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Introduction.

1. Let S be an ordered set, of power | S| and order type S =¢. We
denote by ¢* the converse of §, i.e. the order type obtained from ¢ by
replacing every order relation z <y by the corresponding relation y < =,
and by w, the least ordinal number of power »,. It is easy to see that,
if |S|=mn,, then S contains a subset S’ such that either §" = w, or
8’ =wy*. TFor cardinals w, >, the corresponding property, with e,
replaced by w,, no longer holds. Thus, the linear continuum C, ordered
by magnitude, satisfies |C| =8, = x, but contains no subset of any of
the types w,, w,*. If, however, we assume the continuum hypothesis
280 — 1, then m =1, and the following statement is true. Given any
ordinal o << w,, there are subsets Cy and C, of C, of order types « and o*
respectively.

The question arises whether not only C but every ordered set S of
cardinal x; contains either (i) a subset of type w,, or (ii) a subset of type
w*, or (iii) two subsets of types « and «* respectively, corresponding to
every ordinal o <<w;. We shall show, assuming the continuum hypothesist
and making free use of the axiom of choice, that this is, in fact, true. More
generally, we shall obtain, as principal result of this note, a simple character-
ization of those cardinals w», which possess the following

Property P. If § is an ordered set, [S|=w,, and « is an ordinal
number, « < w,, then either (i) there is §'C.S such that §' =w,, or
(ii) there is 8" C § such that 8§ = w,*, or (iii) there are subsets S, and S,
of S such that Sl = o} S_z = a¥,

We denote, for any cardinal number @, by ¢~ the immediate predecessor
of @ provided that such a predecessor exists, and we put a~ = a in all other
cases, i.e. when @ is a limit number. We recall that @ is called singular
if @ can be represented in the form a = ER a,, where | R| <@a; a,<a, and

PE

regular if no such representation exists.
We shall prove the following

TeEEOREM.  Suppose that the generalized continuum hypothesis
28 =n, ., holds for every v. Then a cardinal number w, possesses the
property P if, and only if, w;; is regular.

In fact, the continuum hypothesis is not required for the proof that
P does not hold when w;; is singular, and for the proof of the converse
proposition it is only required for v <.

t Received 16 July, 1952; read 20 November, 1952.
1 See addendum.
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Since w,, (= wp+0;+...) is singular, the theorem asserts, for instance,
that w,,,, possesses the property P, and that neither w, ., nor
possesses that property.

J. C. Shepherdson (1) has investigated the structure of ordered sets
which contain only well-ordered subsets of given types. His methods
and results do not appear to have any direct connection with the problem
considered in the present paper. He has, however, informed us that he
has since proved that n; has the property P, and W. Sierpiriski has
obtained the more general result that every ordered set of cardinal n,
contains a subset of one of the types w,, w,¥, 5, where 7 is the order type
of the set of rational numbers ordered by magnitude.

Notation and definitions.

2. Small Greek letters denote order types, ¢.e. ordinal numbers as well
as order types of sets whose order is not a well-order. Small Latin letters
are used to denote either ordinal numbers or cardinal numbers as well as
elements of abstract sets. Instead of order type, ordinal number, and
cardinal number we say type, ordinal, and cardinal vespectively. We need
not distinguish between a finite ordinal and the corresponding finite cardinal.
The relation 8’ C 8 denotes set inclusion in the wide sense.

If the set S is ordered by the order relation # <y then the type of S
is denoted by S, and, if there is no risk of confusion, by §. If a second
ordering of the same set has to be introduced the new order relation will
be denoted by < < and the new order type by S_... If §=a, then we
define the cardinal |«| of « by putting |«|=|S|. The relation g <«
means that, if § = «, then there is 8’ C § such that §' = B. The relation
B & « means that the relation p <« is false. It is worth noting that a set
T of types is not ordered, in the strict sense of the word, by our relation
“<”, but that only a quasi-orderingt is defined in 7', which means that
the relation “ <{*’ between types is transitive but that there may be two
distinet types « and B satisfying both B <o and « <B. If, however, « is
an ordinal, then g <C « implies that 8 is an ordinal, and in this case the two
relations 8 <Ca«; « < B only hold if a =§.

If 8. = ¢, and if the relation “ << ” is the converse of the relation
“<”, so that # << y is equivalent to y < z, then S__ is the converse of
¢ and is denoted by ¢*. Clearlyl, B* < «* holds if, and only if, 8 <.

The property P is equivalent to the following
Property P'. If |¢|=n,; «<w,, then either w,* <d¢ or « <.

T @) p- 4
1 This is contrary to the convention used in (1), p. 202, where, in the case o fordinals

« and 8, the relation 8* < o* is taken to be equivalent to a < 8.
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For, first of all, suppose that n, has property P. Let |[¢|=n,,
@« <w,, and consider an ordered set S such that §=¢. Then (i) of
property P implies w, <¢ and hence a < ¢, (ii) of property P implies
w,* < ¢, while (iii) of property P implies « <<¢. Therefore P implies P’.

On the other hand, suppose that P’ holds for some N,. Let |S|=mn,;
S.=¢; Scc=¢%* Then, by applying the definition of P’ to both the
types, ¢ and ¢*, we find subsets 8’ and 8" of S such that

either S.=w,* or S.=ua (1)
and either 8. =w,* or 8. =a. (2)
Now, (1) implies that
either w,* < ¢ or a < ¢, (3)
and (2) implies that
etther w,® <¢*% or a <%, (4)

By combining, in the four possible ways, one alternative of (3) with one
of (4), we find that, in any case,

cither (i) w, <¢ or (i) w,* <4 orf (i) @ a* <9,
so that », satisfies P.
3. The description of our arguments is greatly simplified by the intro-
duction of the decomposition relation
a—> (b, b,)* (5)

between cardinals a, b, b, which will now be defined. For any set S we
denote by Q,(9) the set of all sets §' C § such that |§’|= 2. Then we say
that (5) holds if, and only if, the following statement is true. Whenever

|8l=a; Q8)=K,+K,,
then there is 8'C S and Ae{l, 2} such that
[8|=by; Q(8')CK,.

The relation (5) is fundamental in many investigations in set theory.
The authors hope to deal in another paper with its numerous interesting
properties and generalizations. In the present note it only serves as a
convenient abbreviation. Clearly, (5) is equivalent to

a—> (b, by)". (8)

t The relation «, «* < ¢, and similarly in other cases, means that both, @ < ¢ and
«* < ¢, hold.
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Proof of the negative part of the Theorem.
4. We begin by proving two lemmas.
Lemma 1. If k, n>0, and o, <w, for v <w,, thent
wa¥, s £ <[,
Proof. Put S =ZZ*[]{(v, A)}. We order S by putting
(v, A) < (v, X)
if, and only if, either (i) v <<»' or (ii) v=1»"; A>A’. Then
S=%v<w(fa,*=¢, say.
If 8'c8; 8§ = wy,, then, for every vy < wy,
|2 (v, e 8 A} < Ry,
and hence | 8| K By < wp (]R8 = 20 = vy,

which is the desired contradiction.
On the other hand, if 8”c8; 8”"'=w,* then

50, 0o 8”0} <
and therefore, for some finite number of ordinals v,
18| <E|a,] <
which, again, is a confradiction. This proves Lemma 1.
5. Let a=~n,, and b=N, be infinite cardinals. We denote by F,,
the set of all functions f(A), defined for A < w;, whose functional values are

ordinals f(A) < w,. We order ¥, alphabetically, i.e. we put f; <f, if,
and only if, there is A, < w,; such that f;(A) = f,(A) for A < Ay; f1(A) <fal(Ap)-

Lemma 2. Let a=n,, and lei b= N, be the least cardinal such that
ab =>a. Tﬁeﬂv wﬁ_l, Wy { F_ab'

Proof. The letter A denotes ordinals, A < w;, and F = F,.

(i) Let FF'CF; F =w,,;- We have to deduce a contradiction.
Let fe F'. We define a function +(f)e F as follows. In F’, f has an
immediate successor o(f) =g, say. Then there is Ay=A,(f) such that
FA)=g(A) for A<Ay; f(Ag) <g(A;). Now we put 7(f)=~h, where k(A)=g(A)

1 For typographical convenience we write Zr< wi[Je,* instead of 2 a.*, and simi-
v W

larly in other cases, where the sign [] is used to separate the summation conditions from
the terms to be summed.
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for A <Ay, and A(A) =0 for A>A,. Thenf, if {f,, fo}<C F’,

T(fl) < U'(f1) gfz < T(fs)-

We conclude that | F'| <| F"'|, where F'’ is the set of all functions j(A)
such that, for some X =2A(j) < w;, j(A) < w,, for A <A, and j(A) =0 for
A>2X. Hence, using the minimum property of b,

a<|F|<|F"| =A< wJaN =A< wfla= ab=a,

which is the desired contradiction. The last equation follows from the
fact that a® > a, so that b <a.

(ii) Let F*CF; F' =w#,. Then there is f, e F’, for p < w,,,, such
that f, >f, for p <v <w;,;. The letter p always denotes numbers such
that p <w,,. We define, inductively, numbers u(A) as follows. Let
Ay << oy, and suppose that z(d) has already been defined for A << A,, and
that, for A <2y; p >=pg(A), we have

Fe@Q) = Fan(A). (7
Then ZA<X[[EM] <[]0 <0,
and hence there is g, such that g(A) < p, for A <A,. Then

JuQ) =1 Q) for A< Ay p = p,
and f, (A) =1, (A), if wy<p; <p,. Hence, by the definition of well-
ordering, there is p(A,) = p, such that (7) holds for A=2A;; u =pn(A,).
This completes the inductive definition of p(A) such that (7) holds for
A<w; p=p(d). Then
Er < ]| <bb=b,

and hence there is u; such that p(A) < p, for all A << ;. Then, for all A < wy,
Jus(A) = fiy41(A), s0 that f, = f, ., which is a contradiction. This proves
the lemma,.

6. We can now prove the negative part of our theorem. Let us assume
that » is singular.

Case 1. Let n;=xn,. Then wn,=ZZv<wi[]N,, where k<n;
m, <n. Then, by Lemma 1, w,*, « ¢, where

%= Wy < Wy ¢=2”<wkhw$,; |$] =,

Hence n,, does not possess the property P’.

t The symbol {f,, fa}< denotes the set {f,, f,} and, at the same time, expresses the
fact that f, <~ f,. A similar notation is used in other cases when sets and relations between
the elements of these sets are to be exhibited,
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Case 2. Let 8y =n, <wn,. Then n=m+1, and @ =N, is singular.
There is a representation a =X veN[]a, such that |N|, a,<a. Then,
by Konig’s Theorem, a <IlveN[Ja=d?¥!, and if b=y, is the least
cardinal satisfying a? > a, then b <|N|<a; l<m. Now, by Lemma 2,
we have w;, w1 € Fap, and hence w,*, « ¢, where ¢ = (F )%,

[pl=a>a=n,; |¢|=8,; e=ay <o,

Again, it follows that », does not possess the property P’.

The case of a limit number w,,.

7. Throughout the rest of this paper we assume the generalized
continuum hypothesis, ¢.e. the equation

Ny = 2%,
for all v,

Lemma 3. Let a be a regular limit cardinal, and b < a. Then a— (b, a)?.
Proof. Let |S|=a; Qy(8)= K,+K,. Suppose that,

if 8'c8; Q,(8')CK, then |8'| <a. (8)
Our aim is to find a set S’ C 8§ such that
e Ky (8 =18. (9)

Corresponding to every set T'C'S we choose a set B(T) such that
() B(ThcT, (i) Q.,(B{T)) C K,, (iii) for fixed T the set B(7') is maximal
among all sets UC T such that Q,(U)C K,. The existence of such a
set B(T) follows from Zorn’s Lemma. We choose a fixed ordinal p©
such that [p®| > | S|, and we agree that the letters A, u, v always denote
ordinals less than p®©.

We well-order 8. For all v and all ze8, we define f,(z)e § as follows.
Let o be fixed, and suppose that, for some ,, the elements f, () have already
been defined for v << v,, and that

{fv(x)s 33'} > Kl
for all those v << v, for which f,(x) #%2. We shall now define f, ().

Case 1. Suppose that f,(¥) %2 for v <v,. Then we denote by S,
the set of all y &S such that

{f,(x), y} e K; for v < w,.
Thus z& 8.

There are now two possibilities. Firstly, if # & B(S,), we put f, (z) = .
Secondly, if z ¢ B(S,), then, by part (iii) of the definition of B(T'), there is a
first element z of B(S,) such that {z, x}eK,. Then we put f, () ==z.
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Case 2. Suppose that there is a number v < vy, such that f,(z) = .
Then we put f, (#)==. This completes the definition, by transfinite
construction, of elements f,(z), for v < p® and xze 8, such that

{fn(z): fv(x)}e-Kl (10)
if p<v<p®; f.lz) #=.

Since |p@| > |8|, it is impossible that, for some fixed x, all f,(x) are
different from each other, and hence it is impossible that, for some fixed x,
f,(x) #a for all v. Hence there is v(x) such that f,(z) £z for v < v(z)
and f,(z) =« for v >v(x). We put M, =Za2eS[]{f,(z)}. We shall show
that, if |v| <a,

|M,| <a. (11)
First of all, M, c B(8), and hence, by (8), | M,| <|B(S)| <a. Thus (11)
holds for v=10. Now let 0 <|v;| <a, and suppose that (11) holds for
v <v;. Corresponding to every xS there belongs a system of elements
Y, =f,(x) (v <wy). The number n of distinet systems y, arising in this way
satisfies

n <My <w[]| M, ]
Now, since a is a regular cardinal,
Zv<yl]|M,|=d<a.

A. Tarskit proved that, for every regular limit cardinal a, and a,, a, < a,
we have aft <a. By applying this result to a; =d, ¢, = |v;|, we obtain

n <d"l < a. (12)

It follows from (8) and the definition of f, (z) that, given any system of
elements g, & S (v <vy), the cardinal of the set of all elements f, (x) corres-
ponding to #’s such that f,(z) =g, for all v < vy, is less than a, ¢.e. that

|2f,($) =y, for all v < VSD {fva(x)}i <a.

By (12), the number of distinct systems g, (v << v;) which need be considered
is also less than a. Hence M, < aa =a. This shows that (11) holds for
all v such that |v| <a. Then, in view of the regularity of a,

S (AN <Elv| <b[I M| <a=|S|
and therefore there exists z,e S such that
Zy #f,(z) for |v|<b; wel.
In particular, %, #~f,(®,) for |v| <b. Put
8" =%|v| <b[] {£.GEo)-
Then (9) follows from (10).

t (3), Satz 9.
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8. We shall now prove the positive part of the theorem in the case
when », is a regular limit number, so that »; =w,. This number will
be fixed throughout the proof. Our aim is to establish, for a <w,, the

following
ProPOSITION Q.. If || =N, then either w,® < or o < ¢.

For if this is shown then w,, possesses the property P’ defined in §2,
and this was seen to be equivalent to »,, possessing the property P defined
in the introduction.

Let 8 < w,, and assume that @, is true for « << 8 but that @ is false.
We shall deduce a contradiction. Clearly, B = wy.

We suppose then that there is an ordered set S, such that |Sy| =»,,

w,*, B8, (13)

Then n > 0. Let 8 be the set of all sections L of Sy, i.e. of all subsets L
of 8, such that z <ye L implies ze L. We order S by inclusion, i.e. we
put L < L’ if, and only if, LC 5 L’. Then |8| >|8;| =»,. For every
non-empty subset 8’ of § we denote by

bdZLeS'[]L, bdLeS'[]L (14)

the intersection and the union respectively of all sets LeS’. Then the
two sets (14) are elements of 8. We have

w.*, B S. (15)

For w,* < § would imply the existence of a system L.ef (v<w,) such
that L,C # L, for p <v <w,. Then we could choose a,eL,—L, , and

find thatt
w,* = Tp(Zv < w,[]{a}) <8,

which contradicts (13). Similarly, 8 <8 would imply the existence of
L'e8 (v<pB) such that L,/C #L, for p<<v<p. Then, choosing
a, &L, ,—L,, we find

B=Tp(Ev<B[{a}) <8,
again a contradiction against (13). This proves (15).

Tor the rest of this proof the letters z, y, z denote typical elements of |S.
If # <y then we put z=y if, and only if,

|1Ze <z <y[l{z} <™

and we define the relation y =z to be equivalent to z=y. Then “="is
an equivalence relation. Let z, (p& R) be a system of representatives of

t Occasionally we write T'p(U) instead of U.
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the corresponding equivalence classes, so that, given any =z, there is
exactly one pe R such that x=2,. Put

y,=bdz=z,[]z; y, =bdz=uz,[]=.
Then Y=y, =z, (16)

For, first of all, let us assume that, for some p, y, #,. Thenx, <y, We
define, inductively, elements z, as follows. Put zy==z,. Ifv < w,, and if
z, has already been defined for u << v, such that

z, <z,=%, for p<v,

then we conclude from |v| <N, ; z,=z,, and the regularity of »,, that
2 3z, <z <a | <r =125 <2<y 08
[T

and hence that there exists z, such that z, <z, <y,,
2, <z, for p<w.

Then, by definition of y,, there is 2’ =z, such that z, <z, <2’. Then, by
definition of “=", we have 2,=2,. This completes the construction of
z, for all v <w,. We have, however,

wa=Tp(Ev <w,[{z}) <8

which, in view of 8 < w,,, contradicts (15).

Forreasons of symmetry, the assumption y,’ =% 2, would lead to w,* < S,
which, again, contradicts (15). Hence (16) holds.

Let the letters p and o denote typical elements of R. Clearly,
|R| < |8|=mw,. Also,

Sz=2,{z)|=|Sy, <z <,0E <% (ocR).

If, now, | R| < »,, then we obtain, since 8, is regular,
[8]=|22y,’ <z<y,[{Z}| <M
Il

which is false. Hence | R|=»,. We well-order R, by means of a relation
[ < < ”’ alld PUtT
Q(R) = K,+ K,, (17)
where K, is the set of all {p, o} such that z, << %,, and K, is the set of
all {p, o}~ such that », >>x,. Since x, is a limit cardinal > 8, and
B < w,, there is m <n such that § <w,. Now, by applying Lemma 3,
with @ =n, ; b=~,, we find a set R’ C R such that either
| B| =%y Qu(R)CK, (18)

or |B|=nx,; Q(R)cK, (19)

t This idea of defining a decomposition of Q,(R) by meana of two order relations nn
R was first used by Sierpinski.
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If (19) holds then, in view of the definition of K,,
w,* < Tp(Zpe R'[J{z}) <8

which contradicts (15). Hence (18) holds. The ordering of 8 induces
an ordering of the set of all x,, for pe R’, and we may put

Tpe R [J{x}=2v <[ {=}
where v, > w,,, and z,” <z,” whenever u <v <v, Let
8,=3z' <z<z,[]{& <o)

Then, by definition of “=7, |8,|=n,,.
We can write

Y0<a<Bl{d=2v<w,[l{x},

where the «, are not necessarily mutually distinet. Since @, holds for
a < B, there is 8,’C 8, such that

8, =a,
B<Zv<o,[le.=TpErv<w,[]8,)<8,

which contradicts (15). This completes the proof of the theorem in the
case when ®, is a limit number.

W, not o limit number.

9. For any cardinal a, we denofe by a* the next larger cardinal.

Lemma 4. If a = ng, and b is the least cardinal such that o® > a, then
at— (b, at).

Proof. The proof is similar to that of Lemma 3. Let
|8|=a*; QuS)=K,+K,,
and suppose that

whenever S'C8; Q,(S8)CK,,
(20)
then |8 | < at.
QOur aim is to find a set 8/ C § such that
Q,(8")CK,; |8"|=b. (21)

We well-order 8, and we choose B(T), p® and define f,(x) and M, exactly
as in the proof of Lemma 3. Then, for |v|<b,

|M,] <a. (22)

For, M,C B(S), and hence, by (20), |M,| <a. Let 0<|vy|<b, and
suppose that (22) holds for v << v,. Then the number # of distinct systems
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of elements f,(x) (v <v;) satisfies, in view of |v;| <b and the minimum
property of b,

n<Iv<yl]|M,| <™ <a. (23)
It follows from (20) and the definition of f, () that, given any 7, € S (v < v),
the cardinal of the set of all elements f, () such that f,(x) =7, for all v < v,
is at most equal to a. Thus, for fixed 7,,

1ZL@) =7, (v <vy)[]{},(@)}| <a.
Hence, in view of (23),
| M,

Laa=a.

This establishes, by induction, the inequality (22) for all » such that |v| < b-
Using b < a, which follows from a®>a and the definition of b, we
conclude that

|Z0es’ {A @R <Z|v| <b[| M, | <ba <a< |8,

and hence deduce the existence of Z,e 8 such that 7, #f,(x) for |v|<b;
xeS. Then the set
8" =Zp| <b[{£(@)}

satisfies (21), and Lemma 4 is proved.

10. We shall now prove the positive part of the theorem in the case
when N =, is regular, n =m-+1. We note that », is regular. The
proof is identical with that of § 8 up to the definition of the decomposition
(17).

It follows from results of A. Tarskit that, if a is regular and a, < «,
then a® <a. Hence, applying this result to @ =w~,,, we find that the
cardinal b of Lemma 4 is equal to @, so that, by Lemma 4,

| B| =8y > (R, 9)%

By applying the information contained in this relation to the decomposition
(17) we find that there is a set R'C R such that

either |R'|=wn,; Q(R)CK, (24)
or  |R|=w,; Q(R)CK, (25)
But (25) implies that, by definition of K,,
w,* < Tp(Zpe R [[{=,}) <8,

which contradicts (15). Hence (24) holds. The rest of the argument is
again identical with that used in §8, from the point onwards when (18)
had been established. This completes the proof of the theorem.

1 (3), Satz 9 and Satz 13, for limit numbers . For non-limit numbers the statement
is trivial.
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Concluding remarks.

11. We shall now prove the following results which show that Lemma 4
is best possible.

If a =&y, and b is the least cardinal such that a® > a, thent

at—>(b, at)?, (26)
at 'l')' (b+’ a+)a= (27)
ab-|> (b*, a*t)2. (28)

One of us} has proved, assuming, as we do in the present note, the
generalized continuum hypothesis, that

d++— (d+, d++) (29)

for d >, This result is equivalent to the special case of (26) when a
is not a limit number. For if ¢ =d*t =n,, then a¢= (2¢)4 =g, so that§
the cardinal b in (26) is equal to @, and (29) is the same as (26).

In order to prove (26)-(28), we note that (28) implies (27), and that
(26) is Lemma 4. There remains the proof of (28). We define m, ! and
F,, = F as in Lemma 2, and we denote by x < y the order relation in
defined in §5. Let z <<<y be a well-ordering of ¥, and put

Qp(F) = K1+ K,

where K, is the set of all sets {z, y}. = {z, ¥}~ C F, and K, is the set of
all sets {, y}< ={z, y}<< CF. We have |F|=a®. If (28) were false
then we could find F’ C F such that

either |F'|=0bt; Qy(F')CK, (30)
or |F’i=a+; QQ(F')CKB- (31)
But (30) would imply that

oy < (F)2e =(F) < (P,
and (31) that _ ~
Wyt S (F)e<= (Fi)c < (F)<

which, in either case, contradicts Lemma 2.
12. It is easy to obtain from the argument leading to Lemma 2 some

more information about the order type F = (F)<. Let S be any ordered
set of type ¢. We define the Lusin index A(¢) of ¢ as the least cardinal »

+ We denote by (27) the negation of the relation a+ — (b+, ¢*)?, and similarly in the
case of (28).

i 4), Theorem II.

§ More generally, for any @ > N, b is the least cardinal such that @ is representable
as a sum of b cardinals less than ¢ (Tarski).
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which has the property that it is impossible to find » mutually non-over-
lapping open intervals in S, which means that, whenever R is a set,
|R|=mn, and {z,, y,}.C 8 for pe R, then there is {p, o}, C R such that
z, <a, <Y,- Then we have the following result.

Let @ =y, and let b be the least cardinal such that a®>a. Then, if
F,, is the order type defined in §5, A(F,,) =at.
The proof may be left to the reader.

Added in proof. L. Gillman has since proved that the generalized
continuum hypothesis H; 28 =, for all v” is necessary for the
truth of the assertion of our theorem, so that H is equivalent to the
statement: m,, has the property P if, and only if, =} is regular.
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