
he 2
which contradicts (63). Therefore we must have ¢'=0.

Thus we see that R={0}.

Example B. Let

ok i3 "
g2k if =27
gk k = ; 21‘:
2251 if n=2""+1 (k=1,2,3 )
Uy =
! if n=2""+2
0 if » is any other natural number,

Then it is obvious that (1) diverges.
n<22"". We have

Suppose that » =4, Then there is a k=1 such that 2?‘k;

On =

it

L=

o2 -
o= 2

il

and an argument analogous to one employed in connection with Example A now
shows that lim ¢,=0, so that (41) holds.

=»o0

o0
Let ™ o, be o O summable rearrangement of (1), Then there exists an infinite
ne=1

subsequence, {n;}, of {n} such that

(64) either «—0 or a;—1 (n<j=16n;:i=1,2 3, ...)

The proof of this is analogous to the proof of the existence, for Example A, of the

sequence jny satisfying (62), and will therefore be omitted. A consequence of (64) is
" - P i 2= = . : T
((]5’} ""ui-'_'—:sﬂl-—li"i"' = 810 Ty (J' i J-s 2: 39 ---)-

Suppose that for every sufficiently large @ and for every k satisfying n, =k =8 n,,
there is at least one j satisfying k<j=2k and a;=1. Let ¢’ be the C,-sum of

s
~

’ IS I LT . ’ . .
tt,. Then there are two possibilities: either s, n =g’ — 1 for every sufficiently large
Ne=1 W s

i, or else there is an infinite set, I, of natural numbers such that sé,,i'jj a —1 for

every iel’. If the second alternative holds, then, in view of (65),

’ ’ A '
Snpi1 -+ Sp,ip Tt + 83 n

“ni(a’ —1)

for every iel’, and hence
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4 1 { ! d 1 &
; . 31*""'_"‘n.!+3ni+]"_"'+32ﬂj =3
a'= lim y <o —1,
Ipon 2??.;
iel”

which is absurd. If the first alternative holds, then, according to the first sentence
of this paragraph, 84 G g’ and sy n; > ¢’ +1 for every sufficiently large i, so that, in
view of (63), s5 g1t s gzt S1s ny = 8y (¢ +1), and hence
’ ’ A " !
'sl+ e 'I_'Sriﬂ{"'"qsnill_ s _'siﬁr!I .

A .
g = lim — oy
] lﬁﬂ.f

(]

which is also absurd. The initial supposition in this paragraph must therefore be
false. Consequently, there exists an infinite set, I', of natural numbers such that,

for every iel”, there is an my, satisfying n, =m; =8mn, for which

(66) a; =0 (mi<j=2my; i€l”’)

An immediate consequence of (66) is that (40) holds.
According to Lemma 1, there exists an infinite subsequence, {?r.;},_ of {n} such

that lim s, =¢’. Since s, is an integer for every n, ¢’ must also be an integer.

oo

This means that every number belonging to the rearrangement set of (1) is an
integer.

Conversely, if v is an integer, then veR. We have already seen that OeR.
Suppose, then, that v >0. Let an=1 (1=n=v») and an=tn_, (n=v+1, v +2, v +3, ...).
The series S a, thus defined is a rearrangement of (1), becaunse infinitely many terms

;
of (1) are equal to 1, and, according to the second sentence following (41), the (-
sum of this rearrangement is ». Similarly, if » <0, the series obtained from (1) by
simply deleting the terms «, (n=22k+ 2 k=1, 2, .., —v), is a rearrangement of (1),
and the (!j-sum of this rearrangement is .

Thus we see that R is the set of integers.

Example €. Let

922k 1 @i n it p=202%"
—gPt ek =22
1 it n=22""42
an=1 etk 2k if n—22"" B=1, 2 8 s
® i if n=2"" 11
V2 it n=2"" 12
0 if » is any other natural number.
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Then arguments analogous to ones employed in connection with Example B show
that (40) and (41) hold (and (1) is obviously divergent), and that the rearrangement
set. of (1) containg every number of the form g +» V2, where 1 and v are integers.
[t is well known that the get of all such numbers iz everywhere dense in the set
of real numbers, and from this fact and Lemma 8, it follows that R is the set of

real numbers,

§ 5. Let us return to our original question. Suppose that (1) is C-summable;
what is the nature of its rearrangement set R?

If (1) is convergent, the answer is given in § 1. Suppose that (1) is divergent.
If 0 is not a limit point of the sequence {a,}, then our question is answered in
§ 3. Assume that 0 is a limit point of {a,}. TIf, for every &>0, there is a non-zero
limit point of {a,} in the interval (—e¢, &), then, as is easily seen, this case can be
reduced to the one treated in § 2. If, however, there exists an £ =0 such that 0 is
the only limit point of {a,} in the interval (&, £), then the terms of (1) in this

interval form an infinite subsequence, {ﬂ-mk}', of {a,} such that lim U, = 0. Now there

L k-0
are two possibilities: either k_\_-"’ |(f,,“_{ diverges or it converges. If it diverges. we have
o

the case discussed in § 2. Suppose, however, that it converges, Let 1;1 ty, — 0. If
the (f-sum of (1) is g, then the €-sum of the series obtained from (1) by sectting
U, =0 (k=1,2,3, ...) exists and is equal to ¢ —a, and conversely. (This is very
easy to prove if one considers, in addition to the series already mentioned, the series
obtained from (1) by setting o, =0 (i +m: k=1, 2. 3, ...), and makes use of the fact
that C-summable series may be added and subtracted term by term.) Hence, there

is no loss of generality in assuming that ty, =0 (k=1,2 3, ...). This means that

: £ . ]
it we put o-— S and if {r.'nﬁ_} is the subsequence of non-zero terms of {r.',t}, then

|a,,}‘_].::- 6 (k=1,2,3,...). If limun, /n,=1, then we have the case considered in

li—no
§ 3. If, however, this limit is not equal to 1, the discussion in § 4 applies.

Thus it is evident that the assertion made in the second paragraph of § 1 is true.
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