Integral Functions with Gap Power Series
By P Erpos and A, J. MACINTYRE
(Received 271k March 1951, Read 4th May 1951.)

1. Let

f(=}=§a..z"~ (1)

be an integral funetion, A, being a strictly increasing sequence of non-
negative integers. We shall use the notations
M (r) = max | f(2) |, m(r) =min | f(2) |,
Il =r I Izl =r
pt (r) = max | a, | 7",
n=10158

deseribing M (r) as the maximum modulus, m(r) as the minimum
modulus and w(r) as the maximum term of f(z).

The prezent paper is a development of a remark by Polya (Math.
Zeit., 29 (1929), 549-640, last sentence of the paper) that if

o dog (A, g — )
l ¥ 1 "
2 loga, O F &
== mir) i )
Saun B WD) o W (8)
Our first result is
ToeEoruM 1.
If
r: |
= =, 4
= A'.ll--l_‘}'.u = l::}

then (3) holds,

Theorem 1 is clearly a sharpened form of l’c'rl_va.'s result, for from
(2) it evidently follows that for sufficiently large n

Ant+1— An> Atte= !+ for some positive e and 5.
Theorem 1 is best possible, as is ehown by our next result,

THEOREM 2,

if

i :H II#'N +1 __-"!'-u= o [4}
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then there exists an integral function of the form (1) such that

T 1 : m_l:r} ;
S wpEh B we st "
We generalise these theorems in two ways. First, relaxing the gap

hypothesis we have

THECREM 3,
If for a positive integer h
" 1
T o= 7
BT e (7)
then
— plr) 1
im B = (8)
row, AMELE) 2h—1
but if
= 1
T g
n=1 "ln+ T A-n = { }
for every h, then there exists an integral function of the form (1) such that
e B g B, (10)

ronm B() " ape MR

The conjecture that under condition (7) we could derive

lim %E?];u (11)

T 0

is disproved trivially by the example
LAl L]
:]"‘..z“a,’ (n?)! 4 ?2"3 Y {af 4 1)1,

(hur recond generalisation relaxes the gap condition of Theorem 1
in a different way, but imposes in addition a condition on the order
of the function. We have

THEOREM 4,
If as n tends lo infinity

5 L =o(log A, (12)

=0 H+_l = I;‘J.-
and the function f(z) is of finite order, or if
i il e = 0 (log A,), (13}

E=0 Apa1 — A

and f(z) is of zero order, then (2) holds.
This theorem cannot be materially strengthened since the example
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constructed for Theorem 2 will be of finite order if

#
Hm -—Iu--...- E s I S |
T ]'Dg "1:: k= "]"k Ty bt 1

and of zero order if
1 ] 1
li . & T = i,
ulﬂ. log A sl Aear— M
2, Proof of Theorem 1. 'To prove the theorem we need an element-
ary inequality. If e -+ € + €2 + ... i3 & convergent series of non-
negative numbers and if a sequence §, is defined by

1 i
By g Loemin L TRag 14
iﬂl::.f {.?_i"'l"l} v=4 ¢ { }
then
Ti=(148 B a-HZe. (15)
1] =2 1]
We have

-] o oo -

Zb, =004, e,

L] L]

where 4 , = (j, —i,-+ 1) ~** or zero, as v falls in i, = v = j, or not,
iy, ju being the values of 4, j for which the maximum in (14) is attained.

Binece i, = n = j, alsoit followsthatj, — i, = | v—n | . Consequently
FEaTT T
¢ - eet]e—=n]| +13*

=(+2En-t9Se,
0 0
We now assume (4) and sat
&= 1/(A 1 —Na). (18)
Defining §,as in (14), we have fa,. < w by (15). Let ¢, be a sequence
a

of positive numbers tending to infinity so slowly that
gy <w. (17)
)

Now let 4, = (2| =4, 4, n=0,1, 2, ..., be the sequence of
intervals in which a single term @,z% remains the maximum term.
k will depend on n and increases with n, hut we need not express this

o
dependence in our notation. From (17) we have TIT (1 4 2¢,8,)%< a0,
L

and hence there exist arbitrarily large values of n such that
Ay pafda>(1 + 2,802 (18}



InTEGRAL Fowerions witn Gar PowerR SERIEs 65

We understand by n such a value and by k the associated integer.
Since a; 2% is the maximum term for 4, = |z | =4, ,, we have

lo, | = | | dgte—N (v< k)
o | = | | dyiy —H W (v = k). (19)
Using these inequalities with r = | 2z | = (4, 4, )}, we have
| &, | % = | ap | Plild, /4 ) e -4
= | @ | rhe(l 4 20 8) % -k (v<k), (20)
| &, | v = | e | 7?6 (1 4 26p8;) =% — ) (v= k).
But by the definition of &, and the inequality of the harmonie and
arithmetic means,

1 1 1 3
el e — - = =r§
atg(‘]‘u-rl-ﬁ'u } A1.-+2-‘:"u+l+'“+4:'|J,-—-.l‘|1_1)':'k 1’}
(21)
1 E—uy (& —uit
%f@_aﬁ(h_ﬁﬁ=a;:x (b,
Consequently
{1 + 25&_ :r".l] =thp =h. g P -r_g.‘J.-_.-:ui {.” {k‘] t22}

From this and a similar inequality when v =k, it follows from (20)

thatssn— o (andso ks o, r—sw,c,—=mw)

k=1 o
e | +E|a, | r=o(]a|rk) (23)
] bl

From this follow first the second and then evidently the first state-
ment of (3},

m
3. Proof of Theorem 2. Now suppose that £ 1 /(A . ; —A,)
1]
diverges. We choose the coefficients a, by the following rules.
=1, @y =Gy 1 Ay =P8 =21y, (24)

where
= L) P
A"= r{In (1 +',|:;-TE‘IJ‘.1--_1)‘ 4‘1u= I-:- At=(1 +ﬁ) {25}

and e, is & & sequence of positive numbers tending to zero and such
that Zoe /[N, . — Ay diverges,
o
Evidently 4,— = and f(z) = Za,z'is an integral function,
u
Since
(TRRPEET 1 P G e

{2, TS
n+1

(26)
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the maximum term wu(r) is a,% for

Au5753n+1- {27}
Clearly )
M{r}e%.aﬂm}uﬂr*waﬂ,Irﬁw:. (28)

Now for 4, =r = 4, , we have

Gn 42 T4 ('A_"__'\}““H—“w = (;l, )1:1—1 ~ iy

ay n Ay

(29)

n+1

e e
) £y [ | i =
'_(1+}"1|+1_‘Aﬂ) R

and it follows that M (r) = (2 — &) u (v) for all sufficiently large r.

This proves the first inequality of (6). To establish the second
we argue as follows. With A, =r= 4, ; and z=re % 1" 0 we
have, for n sufficiently large,

|F() | S M (r) —ayrin—ty g Pr 1 (@7 — @y rPest)  (30)
=Mr) —2ay a1 = M(r) — (2 —e)p(r).
If wir)=4} M (r), it follows that m (r) = (3 + ) M (r).
If pwir) =3} M (r) we argue differently, We use the relations

fm(r)t = {Mrg {r}}g =t El —[J |f{re"*} [2df = £ :I“'3 i {31]
gy 1]
which lead to

{M(r))* = ‘Ea-fr” et E a, rv{fir) —a,r}
L L J

(32)
= (Mo (N + Da, (1) = 1/(r)
and
fm ()} = (Mo ()} = 11 ()} 2 {33)
4, Proof of Theorem 3.
Suppose now that
5 S PE . (34)

n=n Ay S Tt
where & is a positive integer greater than unity.
Defining 8, as in (14) with e, = (A, . ; — A,)~ ! and choosing ¢, = 0
so that ¢, —> +w and ¢, 5, < o, and again taking 4, = |z | < 4, .,
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to be the sequence of intervals in which a single term, say a; z' , is the
maximum term, we must have arbitrarily large values of n such that
A, oAy = (1 + 26, 8,)% that is condition (18). With such values of n
and associated k we &till have (19} and (20), but we can no longer
expect such a good result as (21) or its consequences (22) and (23).
Forr= (4,4, ;) and v “near” to k we can only say

R = B S (k—h<v=k+h) (35)
For values of v which are not " too near '’ k we can give an analogue
of (21) valid fork—ph<v =%k — (p— 1)}, w=2 & N

1 1 1 1
agc | R LT .
: Ai_p—sw—Ne—ip -1 il Au_p—Ap_gy it Ay — ﬂk—ﬂ:) (ph)i-

fp=1)% P
RN = N
o
G — )

Consequently

Iy

|:1 + 2!:;- 5;} -y — ‘-..] 5 g ey (k= “:'“i" Y
From this and the similar inequalities with v>k + b we have, as

n— w, the result
k—h

2 g, [t T e |tv=of | |r), (36)
1} X+ h

and consequently with (35) we deduce
lim M () (r) = (26— 1)
or |
Hm p () M (r) = 1/(2h — 1), .
which constitutes the first part of Theorem 3.
Now suppose that for some integer 4 > 1
‘% 1

=1 "im_ﬁ == Humm-

Then evidently one of the series

E I
n=0 Nukshsr — Mub ik

k=0,1,...,58—1) {37)

must diverge. There will be no loss of generality in supposing that the
series with £ = 0 diverges. We now, as in the proof of Theorem 2,
define the geries

.Ir*{g:lzzu“ a""‘ﬂ-, 'JI';=?'N.|’I IEE}
i
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with the properties that
(i) p*(r)=a,rts (i) a), a1 = (1 —a)
(39)
fordli=r = 47, n = n(e),

where " (r) is the maximum term of /" (z) and A, is defined from the
sequence A as A, iz defined from A, in (25). Let us now define

o0

Jlz)=Zd,=% by the conditions
1]

Ut = O s O =ty A~ ot 2 =20 (=1,2 cuis h—1).. (40)
Then evidently for 4 = r = 4 |, we shall have
B Pk = gy (P12 L Z @y T, (41)
and p (r) for the function f(z) will be a,, +*a, so that
Mr)=f{r)>h+1—&pulr) [ = r(e)]. (42)
We approximate m (r) by using
e () = (M (1))t = Za, e (43)
i
Clearly
IM(r= ;'.a?. ¥ 4 :E a, ' (M (r) —a, ™}
0 o
(44)
= (M () M (r))2— (A1 — &)™ HM (1))
from which i
mr)=M,)=h+1—¢~ M(r) (43)
follows.

This does not quite complete the proof of Theorem 3 since
(h+1—¢~tand (h -1 —¢)~ ¢, althongh arbitrarily small, are not
zero, However we should only have to choose )’ to be a subsequence
of A, such that the interval .JI.; =A== containg & number of A,
inereasing with A’ but that X (A |
seem necessary to enumerate the details.

0l

— & J=! diverges. It does not
w

6. FProof of Theorem 4.
Given an incressing sequence of integers A, let us first try. to
o
construct an integral funetion e, ™ with positive coefficients such

=
that ench term is in turn the maximum term and greatly exceeds in
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value the rest of the eeries. More precisely let =0 be a small
prescribed number and let us choose the ¢, in such a way that for a
certain increasing sequence A, of positive numbers the following
conditions hold for all . For x = 4y we require that

Exat m”’ 41 E'Eﬂ_lqr ﬂ-"lN

(48)
Cxm g E'W =1 = oy pn,
In this case we shall have, for n > N and ¢ = A4,
oy 2 Tind1 = e, atn (47)
and consequently, for & = A, < 4,
Gy 12+ 1 = Be e, (48)
Boforz=Ad,,p=0,
Cy o 2N +p = 8 gy 2ty
(49)
E x'n St g,
yea T—5
Similarly, for & = A4,
N1 5
B o g ———a iy {50)
o 1 —3
We must now consider whether our conditions are possible,
(46) requires that
O 1= ﬁl’.:_mra.‘i;'rv_' 1=hy
(61)
ﬂﬂr; 1 = 1"!- f
Oy =Boypr A 3"~

Eliminating ¢y and ¢y, ,, we see that
Agyqtdy==3"N R 1 = AN a KR 243 =4 (£ =1). (62)

This defines the sequence 4, if we take 4, = 1, and shows that it is
increasing. With ¢, = 1 the sequence ¢, is also defined, for the two

gonditions of (46) are now equivalent. The function I ¢, &', will be
1

an integral function if 4, tends to infinity, Bince

fg D g o3 )

oy S R SRR, 8 53
§ e e v o s |

this econdition requires the divergence of Z 1/(A, , , — A
i
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The property of domination by single terms expressed by (49)
and (50) will be carried over to the integral function f ty 2in if we
L1

can assert that
S

Tagzhfe, (6d)
1]
is an integral function. If we make the hypothesis that X a, #nis of
(3]

finite order then | &, | < A,~"%*» for sufficiently large n and some
poeitive a. To ensure that (54) does define an integral function we
shall require to prove that for arbitrary e = 0 and sufficiently large n.

g > Ay otn, (65)
This iz equivalent to log e, > —ed, log A,
and since
n=1
]'ﬂg Cg =R ]UE 8§ — I {'Pll'+1 N "-I‘I'} ][Ig A’F {55}
¥l
this will fellow from
log 4, = o (log A,) (57)
or
?‘I‘ 1 'E
o L (58)

o

Now if we assume that X a, 2*+/c_ is an integral function it will
o

follow that for sufficiently large values of z, say 2z = R, the maximum

term of this function will occur with » = N arbitrarily large. We
ghall have

| a, | Brafe, = | ay | BMxley.
| an | B _ o,
| oy | FAR== Gy

| | (RANPn _ €, (Ay)s

| ax [ (RAZ)ST ey (dy)hy’

Thus the dominance expressed by (49} and (50) of a single term for
Z r, 2%« holds also for the function X g, =* with | 2| = Rdy. Sinee &
may be chosen arbitrarily small Theorem 4 is proved for functions
of finite order. If Zu,z's is assumed to be of zero order we only

require that ¢, = A,~**« for some positive &, and this clearly followa
from {13).
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