ON A CONJECTURE OF HAMMERSLEY

P. Erpos*,

[Extracted from the Journal of the London Mathematical Society, Vol. 28, 1953.]

Denote by %, , the sum of the products of the first » natural numbers
taken s at a time, .e. the s-th elementary symmetric function of 1, 2, ..., n.
Hammersleyt conjectured that the value of s which maximises X, , for
a given n is unique. In the present note I shall prove this conjecture and
discuss some related problems.

We shall denote by f(n) the largest value of s for which X, , assumes its
maximum value. As Hammersley| remarks, it follows immediately from
a theorem of Newton that

zn,l <Eﬂ-,3 <..< Eﬂ,f(n)—-l < En,!{n)> E'n,,{(n)+1 = > En,n =nl. (1)

Thus it follows from (1) that the uniqueness of the maximising s will
follow if we can prove that

zn,ﬂn}u—l < En,ﬂﬂ.}' (2)
Hammersley proves (2) for 1 <n <{188. He also proves that

£(2)—(3) h i
(m+D+y—% " (log (n4-1)+y—3)™

f(n)=n— [log (n4+1)4+y—14+ fog

* Received 27 February, 1952; read, 20 March, 1952.
t J. M. Hammersley, Proc. London Math. Soc. (3), 1 (1951), 435-452.
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where [z] denotes the integral part of #, y denotes Euler’s constant, {(k) is
the Riemann {-function and —1'1 <h < 1'5. Thus for » > 188 > ¢® we
obtain by a simple computation

[logn—34] < n—f(n) < [logn]. (4)
First we prove

TaEOREM 1. For sufficiently large n all the integers X, ,, 1 <s <,
are different.

We evidently have*
SRAVE N AL n_' k I[.i k ot
E“"‘"‘<E(;§1T) < (1+logn) <n! {4 (1—|~10gn)} Lal=3 . B

for k>e(logn+1). Thus from (1) and (5) it follows that to prove
Theorem 1 we have only to consider the values

0 <k<e(logn+1). (8)

The Prime Number Theorem in its slightly sharper form states that
for every [

(z)= j logy+o((10g:v)‘) M

From (7) we have that for sufficiently large « there is a prime between
and z+az/(logz)®. Thus we obtain that for n>mn, and k <e(logn+1)
there always is a prime p, satisfying

n n
1 <SS
We have
En, n—k ?_é 0 (mOd pk)' (8)
For %, ,_; is the sum of (:) products each having n—k factors. Clearly

only one of these products is not a multiple of p; (viz., the one in which
none of the k multiples not exceeding n of p, occur); thus (8) is proved.

For r <k all the (":) summands of X, ,_. are multiples of p,. Thus
E‘I’h n—r = 0 (mOd Pk)' (9)

(8) and (9) complete the proof of Theorem 1.
We now give an elementary proof of Theorem 1 which will be needed
in the proof of Hammersley’s conjecture. Let

r <k <e(logni1). (10)

* The proof is similar to the one in a joint paper with Niven, Bull. Amer. Math. Soc.,
52 (1946), 248-251. We prove there that for n > ny, 2 ,%0 (mod n!).
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We shall prove that for n > 108
En,n—r :I"‘_ zn,nﬂk' (1 1)
Let g be a prime satisfying n/2k < g <n/k. Assume that

n n
H_—l<qu, E<l<2k—1.

Clearly 2, aer=0 (mod ¢g"). (12)

Now we compute the residue of %, , , (mod ¢"*). Clearly
2, k=0 (mod ¢"*). The only summands of X, , , which are not
multiples of ¢"*+! are those which contain II't where the product is
extended over the integers 1 <t <m, ¢5£0 (mod ¢). TII't contains n—I
factors, and the remaining /—k factors of the summands in question of
2, a-r Mmust be among the integers ¢, 2q, ..., lg. Thus clearly

k=2 k- 1. ¢ % (mod g-*+1), (13)
Therefore if (11) does not hold we must have
2,x=0 (mod g) (i.e. =, 5 x =3, 5, =0 (mod g-*+1)).
Thus if (11) is false

2k—-1
0 gl 0 5ew (14)
n/2k<genlk =k

Now evidently (we can of course assume that k > 2 for if k= 1 then (11)
clearly holds)

2k—1 2k—1 2k—1
0 3,,< I (3)FF< IT (2R < (20 < < (3 logn)riosn, (1)
=k =k 1=k

since for n > 108 > e!%, k <e(l4logn) < 3logn. Define
#z) = Z logp.
»<z
By the well-known results of Tchebycheff* we have
H2x)—FH(z) > 07 . 2—34. 2t —4'5(log #)*—24 log z—32.

Thus for n > 10* we have by a simple computation

#(2x)—B(x) > }=. (16)
For n > 108, we have n/2k >>n/(6 logn) > 10%. Thus from (16) we have

II q> en/4k > 3&1.1{13 log n), (]_7)
n/2k<g<n/k

* E. Landau, Verteilung der Primzahlen, I, 91.
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From (14), (15) and (17) we have
(3 log n)27og n)® > gn/(12logn)
Thus on taking logarithms and using log (3 logn) < logn for n > 108,
27 (logn)® >n/(12logn) or 324 (logn)t>n,
which is false for n > 10%. Thus the proof of Theorem 1 is complete.

THEOREM 2 (Hammersley’s conjecture). The value of s which mawi-
mises L, . is untque; in other words

2, fw)-1 7 S, fln) (18)

It follows from the second proof of Theorem 1 that Theorem 2 certainly
holdsif forn > 108. Thus since Hammersley proved Theorem 2 for n < 188
it suffices to consider the interval 188 << n <{108.

Put n—f(n)=t. We have, from (4),

logn—2 <t <logn. (19)

As was shown in the first proof of Theorem 1, (18) certainly holds if
there is a prime satisfying

n/(t+2) <p <n/(t+1). (20)
It follows from (19) that if 1500 < n < 108
150 < nf(t+2) < 107,

The tables of primes* show that for 150 < # << 107 there always is a
prime g satisfying # << ¢ <<z-+at. For n > 1500 we have

n n \t n
gt () <
. n n \t
smee GO+ (é+2) ’
or, by using (19), n > (1+4logn)? (2-}-logn),

which holds for n > 1500. Thus for 1500 <<n < 107 there always is a
prime in the interval (20) and thus Theorem 2 is proved for n > 1500.

To complete our proof we only have to dispose of the n satisfying
188 <7 < 1500. Hammersleyt showed that for » <1500 the only
doubtful values of n are: 189 <n <216, 539 <{n < 580. He also showed
that if 189 <<n <C 216 and (18) does not hold, then {=5. But then p = 31
is in the interval (20), which shows that (18) holds in this case. If
539 <<n <590 and (18) does not hold, he shows that {=6. But then

* A. E. Western, Journal London Math. Soc., 9 (1934), 276-278,
1 Bee footnote f, p. 232.
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either p = 73 or p = 79 lies in the interval (20). Thus (18) holds here too,
and the proof of Theorem 2 is complete.

By slightly longer computations we could prove that for n = 5000
Theorem 1 holds. Theorem 1 is certainly not true for all values of n since
23, =2X3 5. Hammersley proved that for n <12 this is the only case
for which Theorem 1 fails, and it is possible that Theorem 1 holds for all
n >3, The condition # = 5000 could be considerably relaxed, but to prove
Theorem 1 for » > 3 would require much longer computations.

Let u, < u, < ... be an infinite sequence of integers. Denote again by
X, s the sum of the products of the first » of them taken s at a time. It
seems possible that for n > n, (n, depends on the sequence) the maximising
§ is unique and even that for » > n, all the n numbers X, ,, 1 <s <n are
distinet. If the w’s are the integers =a (modd) it is not hard to prove
this theorem.

Stone and I proved by elementary methods the following

THEOREM. Let u, <u, <... be an infinite sequence of positive real
numbers such that

}:ui_oo and 3 ls<oo

Denote by X, , the sum of the product of the first n of them taken s at a time and
denote by f(n) the largest value of s for which T, , assumes its maximum value.

Then
f(n):n—l_z i 5L (1+ﬂii)‘l+o(1)].

i—1 U%?

Department of Mathematics,
University College, London.

I'rinted hy C. F. Hodgson & Son, Ltd., Pakenham Street, London, W.C.1.



	page 1
	page 2
	page 3
	page 4
	page 5

