ON THE GREATEST PRIME FACTOR OF le1"’1 (k)
=1

P, Erpos¥*,

[Bxtracted from the Journal of the London Mathematical Society, Vol. 27, 1952.]

Tchebycheff proved that the greatest prime factor of 11 (14-%2)
k=1

tends to infinity faster than any constant multiple of ». Later Nagell}
proved the following sharper and more general theorem:

Let f(x) be any polynomial with integer coefficients which is not the
product of linear factors with integral coefficients. Denote by P, the

greatest prime factor of i fk). Then
k=1

P_.>c zloge. (1)

Throughout this paper ¢,, ¢,. ... will denote positive constants depending
only on the polynomial, p, ¢ will denote primes, and a will be sufficiently
large. In the present paper we shall obtain the following improvement
on Nagell’s result:

THEOREM. There exists a ¢y = ¢y (f) such that
P, > z(log ) loeloglogz, @

Clearly we can assume without loss of generality that f(z) is irreducible
in the rational field and of degree [ > 1. (2)is very far from being best
possible. I can prove in a much more complicated way that

P, > zelloasl®, (3)

* Received 3 October, 1951; read 15 November, 1951.

t E. Landau, Handbuch diber die Lekre von der Vertellung der Primzahlen, 1 (1909),
559-561.

I Abkandlungen aus dem Math. Seminar Hamburg, 1(1922), 179-194. See also G. Ricei,
Annali de Mat. (4), 12 (1934), 295-303.
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(3) will not be proved in the present paper. It seems likely that
P, > ¢, but this if true must be very deep.

Denote by p(k) the number of solutions of f(u)=0 (mod k), 0 < u <k,
and by p,(k) the number of solutions of f(u)=0 (modk), 0 <u<<x. We
evidently have, for &k <=z,

2
r® <[ 5] ot <o <[ Z]pthrtott) <2 pth). ()
We shall make use of the prime ideal theorem in the form#*
3 p(p) = (1+0(1)) y/logy. (5)
Py
From (5) and p(p) <1 [{ is the degree of f(z)] it follows that

(14+0(1)) yllogy > = 1=(140(1)) y/llogy.
ysSp<lY

plp)=0

Hence ¢;'/logy> X 1/p>cyflogy. (6)
yEp<y
plp)=>0

Denote by @, <a, < ... the integers of the interval (z/log logz, z) of the
form pq, where

p>at, exp[(loga)] < g <at, pla)>0. (7"

[The condition p(a;) >0 means p(p) > 0. p(g) >0]. d*+(n) denotes the
number of divisors of » amongst the a’s.

LemMa 1. The number of integers t < @ for which f(t) is divisible by one
of the a’s is greater than

cg@(log log z)(log log log z) /log .
We prove Lemma, 1 in several steps. We have by (4)

z x (@) _ = 1
i = o = SR T R
2 (f0) =Zp.(@)> 5T > T8 o (8)
; 1 1 1
We evidently have z = b2 7 pIN 5
i %

where in Z; exp [(loga)l] <g<Cads, in X, #/(qloglogz)< p < z/q and
p(p) >0, p(g) > 0. From (6) we obtain

2,1/ > cglogloga, X, 1/p > ¢, logloglog z/log x.

*If p does not divide the discriminant of f(z), the number p(p) of solutions of
flz) =0 (mod p) is the same as the number of prime ideal factors of p of the first degree
in the field generated by a zero of f(z) (see Dedekind, Abk. K. Ges. Wiss. Géttingen, 1878).
Thus the sum in (5) is essentially the same as the number of prime ideals v with Np < y.
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Thus ? 1/a; > ¢4 loglog  logloglog z:/log x. (9)
Hence, from (8) and (9),

k§1 d+ (f{k)) > 1cg # log log 2 log log log x/log x. (10)

Next we show that the number N(z) of integers k <« satisfying
@+ (f(k)) > 201 is o(z/(log)*).
First of all, for k <z, f(k) < cy2!; thus f(k) can have at most 2/ prime

factors greater than z!. Thus it follows from (7) that if d+( f(k)) > 201,
then f(k) must have at least 10 factors pg;, satisfying

7 < @< oo < 1 <g; <~;§= p>at, exp[(loga)l| < g, <ab,

(11)

siseos g
p loglog

since pg;, being an ¢;, must lie in the interval (w/loglogz, x). Let s be
the integer defined by
x

—1r = 98
p loglogx

Then, by (11), f(k) has at least 10 distinet prime factors in the interval
(251, 28 loglogx). Further*, by (11),
(logx)t <<s << 25 log 2. (12)

The number of integers k& <« for which f(k) has at least 10 distinet prime
factors in (251, 2¢ log log ), s satisfying (12), is clearly less than

?Espw(gl 3---G10)s (13)

where (logz)t <s < {;loga and, in X, 25 < ¢; < 2¢ logloga and the ¢’s
are distinct.
Clearly N (z) is not greater than the sum (13); thus to prove

N(z) = o(x/(loga)?)
it will suffice to prove that the sum (13) is o(a:/ (log w)“) . We have, by (7),
Q193 -+ Qo < X0 < 21082,

Thus by (4) and p(g) <! we have
1

Gr---G10

N(@) <ZZ5p5(¢h - qro) < 2M@ T Zg
8 &

* z is sufficiently large.
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From (6) we have

1 10
Gt (‘23 g) < eyolloglog log x)10/s.

Thus finally
¥
? 23 pz(q1 -+ Gr0) < C10% s>{l§g o (logloglog 2)!0/s!0 = o (M) ;
as was to be proved.

Since, for k& <z, f(k) <c,2’, f(k) has less than ¢, logz prime factors.
Thus we have

d+(f(k)) < ety (log 2)2. (14)
From (14) and N () = o(x/(log)?), we have
S, d+(f(k)) = o(x/loga), (15)
where in £, & < and d+(f(k)) >20.. From (10) and (15) we have
Syd+(f(k)) > c1 loglog z log loglog z/log , (16)

where in 5;, & <z and d+( f(k)) < 20l. From (16) we finally obtain

z 1 >

a+ f(k) >0

£ z log log @ loglog log z/log «,

which proves Lemma 1 with ¢; = ¢,,/201.
Denote by u, << u,< ... the integers of the interval (z/loga, x) for
which f(u;) has no prime factor p satisfying

z<p <cepxlogloge, 5! > ¢,

Denote by U(x) the number of the «’s not exceeding z.

Lemma 2. Ulx) > x—cy4 2 log log zflog .
Clearly
Uz) z2— loga: “p“lﬁm 1QW,‘D..“,(QJ) S x—w lm(cy3x log log )

> x—cy x loglog z/log z,

as stated.
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k=1

Assume now that the greatest prime factor P, of f[ [f(&) is less than
k=1
x(log x)c2logloglogz  Thig assumption will lead to a contradiction. Put*
J(k) = 4; By, where A,= a}}( ]19“: B, = f(k)/4;.
ﬂﬂiﬁ

LemMMma 3. Ay, > x[(log x)catlosloglogz,
Since by definition x/logx < u; <z, we have

¢152'/(log 2)! < f(u,) < eg 2. (17)

Further, by the definition of the u,, f(u;) has-no prime factor in the interval
(x, ¢;3 * loglogx). Therefore, by (17), B, (:f(uj)/}luj) can have at most
{—1 prime factors, multiple factors counted multiply. By assumption all
prime factors of f(w,;) are less than z(log w)c:glslosz  Thus

-Bu, < a1 (_[Og x){.’—l)c, log log iogx'
Hence by (17)

_ Sluy) €152 €52 z
Auj T Bu = :Bu (lOg x)j = F(logx)ﬂ-u—])cz loglog logz > (I(Té‘ I)Icglogltﬁl_ﬁg';:

as stated.

Levma 4. The number of w’s for which f(w;) is a multiple of an @, is
greater than cigx loglog x log log log x/log 2.

From Lemmas 1 and 2, the number of these u’s is greater than
cg ¢ loglog z loglog log z/log x— (a:— U(x)) > ¢,5 loglog 2 logloglog #/log x,
as stated.
LeMma 5. Let u, be such that f(u,) is a multiple of one of the a’s. Then
Ay, o

By definition of the w’s all prime factors of B, are greater than
¢;32 loglogx. Thus since f(u;) =0 (moda,) we have from (17),
B, < ¢y #'[(xfloglog x) = cya*loglog & < (c,5% loglogx)—

if ¢zt > ¢q. Thus B, can have at most /—2 prime factors, multiple factors
counted multiply. ~Thus by (17) and our assumption on P,

A, _flwy)

Bﬂ, > Cq5 (loga;)‘ (xl_z(log x)ﬂ—ﬂ}b‘, loglog lng) -1 g a;i’

as stated.

* p%jz means that p* |z, p*+lfz,
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k=1

Lemma 6. Z log A, < zlogztey, .
k=1

This is a result of Nagell*.

Proof of the theorem. From Lemmas 2, 3, 4 and 5,
S log 4, >3 log 4,
k=1 i
> (x—cy4 2 log log z/log z) (log x—Ic, log log 2 loglog log x)
=+ (¢ 2 loglog x loglog log #/log ) (% log ).  (18)

The first summand of (18) is given by Lemmas 2 and 3, the second summand
is given by Lemmas 4 and 5, i.e. by the u’s satisfying f(u;,)=0 (mod a,).
Thus from (18)

5 log 4; > xlog x—e¢,, « loglog a—le, x log log 2 loglog log @
k=1
+ 3¢5 « loglog  log log log z.
But this contradicts Lemma 6 for ¢, << ¢;4/2l. This contradiction proves

P, > a(log a)e1o8loglogz

and so completes the proof of the theorem.

Department of Mathematies,
University College, London.

* Ibid. (footnote I, p. 379), 180-182. Nagell does not state the result explicitly, but
proves it on the above-mentioned pages [see in particular equation (7), p. 182].
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