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1. TEROUGHOUT this note the letters p, ¢ will be reserved for primes, and

p, will denote the vth prime; ¢, ¢,,... are to stand for absolute positive
constants.

Let d(n) derote, as usual, the number of positive divisors of n, and D(x)
the number of distinct values assumed by d(r) in the range 1 < n < .
Our principal object is to estimate the order of magnitude of D(z) for large
values of 2.

The argument will be based on a result concerning 4A-numbers, which
are defined as integers having the form
PYPE--PE
where a, = @, > ... = a;, and k is arbitrary. If A(z) denotes the number
of A-numbers not exceeding z, then, as was shown by Hardy and Rama-
nujan, 27 logx
v/3 (log]oga:
We shall be led to consider a certain subclass of the A-numbers, namely
the B-numbers, defined as integers having the form

P
where ¢, > ¢, > ... > q;, and k is arbitrary. Making use of the one-one
correspondence between 4-numbers and B-numbers specified by the scheme
P p<— pPalpisTt (4 = . = a)
we shall obtain the following estimate for B(z}, the number of B-numbers
not exceeding x.

log A(x) ~ )% (@ — o0). (1.1)

TaroreMm 1. As x - o0,
5 b
log B(z) 2742 (logx)

v3 logloga’

This result will, in turn, lead to
TueorEM II. As x — o0,
2772 (log )}
log D(x) ~ . L-g—)—
A3 loglogx

+ G. H. Hardy and 8. Ramanujan, ‘Asymptotic formulae for the distribution of
integers of various types’, Proc. London Math. Soc. (2), 16 (1917), 112-32. Re-
printed in Collected Papers of S. Ramanujan (Cambridge, 1927), 245-61.
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The main idea of the proof is as follows. Let m be called a D-number if
d(n) s d(m) for 0 < n < m.t Then D(z) is evidently the number of D-
numbers not exceeding . We shall show that every D-number is either a
B-number or else does not differ greatly from a B-number. This will imply
a relation between B(xz) and D(«x) which will enable us to infer Theorem II
from Theorem I.

The problem of finding asymptotic formulae for B(x) and D(z) seems diffi-
cult. We are, however, able to obtain some results concerning the relative
behaviour of B(z) and D(x) for large values of z. Even this is not trivial,
for the relation between B and D—the sets of B-numbers and D-numbers
respectively—is complicated. Thus there exist infinitely many m such that
me B, m>D,} and infinitely many » such that ne D, n>5 B.§ Some
information on the relation between B(z) and D(x) is provided by

ToeorEM IIL. For all sufficiently large values of x
D(x)— B(x) > ¢,logloglog .
A more interesting fact is that B(z) and D(x) have the same asymptotic
behaviour. We shall, in fact, establish the following result.
THEOREM IV. 4s x> 0

D(z) (loglog x)?
B(x) = Lt l (log @)} ]

A number of further questions involving d(n) naturally suggest them-
selves. Thus, let F(z) denote the greatest integer & having the property
that there exists a run of & consecutive integers, say n+1, n+2,..., n+k,
such that n+k < x and d(n-}+1), d(n+2),..., d(n+k) are all distinct. We
shall prove

THEOREM V. For all sufficiently large values of

(logz)*
Fix) > 021_—0g10gx'
As regards an upper bound for F(x) we can at present prove nothing

better than (log z)t
Flz) < exp{ ®lo logx]

an estimate which follows trivially from Theorem IT. We conjecture that
the true order of magnitude of F(x) is (log ).

T It is almost obvious that & D-number is necessarily an 4-number.

I The symbol a € X means that a is a member of the set X ; a3 X means the
contrary.

§ Forlet k> 3. If my = p,...py, then my, € B, my 3 D. Also, if ng € D, d(n;) = 2%,
then n; 3 B.
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A related problem consists in the estimation of the longest run of con-
secutive integers < z all of which have the same number of divisors. This
problem seems to be one of exceptional difficulty, and we have not been able
to make any progress with it. We are not even able to prove that there exist
infinitely many integers n for which d(n) = d(n+1).

Let A(z) denote the least positive integer which does not occur among the
numbers d(z), 1 < n < 2. We shall conclude our note with the proof of
the following result.

TreoreEM VI. For x = 6, A(x) is equal to the least prime q satisfying the
inequality 297! > z.

2. The notation to be used below is as follows:

The letter ¢ denotes an arbitrarily small positive number; = denotes a
sufficiently large number, i.e. a number exceeding a suitable absolute
constant.t

The O-notation and the asymptotic formulae refer to the passage x - o0.

As usual 7(x) stands for the number of primes not exceeding «, and
Hz) for the sum Y log p.

pEx

The set of A-numbers will be denoted by 4.

Given any k, there obviously exists a unique m € D such that d(m) = k.
Moreover, there exists a unique m* € B such thatf d(m*) = k. Hence a
one—one correspondence can be set up between B and D, specified by the

conditions d(m) = d(m*), meD, m* e B.

If m € D, then m* will invariably denote the B-number corresponding to m.
Tt is, of course, obvious that m* = m.

If n = pp..pg, (2.1)
we shall write {n} = p%...pg,

where aj,..., ay is a permutation of a,,..., g, such that o] > ... > a;. Evi-
dently {n} < n.

If the canonical representation of an integer n is written in the form
(2.1), it will be referred to as its expansion. We shall also speak of the
expansion of n with exponents > [, of the expansion of » with primes > z,
and so on, when referring to the parts of the expansion of » having these
properties.

3. We shall make frequent use of two simple lemmas.

+ Whenever x is required to exceed a bound depending on €, that fact will be

stated explicitly.
t For, if k = ¢y...q,, Where ¢; = ... = ¢, then m* = ph=l. pl-1,
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Lemma 1. Let n, t be positive integers. If N(n,t) denotes the number of sets
of integers uy,..., u, such that

t=u = ... 2u, =0, (3.1)
then Nn,t) < (2n)*.
Consider the sets of integers k,, k..., &, such that
Eyt... 4tk = n; kg By 20, (3.2)

A one-one correspondence between the sets u,,..., u, satisfying (3.1) and
the sets k..., &, satisfying (3.2) may be established by the requirement that
k, should be the number of ’s having the value ». Hence N(n,?) is equal
to the number of sets of k’s satisfying (3.2), and therefore

N(n,t) < (n+1)41 < (2n)™.

Lemma 2. If m = ph..pfte D and, for some i, a;+1 =i, where
=2
bk Stk 2 < P (3.3)

and, if m s sufficiently large,
t < 2loglog m, a;+1 < 4(loglogm)2.
Write my = pP..pfid pirpEA- PR PR
Then d(m,) = d(m), and so m; = m. Hence (3.3) follows at once. More-
over, if m is sufficiently large,

P < $logm, Py < 2logm,

t < 108Pusy _ log(2logm)
log p; log 2

a;+1 < 2 < 4(loglogm)2,

< 2loglog m,

4. In this and the next section we give a proof of Theorem I. We shall

write —e&)f
y e x(z c).loglogx,

and shall assume that x > x(e).
Let me A, m < y, and suppose that p > (logz)}/(loglog z)? is a prime
factor of m. Then the exponent of p is < 3(log x)}loglog #; for otherwise

3(log )t loglogz
y=>m=>(1q) ;
g<p

logz

P > 3(logz)toglog z.3(p)

(2—e)

> 3(log x)tloglogz.$p
(logz) 9 logw
(loglogz)? ~ 4 loglogz’

> 3(10gx)§loglogx.z
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Two A-numbers < y will be said to belong to the same class if they
coincide in their expansions with prime factors > (logz)}/(loglogz)2. In
view of the remark made above the corresponding exponents must all be
< 3(log z)loglog x.

An A-number

m=pi.pR <Y (@ = ... = ay)
will be called restricted if a, < 3(logz)tloglogz. The number of such
numbers will be denoted by A j(x).

We note at once that each class contains at least one restricted number,
Hence 4 ,(x) = C(z), where C(z) is the number of classes. If K,(x) denotes
the number of numbers in the ¢th class, then

A(y) = K@)+ Ko@) +...+ Ko ().
But each class contains fewer than

(log x)s(logm%ftlaglog:m

(log ) }
log 2

i . e
= em{ (loglog x)*

numbers, For the number of primes < (logx)}/(loglogx)? is less than
3(log x)}/(loglog )3, and each exponent is << logx/log2. Hence

1 ¥

(log z)}
Ag(x) > C(z) > A(y)exp[—“@o?x?}’
2m(2—2¢) (logx)}
V3 logloga’

and so, by (1.1), log 4 p(x) > (4.1)

Now let m = p%...pfx be any restricted A-number (< y). We associate
with it the unique B-number % defined as

m = pPat..pfat.
Different A-numbers have clearly different B-numbers associated with

them.
Now, by the prime number theorem, we have, for ¢; > « = afe),

Pa—1 < (1+3e)a;loga;.
Since m is restricted, ¢; < 3(log x)!loglog z. Hence, for a; > a,
Po—1 < (1+4e)(3+ie)loglogz.a;
< (3+Le)loglogz.a,.

+ For take any A-number < y. If it is not restricted, we can make it so by
replacing each exponent which exceeds 3(log x)t loglog z by [3(log =)* loglog z].
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When a; < « this relation is, of course, trivially true. We therefore have
<< (p?___})ﬁk)(}+§€)loslogz — pft+iologlogz
< yd+icloslogz < o
Hence B@) > A2),

27,/(2—2¢) (logx)*

v3  logloga’ )

and so, by (4.1), log B(x) >

5. Consider next the B-numbers << z. Two such numbers will be re-
garded as belonging to the same class if they coincide in their expansions
with exponents > (logz)!/(loglog)3.

All prime factors of a B-number < x are < 2loga. Hence, by virtue of
Lemma 1, each class contains at most

log )}
4 2(log 2 /loglog 2) 1 (log }
(4log x) < ﬂp[?’___(loglog PE

numbers,

Let a B-number < « be called restricted if all its exponents are greater
than (log z)}/(loglog )%, and denote the number of such numbers by By(x).
Then, for a given , every class of B-numbers contains precisely one
restricted number, and so Bx(z) = C(x), where C(x) denotes the number
of classes. Hence, if K,(x) is the number of numbers in the ith class, then

B(z) = K,(2)+...+Kep(®),
and therefore
B(r) < ﬁ(x)exp[?» —(M}

(loglog x)?
= _Mogz)* 5.l
= BR(x)exp[S(lD glogx)2}. (5.1)
With every restricted B-number m = p{...p@ we associate the unique
A-number 7 = ph..plt,

where a,+1 = p, (1 <i< k). It is then clear that m,;  m, implies
By the prime number theorem we have

b; = mla;+1) < (1+€)

@
loga,

But, since m is restricted,

(logz)
L (logloga)®’
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2
Therefore b; < (24+3¢ )loglogx
and so M < (ph...pl)@+seloglogz < p(2+3eyloglogz,
This implies By(x) < A(a+3¢loglogz),

therefore, by (5.1) and (1.1),

2maf(2-+4€) (log z)t
A3 logloga'

log B(z) < (5.2)

Theorem I now follows at once from (4.2) and (5.2).

6. We shall next deduce Theorem II. Let m = pi..pk (vy,...,vp > 0)
be a sufficiently large number and suppose that »;+1,..., v,-+1 are not all
primes. Consider, for definiteness, the smallest composite »,-+1 and write

vi+1 == fg}
where q is the least prime factor of v;+1; then ¢ = ¢ = 2. Put
n = py.pe Pl Pl P PR L
and m' = {n}. Then m’ < mexp{(log m)t}. (6.1)
This inequality is established by almost the same argument as Lemma 2.
Suppose first that » = m. Since
(Pk+1)q s
P}

n
m
this implies o< By < 2logm,

g <t << 2loglogm,

m' < n < mpiil < m(2logm)leeloem < mexp{(logm)i}.

Hence (6.1) holds when % = m; when n < m it holds, of course, trivially.

Now consider a suj"ﬁclently large number m such that me D, m3 B,
m < z. We shall then obtain an upper bound for m*. First construct m’
by the process described above; if m’ 3 B, construct (m’)’ = m"; if m" 3 B
construct (m")’ = m"”, and so on. After asuitable number of steps we shall
obtain a number m® such that m® e B, mfV > B. Since, moreover,
d(m®) = d(m) it follows that m* = m®. In view of (6.1) we have

m® < m-Dexp{(logm@—V)} (1 <v <), (6.2)

where m'Q = m.
To estimate r we note that, if m = pf...pf (€ D), then

r= 3 @11
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where Q(u) denotes the total number of prime factors of %, multiple ones
being counted multiply. If Q(a,+1) > 1 (i.e. if @, +1 is composite), then,

by Lemma 2, a,+1 < 4(loglog m)?,
P < phaa < 2(logm)t,
x < 2(logm)t.
Hence r< (@.+1) < 4loglogm)? 3 1
1<k<k 1<k<k
Al Diax+1)>1
< 8(log m)t(loglog m)2,
and so r < (logx)t. Lo

Let now the numbers my, m,,..., m, be defined by the relations
mo = m,
m, = M, 4 BXP{(lOg mv-—l)}} (1 g-. ¥V *--<~. f)s

so that m < m; < ... << m,.
If 1 < m < @, then

logm, = logm,_,+(logm,_,)t
< logm, ;. {1+ (log }z)~4},
and so, by (6.3),
logm, < logm.{1+4(log }z)-%)
< logz.{1+(log %x)—é}(loga;ﬁ’
m, <z,
provided z > x4(e). This estimate is still true for m < 1z, for in that case,

putting u = x, we obtain m, < u, < al+e
Thus, for all sufficiently large m such that m € D, m 3 B, m < x we have,

U.Sing (6'2)’ m < m, < xl-l—t,
and therefore m* < Flte (& >a)

If m e D, m e B, m < x, then, of course, m* = m and the above inequality
is still true. Finally, it is obviously true when m is small. Hence

D(x) < B(a'*9) (x> x,). (6.4)
Moreover, since m << m*, we have
B(z) < D(=), (6.5)

and Theorem II now follows by (6.4), (6.5), and Theorem I.
7. Theorem III can be established very rapidly. Let ¢ and » be defined

s
By, e Tnedualiice D1y T < PreeDy Pras

22!’_1 < p! < 22’-}-1_1, (7-1)
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and write a,=2¥p. p... ., v=3,4,.,r).
Then a, < Py <, d{a,) = 22,
Denote, for 3 < v << r, by m, the D-number satisfying
d(m,) = 2+v-2, (1.2)

Then clearly m, <<  whilst, in view of (7.2) and (7.1), we have

My = Pro-Pryy—g = Pr--Pryy > &
Thus there exist at least »—2 D-numbers < x (namely m,..., m,) for
which the corresponding B-numbers exceed . Hence
D(z)— B(x) = r—2 > ¢, logloglog x.
8. The next three sections contain the proof of Theorem IV. We have
D(z) = B(x)+ Dy(x), (8.1)
where D,(z) is the number of m € D with m < x, m* > =. It is clear that
Dy(x) only enumerates D-numbers which are not B-numbers.

If m € D, m 3 B, and m = p}...pf*, then at least one a;+1 is composite.
In that case we call a, a critical exponent and p; a critical prime of m.

Let D,(z) be the number of numbers counted in D,(x) which possess at
least one critical prime < 2(log x)}, and let Dy(x) be the number of numbers
counted in D(x) all of whose critical primes are == 2(log z)}.

We first estimate Dy(x). If p, < 2(logz)? is a critical prime of m e D
and a;+1 =g ({ = ¢ = 2), then, by Lemma 2,

a; < & < 4(loglogx)2. (8.2)
A critical prime p; can be chosen in at most 2log = ways, and, by (8.2), the
corresponding critical exponent in at most 4(loglogx)? ways. The expan-
sion of m preceding p; can be chosen in at most

logx Aog)¥
i)
ways. Again, by Lemma 1 and (8.2), the expansion of m succeeding p,
can be chosen in at most

(4 lOg x)ﬁ(loglogx)‘
ways. Hence

logz)}
Dy(x) < 2loga. 4(loglog m)z(}ig_“")ﬂ *7 (41og )stostogar

log 2
< expie;(log x)iloglog z}.
Hence, by Theorem I and (8.1),
D(z) < B(x)+(logx) - B(x)+ Dy(x).
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In view of (6.5) the proof of Theorem IV will be complete if we can show that
loglog x)?
D (loglog2)* b . :
9. Weshall denote by D, the set of integers counted in Dy(x). We observe
that every critical exponent of every m € D, must be equal to 3. For if
a; > 3 were a critical exponent, then it would be possible to write
a’i+1 = tq:
where ¢ > 3, ¢ = 2; in view of Lemma 2 this would imply
P} < Prq <2logz,  p; < 2(loga),
which is contrary to hypothesis. Thus every m € D, has the form
M = PPR i1 DR Pisre DR Proaeo-Due (9.1)
Here the squares or the first powers of primes, or both, might be missing.
The letter ;1 denotes the expansion of m with exponents > 3, say
B = PP
where ¢, > ... > a, > 3 and a,+1,..., a,+1 are all primes. We shall con-
tinue to use u in this sense throughout this and the next section and shall
refer to it as the kernel of m.
Since m € D, we have m 3 B. Hence the sequence of numbers
m = m9 m', m",..., m&D, mH = m*
can be constructed as in § 6. Now m < &, m* > z and therefore there
exists a smallest value of % (depending on m) such that
m® < x, mED > g,
‘We shall write m® = .
It is then clear that %' > x. The correspondence m — # is unique and,
since d(m) = d(m), it follows that m, # m, implies %, # M,. The number
of numbers in D, is therefore equal to the number of 7.
Now if m is given by (9.1), @ will have the form
M = PP} q..-P5 Pa41---DrPri1 P (0> 7).
Here the squares or the first powers, or both, might be missing. By Lemma 2
(applied to m) we know that
P8 < Punr (9.2)
But 0 < s, and so
2log )t < Prig < oo < Py < 2(log )t (9.3)
Let C, be the number of numbers in D; having kernel p, i.e. the number
of 7 with kernel u. We shall show that

C, < c;log. (9.4)
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A number 7 associated with p may be of the following four types:
(i) BPr1DPo1 PP Po (@ >T >0 >71);
(i) pplaDiPesrpr (r>0>71);
(i) pp}igPeplir-pt (r >0 >1);
(iv) pplidd (0 >7).
Let the contributions of these four types to C, be denoted by
oY (v=1,2,3,4).
We shall estimate these expressions in turn.
First let 77 be of type (i). It is then easily verified thatt

M = pPRiye Py PoeDEy Dree Dy Paria

I

Hence ”73 — &'ﬂ,
m PePr
and since m < @ << 7’ this implies
Pon _ 2logz
g < 2 £ S 9.5
5 Po Po ko

Again, by (9.3),
z Putr . 2logz ;
A< < g < logay — Hoe@l
and therefore 2z(loge)— <m < @. (9.6)

In view of the construction of # it is clear that w = %. Hence, by (9.2) and
(9.3),

Pt = Pust = Pra = 4loga)d. (9.7)
Now Cﬁ}’ is equal to the number of possible choices of o, 7, w. In view of
(9.5) and (9.3) the number of choices of ¢, 7 does not exceed

2logx

< cglog .

2(loga)t < p <2(loga)t
To any given values of ¢ and 7 corresponds at most one value of w. For
suppose, if possible, that 7, and 7, (> ,) have the same values of o, 7
but different values of w. Then, by (9.7),

"‘,;:; > 4(logz)t, (9.8)
and this is impossible since, by (9.6), both 7; and , lie in the interval
(2x¢(logz)—*,x). Thus we have

O < cgloga. (9.9)
Next, let m be of type (ii). We then have

W = pPYi Do Po PoriePrPrits
t If ¢ = 71, then there are, in fact, no cubes in the expansion of m’'.
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and Cfp is equal to the number of possible choices of o, 7. Now ¢ can ob-
viously be chosen in at most 2log x ways, and to each o there corresponds
at most one . For we have

Do = 2(logx)t,
and therefore
M P 2logx

1<% =5 <dflogap

= 1(log x)3.

Hence (9.6) continues to hold in the present case. Moreover, m must have

the form
M = pP}i1.Ps Posr--Prr

Hence, by Lemma 2, p,,, = p2, and so

Pri1 2 P = Hloga)t.
Thus, if /m, and 7, (> m,) have the same value of o but different values
of =, then (9.8) is still valid. But (9.6) and (9.8) are incompatible, and so
our assumption is untenable. We therefore have

CP < 2loga. (9.10)
If m is of type (iii), then

W = pptige Do 1 Do Pr-1P2 Prsvs

—_

and so Lt e,
m PgPq
But p,.,/p, < 2, and therefore this inequality cannot be satisfied. Hence
0P = 0. (9.11)

Again, if 7 is of type (iv), then

M = pPiisePy-1PoPorss

-

 BERLE ]
m Pg
But p,.; < p2, and so we have a contradiction. Thus
P = 0. (9.12)

The relation (9.4) now follows by virtue of (9.9), (9.10), (9.11), and
(9.12), and we therefore have

Dy(x) = 3, C, < heylogz, (9.18)
n
where % denotes the number of different kernels in ;.

10. If pisthe kernel of a number in D,, we shall denote by B, the number
of B-numbers < « with p as their kernel. We shall show that

(logz)t
B, > cg—[loglog 7 (10.1)
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Let u be the kernel of a number m € D, given by (9.1). Then, since
2(log z)t < P,y < 2(logx)t,
we have, by Lemma 2, Pusy = 4(log )i,

Hence 2(log 2)f < H(p,)—3(p,). (10.2)
: (log x)t
T o
Write £= 2loglog ’

and consider the number

N = pPrsgeeDi PisyPys
where r < ¢ <j < £. Then p; < $(loge)}, and
< pexp{28(p,)} < pexp{2(log)t}.
Hence, by (10.2),
n = pexp{ﬁ(pu)—t‘}(p,.)} = PPy Pu S MK 2
It follows that » is enumerated by B, and therefore
(logx)*
B, = - il
85 r<f§j <¢ = = 1081083’)2
This establishes (10.1) which, in turn, implies
log x)*
B 5 B, > he LOBER 10.3
(the summation being extended over the kernels of numbers in 1,). The
relation (8.3) now follows at once by (9.13) and (10.3), and the proof of
Theorem IV is therefore complete.

11. In this section the letter r, as well as p and g, is reserved for primes.
To prove Theorem V, let
= [M} (1L.1)

2loglog x

As previously, py,..., p, denote the first & primes; g,..., g; now denote, in
that order, the first & primes exceeding (logz)}. We shall write ¢ = g,.
Each p, is less than (log )! and each g, is less than 2(logz)}. Hence

M = pf..pf < at. (11.2)
Let T be the set of positive integers ¢ satisfying the system of congruences
t+v = p? 1 (modp?) (v=1,2,..,%)
and the inequality ¢4k <. When 1 <p <k and r % p,, let T(g,7)
denotet the set of those numbers ¢ € T' which satisfy the additional con-
gruence t+p = 0 (mod r2-1).

T Whenever the symbol T'(u, 7) is subsequently used, it will be understood that
l<pu<gkr£p,
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Finally, let 7'* be the set of those numbers ¢ € 7" which do not belong to

any T(g,r).

The theorem will have been established if we can prove that 7'* is not
empty. For, if e 7', then

PR (E+p),  pEf+p) A<p<h),
1 (+p) QA <p <k #p)

Hence M | d(t+p), Gl dit+p) A< p,v <k p#v).
The k numbers d(t+1),..., d(-+%) are therefore distinct and, since i+k < =,
Theorem V follows by (11.1).

If 8 is any finite set, we shall denote by [§| the number of its elements.

To estimate |7'(u,7)] we first note that, if » < p,, say r = p;, then
T(u,r) is empty. For otherwise

it (E—p),

and so 2¢-1 < k, which is contrary to the definitions of k and ¢. It is also
obvious that 7'(u, r) is empty when 7¢-1 > x. On the other hand, ifr > p,,
ra-1 < 2/ M, then &
[T(p, )| < m"'l»

whilst, if /M < 1?1 < @, then

|T(u, )] < 1.
Hence 2 5
T, )| < — 1 1
Fa TN 2 (Ei) 2,
2 ka 1 —} 2k,
B 1 2% 1
u 2 e Zg PR 2e—1+ _[ 1< 24-2’
r o=
and therefore
kx
T, < 2 exli@-1 %
14%4&' (B 1) < 2+ xlie-1) < Mlogx+x

Hence, using (11.2), we obtain

* L oW, | S —xt

This completes the proof.
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12. Finally we prove Theorem VI. For 6 < x < 16 the assertion is
easily verified directly.{ Assume next that z > 16. Denote by ¢’ the
prime preceding q, so that

20V L o< 208,
Let & be the set of numbers d(n), 1 < n < x. Then clearly m € E when

m < ¢, and ¢ 5 . It remains only to show that every number strictly
between ¢’ and ¢ belongs to E. Let

¢ <m<gq,
and write m=ab (a>=b=2).
Since d(2%-13%1) = gb it suffices to show that

2&—136—1 g. 2q’—1;
in other words that a-+-(b—1r < ¢, (12.1)
where = = log 3/log 2.
Since # > 16 we have ¢’ = 5 and so, by Bertrand’s postulate,f

g < 2¢'—2.

For b = 2 this implies 2¢ << 2¢'—2, and s0 a+2 < ¢’. The inequality

(12.1) is then evidently satisfied. Whenb > 2and 5 < q' < 19 the validity
of (12.1) is easily verified directly. When b > 2 and ¢’ > 23 we have

g = 8,

= 274'(2«;:') >2b >
bq +o-lr<g
and (12.1) follows at once. Theorem VI is therefore proved.

Additional remark (30 June 1951). It may be worth mentioning that the
ratio of two consecutive A-numbers tends to 1, and that the same result
holds also for B-numbers and for D-numbers. For 4-numbers and D-
numbers this is obvious since D (and therefore 4) contains the set of highly
composite numbers; for B-numbers, on the other hand, the proofis a little
more troublesome.

+ We have, in fact, A{z) = 5 for 6 < & < 16, and A(16) = 7.

1 E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen (Berlin and
Leipzig, 1909), i, § 22.
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