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NOTE ON NORMAL DECIMALS

H. DAVENPORT AND P. ERDÖS

1 . Introduction . A real number, expressed as a decimal, is said to be
normal (in the scale of 10) if every combination of digits occurs in the decimal
with the proper frequency . If a 1a 2 . . . a, is any combination of k digits, and
N(t) is the number of times this combination occurs among the first t digits, the
condition is that

lim
N(t) = 1

Z .

	

t

	

10k •

It was proved by Champernowne [2] that the decimal . 1234567891011 . . . is
normal, and by Besicovitch [11 that the same holds for the decimal . 1491625 . . . .
Copeland and Erdös [3] have proved that if p i, P2 . . . . is any sequence of positive
integers such that, for every 0 < 1, the number of p's up to n exceeds nB if n is
sufficiently large, then the infinite decimal •p ip 2p 3 . . . is normal. This includes
the result that the decimal formed from the sequence of primes is normal .

In this note, we prove the following result conjectured by Copeland and
Erdös

THEOREM 1 . Let f(x) be any polynomial in x, all of whose values, for x = 1,
2, . . . , are positive integers . Then the decimal •f(1)f(2)f(3) . . . is normal .

It is to be understood, of course, that each f(n) is written in the scale of 10,
and that the digits of f (1) are succeeded by those of f (2), and so on. The proof
is based on an interpretation of the condition (1) in terms of the equal distri-
bution of a sequence to the modulus 1, and the application of the method of
Weyl's famous memoir [6] .

Besicovitch [1] introduced the concept of the (e, k) normality of an individual
positive integer q, where e is a positive number and k is a positive integer . The
condition for this is that if a 1a 2 . . . a l is any sequence of l digits, where l <_ k,
then the number of times this sequence occurs in q lies between

(1 - e)10- 'q' and (1 + e)10 - ` q'

where q' is the number of digits in q . Naturally, the definition is only significant
when q is large compared with 10k . We prove :

THEOREM 2 . For any e and k, almost all the numbers f (1), f (2), . . . are (e, k)
normal; that is, the number of numbers n < x for which f(n) is not (e, k) normal
is o (x) as x ---). -o for fixed e and k .
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This is a stronger result than that asserted in Theorem 1 . But the proof of
Theorem 1 is simpler than that of Theorem 2, and provides a natural intro-
duction to it .

2. Proof of Theorem 1 . We defined N(t) to be the number of times a particu-
lar combination of k digits occurs among the first t digits of a given decimal .
More generally, we define N(u, t) to be the number of times this combination
occurs among the digits from the (u + 1)th to the tth, so that N(0, t) = N(t) .
This function is almost additive ; we have, for t > u,

(2)

	

N(u, t) < N(t) - N(u) < N(u, t) + (k - 1),

the discrepancy arising from the possibility that the combinations counted in
N(t) - N(u) may include some which contain both the uth and (u + 1)th
digits .

Let g be the degree of the polynomial f (x) . For any positive integer n, let
xn be the largest integer x for which f(x) has less than n digits. Then, if n is
sufficiently large, as we suppose throughout, f(xn + 1) has n digits, and so have
f (xn + 2), . . . , f (xn+1 ) . It is obvious that

(3)

	

xn -a(10 1 ° ) n

	

as n ---> co

where a is a constant .
Suppose that the last digit in f (xn) occupies the tth place in the decimal

.f(1)f(2) . . . . Then the number of digits in the block

f(xn + 1 )f (xn + 2) . . . f(xn+ 1)

is to+1 - t,,, and is also n (xn+i - xn), since each f has exactly n digits. Hence

(4)

	

to+1 - to = n(xn +1 - xn) .

It follows from (3) that

(5)

	

to r ., an(10 1 " 0 ) n

	

as n -> c .

To prove (1), it suffices to prove that

(6)

	

N(tn, t) = 10 -k (t - tn) + o(tn)

as n

	

, for to < t S t,,+1 . For, by (2), we have
n-1

N(t) - N(th) _ Y_ N(tr, t,, 1 ) + N(tn, t) + R,
r=h

for a suitable fixed h, where JRI < nk . Since (6) includes as a special case the
result

N(tr, tr+1) = 10 -k (tr+1 - tr) + 0(tr),
we obtain (1) .

In proving (6), we can suppose without loss of generality that t differs from
to by an exact multiple of n . Putting t = to + nX, the number N(tn , t) is the
number of times that the given combination of k digits occurs in the block
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(7) f(xn + 1)f(xn + 2) . . . f (xn + X),

where 0 < X <_ xn+1 - xn . We can restrict ourselves to those combinations
which occur entirely in the same f (x), since the others number at most (k - 1)
(xn+1 - xn ), which is o(tn ) by (3) and (5) .
The number of times that a given combination aIa2 . . . ak of digits occurs in a

particular f (x) is the same as the number of values of m with k =< m <= n for
which the fractional part of 10--f(x) begins with the decimal •ala2 . . . ak . If
we define 0(z) to be 1 if z is congruent (mod 1) to a number lying in a certain
interval of length 10-k , and 0 otherwise, the number of times the given combina-
tion occurs in f (x) is

n.

2% 0(10-mf(x)) .
m=k

Hence
xn+X

	

n
X(tn , t) = 2s - 9(10-mf(x)) + O(xn+I - xn),

x=x„+1 M=k

the error being simply that already mentioned,
To prove (6), it suffices to prove that

n

	

x„+X
(8)

	

f

	

I 0(10-mf(x)) = 10-knX + o(n(xn+1 - xn))
M=k, x=x„ + 1

for 0 < X <_ xn+1 - xn . We shall prove that if 6 is any fixed positive number,
and on < m < (1 - 8)n, then

x„+X
(9)

	

Z

	

8(10-mf(x)) = 10 -kX + o(xn+l - xn )
x=x„ + 1

uniformly in m . This suffices to prove (8), since the contribution of the re-
maining values of m is at most 2SnX, where S is arbitrarily small . We have

(10)

	

X 5 xn+1 - xn < a (10 11g ) n+1

and we can also suppose that

(11) X > (xn+1 - xn) 1-
' ,
> 0(101/D n(1- zb))

	

e

where 0 is a constant, since (9) is trivial if this condition is not satisfied .
The proof of (9) follows well-known lines . One can construct [6 ; 4, pp .

91-92, 99] for any 77 > 0, functions 0 1 (z) and 02(z), periodic in z with period 1,
such that 0i(z) <= 0(z) =< 0 2 (z), having Fourier expansions of the form

01(z) = 10 -k - 77 + 2; A~` 1 'e(vz),v

02(z) = 10-k + 7 + 6.i ,A v (2) e(vz) .I

Here the summation is over all integers v with v ~ 0, and e(w) stands for e"'° .
The coefficients A v are majorized by
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1A v j <= min ( lvl , ~v2 / .

Using these functions to approximate B(10-mf (x)) in (9), we see that it will
suffice to estimate the sum

x„+X

Sn,m„v = 2:

	

e(10-m vf(x)) .
x=x„+ 1

We can in fact prove that

(12)

	

l Sn.m .vI < CXl-1

for all m and v satisfying

(13)

	

Sn < m < (1 - S)n, 1<v<77
-2 ,

where C and i • are positive numbers depending only on S, 77 and on the polynomial
f(x). This is amply sufficient to prove (9), since X <_ xn+1 - xn .

The inequality (12) is a special case of Weyl's inequality for exponential
sums. The highest coefficient in the polynomial 10-m of (x) is 10-m vc/d, where
c/d is the highest coefficient in f (x), and so is a rational number . Write

10 vd=g,
where a and q are relatively prime integers . Let G = 20-1 . Then, by Weyl's
inequality',

(14)

	

S.,m,vI G
< C1X Eq ' (XG-1 + XG

q-1 + XG-Dq)

for any e > 0, where C 1 depends only on g and e . In the present case, we have

q <= 10md < 10` 1-"n
d,

and

q > 10m,-1c-1 > to sn772c 1 .

This relates the magnitude of q to that of n . Relations between n and X were
given in (10) and (11), and it follows that

C,X''<q<CaX (1_613) ,

where C 2 and C 3 depend only on 77, c, d, and g. Using these inequalities for q
in (14), we obtain a result of the form (12) .

3. Proof of Theorem 2 . We again consider the values of x for whichf (x) has
exactly n digits, namely those for which xn < x < xn+l . We denote by T (x)
the number of times that a particular digit combination ala2 . . . a 1 (where
l _< k) occurs in f (x) . Then, with the previous notation,

n
T(x) = 2; o(10-mf(x)) .

M=1

'The most accessible reference is [5, Satz 2671 . The result is stated there for a polynomial
with one term, but the proof applies generally.
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We proved earlier that (putting X = xn+1 - xn ),

x„+X
2;

	

T(x)

	

10-lnX

	

as n ---> co .
x=x„+ 1

Now our object is a different one ; we wish to estimate the number of values of
x for which T(x) deviates appreciably from its average value, which is 10-1n .

For this purpose, -we shall prove that

x, .+x
(15)

	

2;

	

T2(x) ' 10 -21n 2X

	

as n -* oD .

x=x„ + 1

When this has been proved, Theorem 2 will follow . For then
x n +X
2;

	

(T(x) - 10 -1n) 2 = XT2 (x) - 2(10-1n) 2; T(x) + 10-21n2X
x=x„ + I

= o(10-21n2X)

	

as n-* co .

Hence the number of values of x with xn < x <= xn+1 i for which the combination
a1a2 . . . a l does not occur between (1 - e)10-1n and (1 + e)10-1n times, is
o (xn+l - xn) for any fixed e. Since this is true for each combination of at most
k digits, it follows that f (x) is (e, k) normal for almost all x.

To prove (15), we write the sum on the left as
x„+X

	

n

	

n

(16)

	

1

	

2;

	

2;

	

0(10-"f (X))0(10-"f (x)) .
x=x„+1 m,=l m,=l

Once again, we can restrict ourselves to values of m 1 and m2 which satisfy

(17)

	

Sn < m l < (1 - 8)n, Sn < m 2 < (1 - S)n,

since the contribution of the remaining terms is small compared with the right
hand side of (15) when S is small . For a similar reason, we can impose the
restriction that

(18)

	

m2 - m1 > on .

Proceeding as before, and using the functions 0 1 (z) and 02(Z), we find that it
suffices to estimate the sum

x„+x
(19)

	

S(n, m1, m2, v1, v2) _ 2;

	

e((10
_m' v1

+ 10-m'v2)f(x)),
x=x„ + 1

for values of v 1 and v 2 which are not both zero, and satisfy Ivil < 77-2, 1V21 < 77-2.
If either v 1 or v 2 is zero, the previous result (7) applies. Supposing neither zero,
we write the highest coefficient again as

(10
_m' v1

+ 10-m' v2>d = a//

	

q

In view of (17) and (18), we have

q < 10m'd < 10(1-a)nd < C~X 1-a ' °d.
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We observe that a cannot be zero, since

10
-m'

P21 < 10-m '
-6n

IP2l < 210P1~,

provided that 277 2 < 10 6", which is so for large n . Hence

q > 3 10m 'jP1j -1 c-1 > C,X6p .

It now follows as before from Weyl's inequality that

I S(n, m1, m2, P 1 , Pa) I < CX
1-

',

where again C and ~ are positive numbers depending only on 5, 77, and the poly-
nomial f (x) . Using this in (16), we obtain (15) .
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