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1. THROUGHOUT this note the letters p, q will be reserved for primes, and 
pV will denote the vth prime; cr, q,,... are to stand for absolute positive 

constants. 

Let d(n) denote, as usual, the number of positive divisors of n, and D(x) 

the number of distinct values assumed by d(n) in the range 1 < n < x. 

Our principal object is to estimate the order of magnitude of D(x) for large 

values of x. 

The argument will be based on a result concerning A-numbers, which 
are de&red as integers having the form 

pyp;“.‘.pg”, 

where a1 > a2 > . . . 2 uk and k is arbitrary. If A(z) denotes the number 
of A-numbers not exceeding 2, then, as was shown by Hardy and Rama- 

nujan,? 
logA N 2 ~ 1%X t 

( 1 113 loglogx 
(x+c(j) (l-1) 

We shall be led to consider a certain subclass of the A-numbers, namely 

the B-numbers, defined as integers having Dhe form 

91-l 92-l 
Pl Pz .*.pp-1, 

where q1 > q2 Z . . . >, qk and k is arbitrary. Making use of the one-one 

correspondence between A-numbers and B-numbers specified by the scheme 

j$?..p$ tf p~~-~...$+-l (al > . . . > a,) 

we shall obtain the following estimate for B(s), the number of B-numbers 

not exceeding x. 

THEOREM I. As x --f co, 
2771~2 (log x)k 

log B(x) N - p. 
2’3 loglog x 

This result will, in turn, lead to 

THEOREY II. As x --f m, 
2d2 (log x)” 

logD(x) N __ p. 
213 loglog x 

t G. H. Hardy and S. Ramanujan, ‘Asymptotic formulae for the distribution of 
integers of various types’, PTOC. Londo?z ,%fc&. Sot. (2), 16 (1917), 112-32. Re- 
printed in Collected Papers of S, Ramnnujan (Cambridge, 1927), 245-61. 

Proc. London Math. SW. (3) 2 (1952) 

5388.3.2 S 
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The main idea of the proof is as follows. Let m be called & D-number if 
d(n) # cl(m) for 0 < n < rn.? Then D(z) is evidently the number of D- 
numbers not exceeding X. We shall show that every D-number is either a 
B-number or else does not differ greatly from a B-number. This will imply 
a relation between B(x) and D(x) which will enable us to infer Theorem II 
from Theorem I. 

The problem of finding asymptotic formulae for B(z) and D(z) seems diffi- 
cult. We are, however, able to obtain some results concerning the relative 
behaviour of B(x) and D(z) for large values of x. Even this is not trivial, 
for the relation between B and D-the sets of B-numbers and D-numbers 
respectively-is complicated. Thus there exist infinitely many m such that 
m E B, m 3 D,$ and infinitely many n such that n g D, n 3 B.$ Some 
information on the relation between B(x) and D(x) is provided by 

THEOREM III. For all suficiently large values of x 

D(x) - B(z) > c1 logloglog x. 

A more interesting fact is that B(x) and D(z) have the same asymptotic 
behaviour. We shall, in fact, establish the following result. 

THEOREM IV. As x -+ co 

A number of further questions involving d(n) naturally suggest them- 
selves. Thus, let F(x) denote the greatest integer Tc having the property 
that there exists a run of k consecutive integers, say n+ 1, n+2,..., n+k, 
such that nfk < x and d(n+l), d(n+2),..., d(n+k) are all distinct. We 
shall prove 

THEOREM V. For all suficiently lurge values of x 

F(x) > c$& 

As regards an upper bound for F(x) we can at present prove nothing 
better than 

F(x) -c exp(c3E), 

an estimate which follows trivially from Theorem II. We conjecture that 
the true order of magnitude of F(a) is (log x)Q. 

7 It is almost obvious that a D-number is necessarily an A-number. 
$ The symbol a E X means that a is a member of the set X; a 3 X means the 

contrary. 
8 For let k >, 3. If wzk = pl...pk, then WA, E B, WQ 3 D. Also, if nk E D, d(nk) = 2k, 

then nk 3 B, 
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A related problem consists in the estimation of the longest run of con- 

secutive integers < x all of which have the same number of divisors. This 

problem seems to be one of exceptional difficulty, and we have not been able 

to make any progress with it. We are not even able to prove that there exist 

infinitely many integers n for which d(n) = d(n+ 1). 

Let h(z) denote the least positive integer which does not occur among the 

numbers d(n), 1 < n < X. We shall conclude our note with the proof of 
the following result. 

TEEOREM VI. For x > 6, h(x) is equal to the least prime q satisfying the 

inequality .W-1 > 2. 

2. The notation to be used below is as follows: 

The letter E denotes an arbitrarily small positive number; x denotes a 

sufficiently large number, i.e. a number exceeding a suitable absolute 
constant.7 

The O-notation and the asymptotic formulae refer to the passage x -+ co. 

As usual r(x) stands for the number of primes not exceeding x, and 

8(x) for the sum BzrclogpS 

The set of A-numbers will be denoted by A. 

Given any k, there obviously exists a unique m E D such that d(m) = k. 

Moreover, there exists a unique m* E B such that3 d(m*) = Ic. Hence a 

one-one correspondence can be set up between B and B, specified by the 

conditions d(m) = d(m*), mED, m*EB. 

If m E D, then m* will invariably denote the B-number corresponding to m. 

It is, of course, obvious that m* > m. 

If n = p’41...$+, (2.1) 

we shall write {n) = p$..p$, 

where a;,..., ai is a permutation of a, ,..., ak such that a; 3 . . . > a;. Evi- 

dently (n> < n. 
If the canonical representation of an integer n is written in the form 

(2.1), it will be referred to as its expansion. We shall also speak of the 

expansion of n with expbnents > 2, of the expansion of n with primes > z, 
and so on, when referring to the parts of the expansion of n having these 

properties, 
3. We shall make frequent use of two simple lemmas. 

t Whenever z is required to exceed a bound depending on E, that fact will be 
stated explicitly. 

$ For, if k = qr,..qS, where q1 > . . . 2 qS, then m* = pp-l...p$-1. 
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LEMMA 1. Let n, t be positive integers. If N(n, t) denotes the number of sets 

of integers ul,,.., u, such that 

t>uul> . . . > u, > 0, (3.1) 

then N(n, t) < (2n)2t. 

Consider the sets of integers k,, k,,.. ., kt such that 

k,+...+k, = n; &,...,Ic, > 0. (3.2) 

A one-one correspondence between the sets or,..., u, satisfying (3.1) and 

the sets k,,,..., kt satisfying (3.2) may be established by the requirement that 

k, should be the number of U’S having the value v. Hence fV(n, t) is equal 

to the number of sets of k’s satisfying (3.2), and therefore 

N(n, t) < (n+ l)t+l < (2n)U. 

LEMMA 2. If m = pp...pEk ED and, for some i, ai+ = tt’, where 

t > t’ > 2, then 
Pu4 G Pkil, (3.3) 

and, if m is suficiently large, 

t < 2 loglog m, a,+1 < 4(loglogm)2. 

Write ml = pi,. .pFL-i p f -lpF$+; . . .pjjkpi ; :. 

Then d(m,) = d(m), and so rnr > m. Hence (3.3) follows at once. More- 

over, if m is sufficiently large, 

pk < #Mm, r)ktl < 210gm, 

log( 2 log m) 

log 2 
< 2 loglog m, 

a,+1 < t2 < 4(loglogm)2. 

4. In this and the next section we give a proof of Theorem I. We shall 

write y = ~~2---El/lO&m 
, 

and shall assume that x > ~~(6). 

Let m G A, m < y, and suppose that p > (logx)~/(loglogx)2 is a prime 

factor of m. Then the exponent of $J is < 3(log s)tloglog z; for otherwise 

y >, m 3 (,g y)3(‘ogz’*10g’og5, 

(gee) log 
loglog X 

> 3(log z)*loglog X. a(p) 

> 3(log s)~loglog x. $p 

3 (logx)& 
> 3(log z)~loglog x. - 

9 logz 

4 (loglog X)2 = 4 loglog* 
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Two A-numbers < y will be said to belong to the same class if they 

coincide in their expansions with prime factors > (logx)i/(loglogz)a. In 
view of the remark made above the corresponding exponents must all be 

< 3(log x)*loglog 5. 

An A -number 

m = p$..p? < y (al > . . . > ak) 

will be called restricted if a, < 3(logx)~loglogx. The number of such 
numbers will be denoted by A&). 

We note at once that each class contains at least one restricted number.t 

Hence A&) > C(x), where C(s) is the number of classes. If K,(x) denotes 

the number of numbers in the ith class, then 

4y) = K,(x)+K,(x)+...+K,~,,(x). 

But each class contains fewer than 

log x (-1 
3(logz)f/(loglogz)~ 

l 

(1% XP 

log 2 -=I exp 4 (loglog 2)” I 

numbers, For the number of primes < (logx)*/(loglogs)2 is less than 

3(log x)*/(loglog x)~, and each exponent is < log z/log 2. Hence 

and so, by (Ll), log A,(x) > 2dw----24 (1%x)* 
113 loglog (4.1) 

Now let m = pp... p$ be any restricted A-number (< y). We associate 

with it the unique B-number fi defined as 

fi = pjy-l . ..pE”-1. 

Different A-numbers have clearly different B-numbers associated with 

them. 

Now, by the prime number t,heorem, we have, for ai > 01 = LX(E), 

pai- 1 < (1+ &)ui log ai. 

Since m is restricted, ai < 3(logz)*loglog x. Hence, for ai > 01, 

pai-- < (l+~~)(*+~~)loglogx.ai 

< (&+&)loglogz.ai. 

7 For t’ake any d-number Q y. If it is not, restricted, we can make it so by 
replacing each exponent which exceeds 3(log z)* loglog z by [3(log 2)’ loglog z]. 
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When a, & 01 this relation is, of course, trivially true. We therefore have 

fi < (pl;l...p~~)(t+fE)loglogz = ~~~nt(t+MIoglo$z 

< y(t+~e~lo~lo~s < 2. 

Hence w4 > AR(X), 

and so, by (4.1), log B(x) > 2%K2--4 m-%4* 
43 loglog (4.2) 

5. Consider next the B-numbers < x. Two such numbers will be re- 
garded as belonging to the same class if they coincide in their expansions 
with exponents > (log x)*/(loglog x)~. 

All prime factors of a B-number ,< x are < 2 log x. Hence, by virtue of 
Lemma 1, each class contains at most 

(41%X) %lOgX)*/OOg~OgZ) < exp 3 
( 

(log z)+ 
(loglog x)2 1 

numbers. 
Let a B-number < x be called restricted if all its exponents are greater 

than (logx)*/(loglogx)3, and denote t,he number of such numbers by B&r). 
Then, for a given x, every class of B-numbers contains precisely one 
restricted number, and so BR(x) = 6(x), where 8(x) denotes the number 
of classes. Hence, if $(x) is the number of numbers in the ith class, then 

and therefore 
B(x) < c(x)exp 

I 
3 (1% 4” 

(loglog x)2 I 

= BE(x)exp 3 
1 

(logs)’ 
1 (loglog z)” . (5.1) 

With every restricted B-number m = @...p$ we associate the unique 
A -number iii = p$..p$, 

where ai+ 1 = pai (1 < i < k). It is then clear that m, # m, implies 
6, # 6,. 

By the prime number theorem we have 

bi = fl(Ui+l) < (l+E)-ai 
log ai 

But, since m is restricted, 

(1% XY 
ai ’ (loglog2)3’ 
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Therefore bi < (2+36&f+ 
loglog x 

and so Gi < (pF...pJ& ) 0, (2+3c)floglogz < x(2+wo~logz~ 

This implies j&(2) < jqx(2+3~YIoglogs); 

therefore, by (5.1) and (l.l), 

logJqx) ( 2d2+4E) (log44 
113 loglog (5.2) 

Theorem I now follows at once from (4.2) and (5.2). 

6. We shall next deduce Theorem II. Let m = p’,‘...pp (yl ,..., vk > 0) 

be a sufficiently large number and suppose that vl+l,..., vk+l are not all 

primes. Consider, for definiteness, the smallest composite vi+1 and write 

vi+1 = tq, 

where q is the least prime factor of vi+ 1; then t > q > 2. Put 

n = ~p...pT_-~p~- pi+,s..pLkp&i, . 1 t 1 vi+1 

and m’ = (n}. Then m’ < mexp{(logm)*}. (6.1) 

This inequality is established by almost the same argument as Lemma 2. 

Suppose first that n 3 m. Since 

this implies 

q < t < 2 loglog m, 

772’ < n < mp$+: < m(2 log m)210g10gm < m exp{(log m)a). 

Hence (6.1) holds when n > m; when n < m it holds, of course, trivially. 

Now consider a sufficiently large number m such that m E D, m 3 B, 
m < x. We shall then obtain an upper bound for m*. First construct m’ 

by the process described above; if m’ 3 B, construct (m’)’ = m”; if m” 3 B 

construct (m”)’ = m”‘, and so on. After a suitable number of steps we shall 

obtain a number rn@) such that m@) E B, rn(+l) 3 B. Since, moreover, 
cZ(m@) = d(m) it follows that m* = m@). In view of (6.1) we have 

rn@) < rn@-lbxp((log m(y-i))i} (1 < v < r), (6.2) 

where m(O) = m. 

To estimate r we note that, if m = py...p,Z” (ED), then 
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where Q(U) denotes the total number of prime factors of U, multiple ones 

being counted multiply. If Q(a,+l) > 1 (i.e. if a,+1 is composite), then, 
by Lemma 2, a,+1 < 4(loglogm)2, 

P, < z4+1 < 2(logm)t, 
K -=I 2(logm)a. 

Hence 
r < Z, (a,+l) -c 4(Wwd2 2 1 

ldK<k 
ixui+B>1 n(aK+l)>l 

< S(log m)*(loglog m)2, 

and so r < (log@. (6.3) 
Let now the numbers m,, m,,..., m, be defined by the relations 

m, = m, 

m, = m,-, exp(Uogm,-l)t) (1 < v < ~1, 
so that m < m, < . . . < m,. 

If ix < m < x, then 

log m, = log m,-,+ (log m,-,)f 

< log m,-, . (I+ (log &c)-~}, 
and so, by (6.3), 

logm, < logm.(l+(log~x)-2) 

< log x. (1+ (log 4x)-f)(‘@+ 

m, < x~+~, 

provided x > X&E). This estimate is still true for m < 4x, for in that case, 
putting p = 4x, we obtain m, < pr < ~l+~. 

Thus, for all sufficiently large m such that m E D, m 3 B, m < x we have, 
using (g-2), m@)<m <x*+~ 

and therefore m* < xl+<l (x > a,). 

If m E B, m E B, m < x, t,hen, of course, m* = m and the above inequality 
is still true. Finally, it is obviously true when m is small. Hence 

D(x) < B(Xl’E) (x > x0). (6.4) 

Moreover, since m < m*, we have 

w4 < w% (6.5) 

and Theorem II now follows by (6.4), (6.5), and Theorem I. 
7. Theorem III can be established very rapidly. Let t and r be defined 

by the inequalities 
PI-.-P, G x -c PI...Pt P&l, 

227-l <pt < 22'+1-1, 
(7.1) 



DISTRIBUTION OF VALUES OF DIVISOR FUNCTION d(n) 265 

and write a, = 22’-1p2pp..pt-l (v = 3,4 )..., r). 

Then a, < p2.-pt < x, &a,) = 2f+Y-2. 

Denote, for 3 < v < r, by m, the D-number satisfying 

cqm,) = 2f+“-z. 

Then clearly m, < x whilst, in view of (7.2) and (7.1), we have 

(7.2) 

m,* = p1...pt+v-2 > p1...23t+1 > x. 

Thus there exist at least r-2 B-numbers < x (namely m3,..., m,) for 

which the corresponding B-numbers exceed x. Hence 

D(x)-B(x) >/ r-2 > c,logloglogx. 

8. The next three sections contain the proof of Theorem IV. We have 

D(x) = w%-4(x)~ (8.1) 

where Q(x) is the number of m E D with m < x, m* > x. It is clear that 
Q(x) only enumerates D-numbers which are not B-numbers. 

IfmED,m3B,andm=p~ r . ..p$*. then at least one ai+ 1 is composite. 

In that case we call a, a critical exponent and p,; a critical prime of m. 

Let D,(x) be the number of numbers counted in 4(x) which possess at 
least one critical prime < 2(logx)*, and let D,(z) be the number of numbers 

counted in 9(z) all of whose critical primes are > Z(logx)+. 

We first estimate D,(x). If pi < 2(logx)h is a critical prime of m ED 

and a,+1 = Ip (t > q > 2) then, by Lemma 2, 

ai < t” < 4(loglogx)2. W) 

A critical prime pi can be chosen in at most 2 log x ways, and, by (8.2), the 
corresponding critical exponent in at most 4(loglog~)~ ways. The expan- 

sion of m preceding pi can be chosen in at most 

log x 

t-1 

‘Nogd 

log 2 

ways. Again, by Lemma 1 and (8.2), the expansion of m succeeding pi 

can be chosen in at most 
(4 log X)8~lo~logd~ 

ways. Hence 

D,(x) < 2 logx .4(loglog x)~ 

< exp(c,(log x)+loglog x). 

Hence, by Theorem I and (8.1), 
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In view of (6.5) the proof of Theorem IV will be complete if we can show that 

Q(x) < co (loglog xY B(x) 
(log@ * 

9. We shall denote by Q the set of integers counted in D,(z). We observe 
that every critical exponent of every m E Q must be equal to 3. For if 
a, > 3 were a critical exponent, then it would be possible to write 

a,+1 = tq, 

where t > 3, q 3 2; in view of Lemma 2 this would imply 

Pt G Pk+1 < 2 1%X, Pi < 2(1%x)+, 

which is contrary to hypothesis. Thus every m E D3 has the form 

m = PPL.. .P,~P$+,.. .P,~PM.. .P~. (9.1) 

Here the squares or the first powers of primes, or both, might be missing. 
The letter p denotes the expansion of m with exponents > 3, say 

p = pyL.pp, 

where a, > .., > cc, > 3 and a,+l,..., a,+1 are alI primes. We shall con- 
tinue to use E.L in this sense throughout this and the next section and shall 
refer to it as the kernel of m. 

Since m E n3 we have m 3 B. Hence the sequewe of numbers 
m = m(O), m', me,*,., m(i-l), m(i) = m* 

can be constructed as in 5 6. Now m < x, m* > x and therefore there 
exists a smallest value of k (depending on m) such that 

rnck) < x, rnck+l) > x. 

We shall write m(k) = G, 

It is then clear that fi’ > x. The correspondence m + iii is unique and, 
since d(C) = d(m), it follows that m, # m2 implies fir # 6,. The number 
of numbers in .Q is therefore equal to the number of fi. 

Now if m is given by (9.1), fi will have the form 

fii = ~P~+l...PsaP~+l...P~P~~l...P~ (u > r). 
Here the squares or the first powers, or both, might be missing. By Lemma 2 
(applied to m) we know that 

Pf < P&-1- (9.2) 

But G < .s, and so 

z(logx)* < j&l < .** < p. < 2(logx)+. (9.3) 

Let CP be the number of numbers in D3 having kernel p, i.e. the number 
of r?i with kernel I”. We shall show that 

cp < c,logx. (9.4) 
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A number iii associated with p may be of the following four types: 

0) ~P~+~...P~~P~+~...P~P~~~...P~ (co >T >o>r); 

(ii) p~~+~...p~p,,~...p, (T > 0 > f-1; 

(iii) ~p3,+~...pEpi+r...p: (T > 0 > r); 

04 PPF+~...PE (0 > 4. 
Let the contributions of these four types to CP be denoted by 

Ct’ (v = 1,2,3,4). 

We shall estimate these expressions in turn. 
First let fi be of type (i). It is then easily verified that? 

3 
+ci’ = ~P,H’**P3,-1 3 P~...P~-1177...PwiDw+l. 

-, 
Hence 

m Pm+1 
F =-, 
m PUP7 

and since 6 < x < fi’ this implies 

Again, by (9.3), 

;<!?<p$!S< 210gx 
= *(log x)“, 

0 4(log x)Q 

and therefore Zz(logx)-* < m < 2. (9.6) 
In view of the construction of 6 it is clear that w > u. Hence, by (9.2) and 

P-w, P7,+1 2 Pu+i a PL 2 4(w4g. (9-V 

Now C’E) is equal to the number of possible choices of CT, T, w. In view of 
(9.5) and (9.3) the number of choices of cr, T does not exceed 

c 
210gx 

< cslogx. 
2(logs$<P<2mYsa)~ P 

To any given values of u and T corresponds at most one value of w. For 
suppose, if possible, that fi, and iii, (> Gzi) have the same values of (T, r 
but different values of w. Then, by (9.7), 

(9.8) 

and this is impossible since, by (9,6), both 6, and 6, lie in the interval 
(2x(log x)-t, x). Thus we have 

CF’ < c* log X. (9.9) 

Next, let fi be of type (ii). We then have 

+i’ = ~P3r+l...P~-lp,,Po+l...P~P7+1, 

t If (T = r+ 1, then there are, in fact, no cubes in the expansion of Z’. 
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and CE) is equal to the number of possible choices of o, 7. Now cf can ob- 
viously be chosen in at most 2 log IL ways, and to each u there corresponds 
at most one T. Por we have 

and therefore 

Hence (9.6) continues to hold in the present case. Moreover, m must have 
the form 

m = ~&P.~P,~P~+~-.P~~ 
Hence, by Lemma 2, J++~ > p,,“, and so 

%+1 3 P”, z 4(logx)+. 

Thus, if fi, and Gii, (> G&) have the same value of cr but different values 
of T, then (9.8) is still valid. But (9.6) and (9.8) are incompatible, and so 
our assumption is untenable. We therefore have 

CEL”’ < 2 log x. (9.10) 

If G is of type (iii), then 

and so 1<!pS. 
PUP, 

But (~~+~/p~ < 2, and therefore this inequality cannot be satisfied. Hence 

cp = 0. (9.11) 

Again, if iii is of type (iv), then 

But p23,+1 < p& and so we have a contradiction. Thus 

l7j.j’ = 0. (9.12) 

The relation (9.4) now follows by virtue of (9.9), (9.10), (Y.ll), and 
(9.12), and we therefore have 

B,(x) = 2 cp < hc,logx, (9.13) 
P 

where h denotes the number of different kernels in Q. 
10. Ifpis the kernel of a number in Q, we shall denote by BP the number 

of B-numbers < x with p as their kernel. We shall show that 

(10.1) 
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Let p be the kernel of a number m E OS given by (9.1). Then, since 

w&* < P*+1 -=c w%4*, 

we have, by Lemma 2, P a+1 > 4(logx)3. 

Hence 2oog48 < WPJ--sr(P,)* (10.2) 

J%7rite 

and consider the number 

n = I*.P~+l**.P~Pi+l***Pj3 

where r < i < j < {. Then pj < &(log x)‘, and 

T < p eXp(2Qj)) < El. exp{Wg XF). 

Hence, by (lO.Z), 

n < ~exp~~W-~(pA~ = VP~+~...P~ < m G x. 

It follows that n is enumerated by B,, and therefore 

BP3 c 
r<i<i<( 

1 3 *(a = cg (l”gxY 
(loglog 2)s’ 

This establishes (10.1) which, in turn, implies 

B(x) > 2 BP Z hc, (1% 4% 
P (loglog x)2 

(10.3) 

(the summa’tion being extended over t’he kernels of numbers in 4). The 
relat,ion (8.3) now follows at once bg (9.13) and (10.3), and the proof of 

Theorem IV is therefore complete. 
11, In this section the letter r, as well as p and 4, is reserved for primes. 

To prove Theorem V, let 

Ic = [2$:“,]- 
(11.1) 

As previously, pl,.‘., pk denote the first Ic primes; qr,..., qk now denote, in 

that order, the first k primes exceeding (logz)+. We shall write q = ql. 

Each pi is less than (log z)* and each gi is less than 2(log x)*. Hence 

M = pp...pg < x*. (11.2) 

Let T be the set of positive integers t satisfying the system of congruences 

t+u G pf”-l (modp?) (v = 1,2,..., 7~) 

and the inequality t+L < X. When 1 < p < k and r # p,, let T(p, r) 
denote-f the set of those numbers t f T which satisfy the additional con- 

gruence t+p z 0 (modfl-l). 

t I’henever the symbol T(r, T) is subsequently used, it will be understood that 
l</-LCLhr#pp. 
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Finally, let T* be the set of those numbers t E T which do not belong to 

any VP, r). 
The theorem will have been established if we can prove that T* is not 

empty. For, if t E T*, then 

PjF I (iSP)> $qX(t+p) (1 < P Q w> 

f+lX(t+p) (1 ,< p < k 9. f 2-Q. 

Hence !Jp I @+I43 q,XG+p) (1 < /4 v < k; P + 4. 

The k numbers d(t+l),..., d(t+k) are therefore distinct and, since t+k < x, 
Theorem V follows by ( 11.1). 

If S is any finite set, we shall denote by [SI the number of its elements. 
To estimate ]T(p, r) J we first note that, if r < pk, say r = pi, then 

T(p, T) is empty. For otherwise 

pf-l t (i-p), 

and ao 2Q-1 < k, which is contrary to the definitions of k and q. It is also 
obvious that T(p, r) is empty when m-r > x. On the other hand, if r > & 
$-I < x/M, then 

IThr)I < sM+l, 

whilst, if x/M < @p-l < x, then 

IThr)I < 1. 
Hence 

But 

and therefore 

Hence, using (11.2), we obtain 

IT*I b ITI- ,<zck IT(pFL,r)I +,+-L--z4 
. . Mlogx 

r 
1 

>x* l-- ( 1 log x 
-1-x+ > 0, 

This completes the proof. 
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12. Finally we prove Theorem VI. For 6 < x < 16 the assertion is 
easily verified direct1y.t Assume next that x > 16. Denote by q’ the 
prime preceding q, so that 

2Q’-1 < x < 24-1, 

Let E be the set of numbers d(n), 1 < n < z. Then clearly m E E when 
m < q’, and q 3 E. It remains only to show that every number strictly 
between q’ and q belongs to E. Let 

q’ < m < q, 
and write m = ab (a > b 3 2). 

Since ~J(2~-~3~-l) = a& it suffices to show that 
2a-Qb-1 <e 2q’-1; 

in other words that a+@--1)T d 4’, (12.1) 

where T = log 3/lag 2. 
Since CC > 16 we have q’ 3 5 and so, by Bertrand’s po&tulate,$ 

q < 2q’-2, 

For b = 2 this implies 2a < 2q’-2, and so a+2 < Q’. The inequality 
(12.1) is then evidently satisfied. When b > 2 and 5 < q’ < 19 the validity 
of (12.1) is easily verified directly. When b > 2 and q’ > 23 we have 

q’ > 872, 

(b-1)b 

and (12.1) follows at once. Theorem VI is therefore proved. 

Additional remark (30 June 1951). It may be worth mentioning that the 
ratio of two consecutive A-numbers tends to 1, and that the same result 
holds also for B-numbers and for D-numbers. For A-numbers and 1)- 
numbers this is obvious since D (and therefore A) contains the set of highly 
composite numbers; for B-numbers, on the other hand, the proof is a little 
more troublesome. 

t We have, in fact, X(z) = 5 for 6 < 2 < 16, and x(16) = 7, 
i E. Landau, Hardbuch der Lehre won der Vevteilung der Pr~mzahlen (Berlin and 

Leipzig, 1909), i, 3 22. 
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