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1. Let din) denote the number of divisors of a positive integer a1, and
let, f(k) be an irreducible polynomial of degree | with integral coefficients.
We shall suppose for simplieity that f{k) =0 for k=1, 2, ... In the
present paper we prove the following result.

Tuworem, There exist positive constants ¢, and oy sueh that

=
e loge = X rﬂ(_fl[k_}} < ey loga (1)
Ewa]
Jor m =2,

Throughout the paper x is supposed to be large, and ¢, e, ... denote
positive constanle which are independent of = but may depend on the
polynomial f.

The lower bound in (1) is not difficult to prove, and iz in fact knownt.
It would not be hard to show thiat

2 d{ (k) = ey log z-f-olz loga), (2)
Ll

where d.(n) denotes the number of divisors of # which do not exeeed .
In §§4 and 5 we give a proof that the sum in (2) is greater than ¢, = logz,
from which the lower bound in (1) follows.

The upper bound in (1) is much more difficult to prove, sinee it is not
easy to find an upper cstimate for :I( f{k}) in termis of d ,{ JUE) jl 1t is possible
to do se if { =2, and in this case Bellman and Shapivo have proved that

i fi(f{ﬂ:}) = oyx logwr+-o(x logz). {3
f=1
Very likely (3) bolds also if [ = 2, but I cannot prove this.

The method msed to prove the upper bound in (1), if combined with
Brun’s method, would enable one to prove that

rilad{fwj} = ().

This answers & question proposed in Bellman’s paper (loc. wit.).

* Neeoivod 3 Janunry, 96l: read I8 Janoary, 1951,
1 Bellinan, Dule Math. J., 1T (1950), 160-1d8.
I This vesult i unpublished.
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8 P. Enpos
2. We need several lemmas for the proof of the npper bound in (1),
LEmma 1. 2 a .1':. 4 £)s.
2 {a(fm)}* <elogay

This result is due to van der Corput®.
Lemma 2. Let ky, kg, oo, & be distinet positive integers, all less than w,
and suppose that t < x(logw) s, Then

= d( flk)) <a.
This follows at ence from Lemma 1 by Schwarz's inequality :
3 a(se) < [t 2 {a(fw) ] <.
Let pla) denote the number of solutions of

flk)y=0 (moda), 0=<k<a.

Let D denote the diseriminant of the polynomial f(£). If p is any prime,
we use the notation p”|| D to express the fact that p< is the greatest power
of p which divides [, '

LEmyma 3. We have
(i) plab) = pta)plb) if (@, b)=1;
(i) plpr) i if p/D;
(iii) plp7) = plp¥eH) if p*|| D and a> 20;
(iv) plp") < ¢g always.

The fivat two results are well known and frivial. The third result was
given by Nagellf, who also showed that (iv) is valid with ¢, = 1% As it
stands, with an unspecified g, (iv) follows from (ii) and (iii).

Levma 4. Swuppose that 1 <wu=z. Let N denote the number of
infegers T satisfying
flE)=0 (modu), 1=k=um
x 3 2z
Then I plu) =N < =5 plu).

The proof is immediate, since obviously

[2]ow < <([5]e1) e

® Pode KL Neder, Akad, van, Wel., dasterdam, 421031, 547-553.
1 Géndmlisation d'un thénrdéme de Teheliyohef! ', Journal de Math., Se wérie, Tome IV
162},
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Lessa 5. There exists ¢; such that the wumber of positive infegers
k < for which f{k) is divisible by a prime power p*, with « = 1 and

p* = (logz)*, (4)
s n(:u[lugm-j"'i}.

By Lemma 4 and Lomma 3, the number of integers k in question is
less than

2 Z &"Fﬂ‘;ﬂqz Epe<iderx : E (logzys4 X Pt
moae

P < log £ b PETE LU
and the result follows on taking e, > 2¢,.
We define 2 by
E ST m{lﬂﬂ log 4‘1_1.

Liesaa 6. Let f(k) be factorized into prime powers as fik) = 1 p*, for
each positive inleger k. Then the number of values of k <= for which

Il py=a (8)
p<E

is u{xl,'lug#r"i}.

Congider first those values of & for which there is one at least of the
prime powers p* ocourring in the product (5) which satisfies p* =&, Each
such prime power satisfies (4), and o > 1. Hence the number of values of
k of this kind is o(z(log ) | by Lemma 5,

There remain those integers kb for which every prime power in (5) is
less than . By (5), every such value of f(k) has at least !(log logx)*
distinet. prime factore, whence

d( fk)) > 2ioston=t’ . (loga)ss,

By Lemma 1, the number of such integers ix 0| x(logz)*: ), and this
completes the proof of the presont lemma,

Lemsa 7. We have

x x
0= gz +0 (i) *
¥ O _1og logatcyoll). M
iy I

The first result, follows from the prime ideal theorem®*, which implies
that
2 =2 s
Noes l“31+0(@1)'

* Hen, for example, Landau, Aigebratsche Zahlen, 111,
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where the summation is extended over prime ideals y in the field k(f)
generated by a root § of the equation f{f#) = 0, and N denotes the norm.
We have Np=p/, where p iz a rational prime and f a positive integer.
We may ignore rational primes p which divide D, since they contribute
only O(1) to the sum in (6) and to the sum last written above. If f=1,
the same rational prime p arises as Np for p(p) different prime ideals p.
When f = 1, the same p ariges from at most | prime ideals, and the corre-
gponding part of the last sum is at most

i 214 2 140,
(p’f{.r e T )

which is Ozt logz). This proves (6), and (7) follows from (6) by partial
summation.

Levma 8. For sufficiently large y, we have

o) .
y<p=yt P
Thia is obhvious from (7).
Leswa % We have
{ +ﬂﬂ e P{F } |. <= ey log &
P 7

This follows from (7) on using (iv) of Lemma 3 for p(p°) when o > 1.
For the logarithm of the above product is

% EEH—LG{I}.

pEE
whenee the resalt,

3. Wenow come to the proof of the upper estimate in (1). By Lemmas
2. 5 and 6, we have

£ a( 1) = 2,a( 1) +0) ()

where in ¥, the variable of snmmation % is restricted to positive integers
not excoeding @ which satisfy the following two eonditions

fk)ZE0 (mod p*) if a>1 and pr = (logz)r, (9)
I p* <ab, (10)
pei

the last product being extended over the prime powers composing f(i).

.
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k=1

Wae can obvionsly restrict ourselves to values of & for which f{k) = a.
If fik) = p3r... poe, we define j by
I

PP sE<pp...pEY. j {11)
Put
=P .. 7, b= f(k)a. (12)
Write
S, d( f(k)) = Sqd( f)) 42, ( (1)), (1)

where in X, we take those values of I satisfying (9) and (10) for which
Py = o, and in X, we take those for which py, = %

First we estimate the sum £;. Any prime factor of b, is greater than
a2, and ginee fk) < =™ it follows that the total number of prime factors
of b, (multiple factors being counted multiply) is loss than 32(14-1). Hence

(b} < 2881, (14)

Also, sines a, <@, we obyiously have

dfa) <, f(k)). (15)
By (14) and (15),

Zia( ) <20 £ . 1)

The sum on the right here is the number of solutions of f(£)=0 (mod )
in integers k and w satisfying 1 <<k <2, 1 <<w <<z. By Lemmu 4, this
number is less than

x ol
Qe X M
u=1

Using Lemma 3 (i) and Lemma 9, we obtain
[ 2
Esd{f{k}) <epe II {1+ ﬂ-?11+9%1+...{ < oy lnga. (16)
% pex | e b /
We have now to estimate the sum X, For each & in this sum we have
Pua == We now prove that
P =k (17)

In faet, if this were false there would be an exponent f such that
1< B <a;, for which o < pf | <%, and this would contradict (9).
It follows from (11), (12) and (17) that for the k in X,

x
i1

@G> -F g, (18)
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In view of (10}, we have now
TSPy = (19)
We write
Sod( f()) ==z (k). (20)
r
where in Ef' the prime factor p, , satisfies
gellir+1) ) ilir

By (19), the values of ¢ in question satisfy 32 <r = (loglogs)®, since
=zl Por any kin B, the total number of prime factors of b,
is less than (f-4-1)(r-1), and it follows that

BOA( flk)) < WM d(a,), (21)

Rince at loast half of the divisors of a, are greater than or equal to 4/,
it follows from (18) that

) < 2 (ay), (22)

where d 1 (m) denotes the number of divisors of m that are =2t Tt follows
from (9) and (10) that all the divisors of &, that are = #f are included in a
set of numbers o), 22, ... satisfying

(i) at <mP <1,

(i) if p|uf? then p <", and p(p) =0,
(iii) if p*||nf? and a =1 then p* < (logx)™,
(iv) I p= <2,

where the last product is extended over p* | n{?, p <&, The sum ZPd* ()
does not exceed the number of solutions in b and j of f{k)= 0 (mod #{'}.
Hence, by (21), (22) and Lemma 4,

fry
Bpd( f(k)) < gesveg 2 o (23)
4

We have now to estimate the last sum. Let I} denote the interval
(g ir2*h 20ty wwhere t =0, 1, ..., &, and Z is the largest integer for which
2% < (log logx)®.  Any number )" must have at least, NP prime factors
in at least one of these intervals, where

N = [’%}1;’] +1.

For a prime in one of these intervals is at least equal to wpiflowlesn™ and
so can only divide wf” to the first power, by condition (iii) above. Every

e ——
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prime grester than F comoes in one of the intervals, and if the above statement
were false wo should have

nif < (11 =) T (tira v 0o,
£

Since X (£4-1)/2¢= 4, this gives af? <24, contrary to (i) above.
im0

We define & to be the least integer for which nf” has at least N prime
factors in the interval ', and write

plnf) p(nir)
= .
? wi E i-] ﬂ?-] ' (24)

where the inner sum on the right iz extended over those values of j for
which ¢ has a prescribed value. We put #f' = uw, where u is composed
entirely of the prime factors of w{” in the interval I\, and v of the other
prime factors,  As already observed, » is squave-free, By the multi-
plicative property of p [Lemma 3 (i)], we have

5 i) < f:-: &*}) (1. E.{_"'})' (25)

1) “f;'“ w B ¥

where the summation on the right is extended over all w and o which divide
ity nf for which & has the preseribed value,  Sinee w is square-free and
hag at least N = N7 prime fuctors, we have

plu) _ 1 (g ploh ¥
E % JNH% p !

the summation being over primes p in I, By Lemma 8, it follows that

(!
3 e L, N=mp. (26)
For the sum over o, we use the simple estimate (Lemma 9)
2e < (1468 e L <o, loga (21)
0 U p&: }
From (25), (26), (27),
5 P #) < Galogz i
J‘n n,tﬂ N‘\t‘r}] . e

By the definition of N7 we have, since r = 32,

[%] < NP NP < .,
Henee, by (24) and (28),

x PF)

loga £ o < 20,1 Al (20)
i <alogs X s <2 loga([ 1)
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Finally, by (20), (23), (29),

5, L;( f(-‘::') e lege E 3(1-1—%4-1}-1-‘3([,_3%]!)—1

=33
<ty loge. (50)

The upper bound in (1) follows from (8), (13), (16) and (30).

4. To prove the lower bound in (1), we use another lemma,

Lunma 10, For large y, we fave
)
X plk) =y
E=1

Let {x(s) denote the zeta-funetion of the field K = k(#), so that
L (s) = & (Na)s =TI {1— (Vo))
i ¥

whore the sum 18 extended over all the ideals a of K, and the product
over the prime ideals of K. 1t 18 well known®* that provided p) D, the
factorization of 4 rational prime p as

T==1 Pa sy whers Np, = ph, ete,,

corresponds to the Factorization

Jle)=file)falx) ... (mod p),

whare f, (i), fulz), ... s irreducible {J:u_u:l ), and arve of degrees vy,
Obviously p has ot most § prime ideal factors, provided p |0,

We split the product defining {;(s) into three parts. The first part
arises from the prime ideals p for which Np = with ¢ > 1. This iz easily
seen to be a regular function of s = o4t for o = }. The second part arises
from the prime ideals p for which p|D), and is regular for ¢ = 0. The
third part arises from the prime ideals p for which Np =p and p/D. The
number of such prime ideals corresponding to a given p is the number of
linear polynomials among f, (), fulz), ..., and o0 is p(p). Hence

Lpls) =d(s) 11 (L—p ),
plD

my aeew

where ¢(4) is regular for o> §.

Define p'(n) by
Zp/ (= 11 f1+%+%- 1‘4—,..}
[, elp))
sl )

* Ses Dedekind, Gesgmmelle math, Werke, I, 202-232,
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since p(p*) = pip) when p/D. Since, for large p,
) 1\ -#m i(p)
log (1+ £2}) —tog (1) ™ = 0 (8L).
it follows that
) ) 1
5, b8 (1) + % ot o (1 )
is regulr for o>}, Taking exponentials, wo obtain
S (W=t = L) ¥ (),

where ¥'(s) is regular for o> .

Write [gls)=2a ,n", YW(s)=ZTa,n".
¥ ¥
Then Lpn)= X =X =
mel P M-%“‘ t-lu'lq:rn g

It is well known® that
B o= o+ OH),
Lt
where b = 0, Bince Xu,e 1 converges absolutely, we easily deduce that
y §
Z pln) = I p'(n) =y p+Oly' ).
Lot =1
This proves Lemma 10,
5. To prove the lower bound in (1), it suffices to prove that

£ 4.(/0) >z loge.

The sum on the left is the number of solutions of f(k)=0 (mod y) with
l<k<z l<y<ws By Lemmas 4 and 10, and partial summation,
it is greater than

jo £ 00 4p % e £ o)
ye1 ¥ y=1 k=i
> fepz iy"‘.“:-u;mlogz.

The University,
Aberdeen,

* Landau, Algebrateche Zahlen, 181,
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