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1 . Let d(n) denote the number of divisors of a positive integer n, and
let f (k) be an irreducible polynomial of degree l with integral coefficients .
We shall suppose for simplicity that f (k) > 0 for k = 1, 2 ; . . . . In the
present paper we prove the following result .

THEOREM . There exist positive constants c1 and c2 such that

c,xlogx<. E d(f(k)) <c2 xlogx
k=r

7

(1)

for xi2 .

Throughout the paper x is supposed to be large, and c 1 , e2 , . . . denote
positive constants which are independent of x but may depend on the
polynomial f.

The lower bound in (1) is not difficult to prove, and is in fact known - .
It would not be hard to show that

E dx (f(k)) = c3 x log x+o(x log x),

	

(2)
k=I

where dx (n) denotes the number of divisors of n which do not exceed x .
In §§4 and 5 we give a proof that the sum in (2) is greater than c1 x, logx,
from which the lower bound in (1) follows .

The upper bound in (1) is much more difficult to prove, since it is not
easy to find an upper estimate for d (f (k)) in terms of dx(f (k,)) . It is possible
to do so if 1-= 2, and in this case Bellman and Shapiro'r have proved that

E d(f(k)) = c4 x logx+o(x logx) .

	

(3)
k=I

Very likely (3) holds also if t > 2, but I cannot prove this .
The method used to prove the upper bound in (1), if combined with

Brun's method, would enable one to prove that

E d(f(p)) = 0(x) .
p5x

This answers a question proposed in Bellman's paper (loc . cit .) .

* Received 3 January, 1951 ; read 18 January, 1951 .
t Bellman, Duke Math. J ., 17 (1950), 159-188 .
1 This result is unpublished .
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2. We need several lemmas for the proof of the upper bound in (1) .

LEMMA 1 .

	

k= 1 {d (f(k)) r
2

< x (log x)c5 .

This result is due to van der Corput* .

LEMMA 2 . Let k 1 , k 2 , . . ., kt be distinct positive integers, all less than x,
and suppose that t < x (log x)-

	

Then

Z d (f(kt)) < x .

This follows at once from Lemma 1 by Schwarz's inequality

Y1 d(f(Ic1 )) < ft

	

~d(f(kz))~-2} <x .
i=I

	

~ i=1

Let p(a) denote the number of solutions of

f (lc) - 0 (mod a), 0 < k < a .

Let D denote the discriminant of the polynomial f(k) . If p is any prime,
we use the notation pQ I D to express the fact that p° is the greatest power
of p which divides D .

LEMMA 3 . We have

(i) P(ab) = P(a) P(b) if (a, b) = I ;

(ii) P(p,) <l if p /D ;
(iii) P(p° ) =P(p2U±l) if p, J1D and a > 2Q ;

(iv) pV) < cs always .

The first two results are well known and trivial . The third result was
given by Nagell f , who also showed that (iv) is valid with c 6 = 11D 2 . As it
stands, with an unspecified c s , (iv) follows from (ii) and (iii) .

LEMMA 4 . Suppose that I < u < x . Let N denote the number of
integers k satisfying

f (k) - 0 (mod u), 1 < k < x .

2u P(u) < N < 2u P(u) .

The proof is immediate, since obviously

[u] p(u) <N < ([ u ]+1) p(u) .

Proc. K. Neder. Akad. van . Wet., Amsterdam, 42 (1939), 547-553 .
t " Généralisation d'un theorems de Tchebycheff ", Journal de Math ., 8e ;eerie, Tome IV

1921 .



LEMMA 5. There exists c 7 such that the number of positive integers

k G x for which f (k) is divisible by a prime power p with a > 1 and

p° > (log x) c?,

	

(4)

is o( x(log x)-cs) .

By Lemma 4 and Lemma 3, the number of integers k in question is
less than

2x E P(p°) < 2c 6 x E p ° < 4c, x !

	

E

	

(log x)-c?-}-

	

E

	

p-2 1-

P, a pn

	

p.a

	

I P<(logx) lc ?

	

p>(logx)P7

and the result follows on taking c 7 > 2c, .
We define x by

x = X(log log x) -,2 .

LEMMA 6 . Let f (k) be factorized into prime powers as f (k) = H p°, for

each positive integer k . Then the number of values of k <_ x for which

fl p° > x'

	

(5)
p<z

is o (x (log x)-C,5 ) .

Consider first those values of k for which there is one at least of the
prime powers pa occurring in the product (5) which satisfies pa >,Y . Each
such prime power satisfies (4), and a > 1 . Hence the number of values of
k of this kind is o (x (log x)-l-5 ) by Lemma 5 .

There remain those integers lc for which every prime power in (5) is
less than x . By (5), every such value of f (k) has at least I (log log x) 2
distinct prime factors, whence

d (f(k)) > 2 ^(log log x)2 > (log x) 2cb .

By Lemma 1, the number of such integers is 0(x(logx) -3c5), and this
completes the proof of the present lemma .

LEMMA 7 . We have

()
p ,P(p)-lo

x

gx +0 (lo
x
g2~

,

	

6

E P (P) = log logx+c 8 +o(1) .

	

(7)
pSx p

The first result follows from the prime ideal theorem*, which implies
that

Np x 1 log
-
+O (loge X) ,

ON THE SUM E d (f(k)) .

	

9
k=l

* See, for example, Landau, Algebraisehe Zahlen, 111 .
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where the summation is extended over prime ideals p in the field k(O)
generated by a root 0 of the equation f(O) = 0, and N denotes the norm .
We have Np = pf, where p is a rational prime and f a positive integer .
We may ignore rational primes p which divide D, since they contribute
only 0(1) to the sum in (6) and to the sum last written above . If f = 1,
the same rational prime p arises as Np for p(p) different prime ideals p .
When f > 1, the same p arises from at most l prime ideals, and the corre-
sponding part of the last sum is at most

l( E 1+ E I+ . . .),
p 2<x

	

p s<x

which is 0(0 logx) . This proves (6), and (7) follows from (6) by partial
summation .

LEMMA 13 . For sufficiently large y, we have

z P(2?)
y<p<y 2

This is obvious from (7) .

LEMMA J . We have

pllx 1+P(P)+p( z ) + . . .~ < c9 log x .

This follows from (7) on using (iv) of Lemma 3 for
For the logarithm of the above product is

E P(2~)-1_0(x)p<x 7~
whence the result .

3. We now come to the proof of the upper estimate in (1) . By Lemmas
2, 5 and 6, we have

E 1 d(f(h)) =E
l d(f(k)) +0(x),

k=

p (p °`) when a > l .

( 8 )

where in E1 the variable of summation k is restricted to positive integers
not exceeding x which satisfy the following two conditions

f(k) # 0 (mod pa) if a > 1 and p° > (log X)"'7,

	

(9)

lI p , < xA,

	

(10)
p<z

the last product being extended over the prime powers composing f(k) .
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We can obviously restrict ourselves to values of 1c for which f (k) > x .
If f (k) = ph . . . p; , we define j by

where in E 2 we take those values of k satisfying (9) and (10) for which
p;+i < x=z, and in E 3 we take those for which P,+1 > X .

First we estimate the sum E 3 . Any prime factor of bk is greater than
x"", and since f (k) < xl]-1 it follows that the total number of prime factors
of bk (multiple factors being counted multiply) is less than 32(1+ 1) . Hence

d(bk) < 232(1+1) .

	

(14)

Also, since ak < x, we obviously have

d(ak ) < ds(f(k))

	

( 1`)

By (14) and (15),

E3d (f(k)) < 232(l+1) E dx(f(k)) .
k=1

The sum on the right here is the number of solutions of f(k) - 0 (mod u)
in integers k and u satisfying 1 < k < x, 1 < u < x . By Lemma 4, this
number is less than

2x E P(u) .
U=1' V,

Using Lemma 3 (i) and Lemma 9, we obtain

E3d(f(k)) <c10xpl1 l l+ P~ )+P(p2) } . . .~ < c11xlogx .

	

(16)

We have now to estimate the sum E 2. For each k in this sum we have
Pj+1 < x»'7 . We now prove that

pj+' < x=

	

(17)

In fact, if this were false there would be an exponent (3 such that
1 < (3 < a,+1 for which x' < ps+I < x ,,, , and this would contradict (9) .

It follows from (l1), (12) and (17) that for the k in E2 ,

ak >
x

> x 1 .
pi+1

ph . . .p'' <x<ph . . .p;+' . (1.1)
Put

ak = p1 . . . p, , bk=f k)/a l,. . (12)

Write

Eld(f(k))

	

E2d(f(k)) --I- E3d (f(k)), ( 13)
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In view of (10), we have now

x <
p'-j-1

	

(19)
We write

E2d(f(k)) = E E2r)d(f(k)) ,

	

(20)
r

where in E( r) the prime factor p;_ l satisfies

x11(r+ 1) < p; + 1 < X"" .

By (19), the values of r in question satisfy 32 < r < (log log x) 2 , since
x = x(Iog log x)- For any Ic in E(r), the total number of prime factors of b,.
is less than (1+1)(r+1), and it follows that

D2)d( f(k)) < 2(1+I)(r+1)D(r)d(ak) .

	

(21 )

Since at least half of the divisors of a k are greater than or equal to s/a k ,
it follows from (18) that

d(ak) < 2d+ (ak), (22)

where d+- (m) denotes the number of divisors of m that are > A It follows
from (9) and (10) that all the divisors of a ),, that are > x= are included in a
set of numbers n(1) , n( " ) , . . . satisfying

(i) xI < nj(r) < x,

(ii) if p nor) then p < xt Ir, and p(p) > 0,

(iii) if p° II nor) and a > 1 then pa < (log x)''7,

(iv) TI' p° < x.,

where the last product is extended over pa

	

p < x. The sum Ezd-+(ak )
does not exceed the number of solutions in Ic and j of f(k) _- 0 (mod
Hence, by (21), (22) and Lemma 4,

E2 ) d(f(k)) < 2O+1)(r',-1)-+-2 1 . E P(nj' ))l	 nV)

	

(23)

We have now to estimate the last sum. Let P,") denote the interval
(x1I(r2`+'), x 11(r2`) ), where t = 0, 1, . . ., Z, and Z is the Iargest integer for which
r2Z < (log log x) 2 . Any number 4) must have at least N,(") prime factors
in at least one of these intervals, where

N(r)= [r(t+ 1)]+i .32

For a prime in one of these intervals is at least equal to xWog log x)-°, and
so can only divide nor) to the first power, by condition (iii) above . Every
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00 1E P (n; ))) < c s log x E N(r) t < 2c s log x \ [32] ~ I
-1

s-o a

13

prime greater thanx comes in one of the intervals, and if the above statement
were false we should have

n(r) < ([l ' p°) 11(x 1 / (r2t) ) r(t+1) / 32 .

m

Since E (td- 1)/21 = 4, this gives nor) < xi, contrary to (i) above .
t=o

We define s to be the least integer for which nor ) has at least NSr) prime
factors in the interval I (r) , and write

E
p(nj(r) ) - E E p(nr) )

j

	

nor)

	

8 3(s) nor)

where the inner sum on the right is extended over those values of j for
which s has a prescribed value . We put nIr) = uv, where u is composed
entirely of the prime factors of nor) in the interval I(r), and v of the other
prime factors . As already observed, u is square-free . By the multi-
plicative property of p [Lemma 3 (i)], we have

~11 ) P( ,r) )

	

(~ P(u')) (~ P vv))
(r) v~

where the summation on the right is extended over all u and v which divide
any nor ) for which s has the prescribed value . Since u is square-free and
has at least N = N(r) prime factors, we have

E P(u) < 1 (E P(p))
N

U U

	

NU p p )

the summation being over primes p in I8(r) . By Lemma 8, it follows that

E P(u )

	

1	 < _ N = N(r) .

	

(26)
U u

	

N!

	

s

For the sum over v, we use the simple estimate (Lemma 9)

E P(v) <~Hx
{ i+ P + 2 ) + . . j <c9iogx .	 (P)P(P

V

From (25), (26), (27),

P(nr))
<

cs log x

	

(28)
j ) nor)

	

N r) !

By the definition of N(r) we have, since r >, 32,

r
32] < Nor) < N(r) < . . . .

Hence, by (24) and (28),

(24)

(25 )

(29)
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Finally, by (20), (23), (29),

Z2 d (f(k)) < 2c 3 x log x Z 2(t+I)(r+1)+2 ([ r
r=32 J

	

1

2
< c 12 X logX.

	

(30)

The upper bound in (1) follows from (8), (13), (16) and (30) .

4. To prove the lower bound in (1), we use another lemma .

LEMMA 10 . For large y, we have
V
E P(k) > c13y
k=1

Let ~K (8) denote the zeta-function of the field K = k(0), so that

~K (8) = E (Na)-,; = H {1-(Np)-s}-l
a

	

Y

where the sum is extended over all the ideals a of K, and the product
over the prime ideals of K. It is well known* that provided pXD, the
factorization of a rational prime p as

p = p I p 2 . . ., where Np1 - pri, etc .,

corresponds to the factorization

f(x)=fI(x)f2(x) . . . (mod 2),

where f1 (x), f2 (x), . . . are irreducible (mod p), and are of degrees r 1 , r 2 , . . . .
Obviously p has at most l prime ideal factors, provided pXD.

We split the product defining ~a(s) into three parts . The first part
arises from the prime ideals p for which Np = p 9 with g > 1 . This is easily
seen to be a regular function of s = a+it for o > 2 . The second part arises
from the prime ideals p for which p D, and is regular for a > 0 . The
third part arises from the prime ideals p for which Np = p and p%D. The
number of such prime ideals corresponding to a given p is the number of
linear polynomials among f1 (x), f2 (x), . . ., and so is p(p). Hence

~x(8 ) = 0(8 ) H

	

_p-I;)-1(21)'
pXD

where ~(s) is regular for a > 2 .
Define p' (n) by

EP'(n)n-s = H f1+P(p)+P(ps)+ . . .}
n

	

pXD

	

Ps

	

p

H ~1+.P(p) 1 3
pXD l p -1

* See Dedekind, Gesammelte math. Werke, I, 202-232 .



since p(p") = p(p) when p, D . Since, for large p,

log
C
1+P (P) -log (1

	

y

)-vcr> _ 0( 2 ))

it follows that

E log (i+ P(p)) + E P(p) log (1- l)
27XD

	

p7 - 1

	

pXD

	

P s

is regular for a > 2 . Taking exponentials, we obtain

E p' (n)
n_s

= ~g(s) T (s),n

where ty(s) is regular for a > 2 .

Write

	

SIC (s) = E a,, m , k (s) = E a,,W s •

Y

	

y
Then

	

E p' (n)

	

E ac ad = E ac E ad .
n=I

	

cd<-y

	

c=1 d.y/c

It is well known* that
z
E a,, = c13zT 0 (zI a )9n=I

where 5 > 0 . Since E a,o-I- I s converges absolutely, we easily deduce that
y

	

y
E P(76)> E P'(0 = c14y+O(y 1 s) .

7L-1

	

n=1

This proves Lemma 10 .

5 . To prove the lower bound in (1), it suffices to prove that

E dx (f(k)) > c 1 x log x.
k=1

The sum on the left is the number of solutions of f (k) - 0 (mod y) with
1 < k < x, 1 G y < x . By Lemmas 4 and 10, and partial summation,
it is greater than

ax
E P(y) > ?x E y-2 E p(k)
y=I Y

	

y=1

	

k=I

x
> c13 x E y-1 > c1 x log x .

Y-1

The University,
Aberdeen .
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* Landau, Algebraische Zahlen, 131 .
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