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§ 1 . Introduction
We shall mainly deal with linear recursion formulas of the type

n-1
(l. 1)

	

f(1) = 1 ;

	

/(n) _ i~ ck f(n-k)

	

(n = 2, 3, . . . ),
k=1

and with quadratic formulas of the type
n-1

(1 . 2)

	

f(1) = 1 ;

	

/(n) _

	

d, f(k)/(n-k)

	

(n = 2,3 . . . ) .
k=1

We assume that ck > 0, d k > 0 (k = 1, 2, . . .) . In a previous paper [1]
we discussed (1 . 1) under the condition X° ck = 1, and further special
assumptions . Presently we deal with it more generally. We shall show
that lim {f(n)J-1/11 always exists, and we shall give several sufficient con-
ditions for the existence of lim /(n)//(n + 1) . Some of the results can be
applied to (1 . 2) (see § 6), and some of the methods can be extended to
recurrence relations with coefficients c depending on n also (see § 3 and § 7) .

In [1] as well as in the earlier paper of ERDÖS, FELLER and POLLARD [3],
referred to below, the condition on the c k was c k > 0 (k = 1, 2, . . . ),
whereas the g .c.d. of the k's With ck = 0 was assumed to be 1 . For con-
venience we assume ck > 0 throughout . Consequently we have, both for
(1 . 1) and for (1 . 2), f(n) > 0 (n = 1, 2, . . .) .
Dealing with the linear relation (1 . 1) we put formally

(1 . 3)

	

C(x) _ Cn xn , F(x) _ f(n)x n ,
1

	

1
and we have formally
(1 .4)

	

F(x) = x +C(x) F(x) .
Furthermore, if o is a positive number, and if we put

(1 .5)

	

/(n) = `O-n+1 g(n),

then we have
n-1

(1 . 6)

	

g(n) _

	

bk g(n - k) , g(1) = 1,
k=1

where bk = ck o'c,. Formula (1 . 6) is again of the type (1 . 1), and b k > 0
for all k .
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§ 2. Linear recursions, different cases

We discern amongst 5 different cases with respect to the behaviour
of the series C(x) (see (1 . 3)) . Let R be the radius of convergence
(0 < R < oo) and let y be the l.u.b . of the numbers a with C(a) < 1 .

Case 1 . y = R = 0 .
Case 2 . O<y<R<co, C(y)-1 .
Case 3. 0 < y = R < oo, C(y) = 1, 0 < C'(y) < oo .
Case 4. 0<y=R<oc, C(y)=1, C'(y)=00 .
Case 5. 0<y=R<oc, 0<C(y)<1 .

Since the coefficients c;, are positive it is easily seen that all possibilities
are listed here .

§ 5 will be specially devoted to case 1 ; nevertheless case 1 is not excluded
in §§ 2, 3, 4 unless explicitly stated .

In all cases we can show (§ 3)

In case 1 we infer that also F(x) has 0 as its radius of convergence .
In the other cases we can transform by (1 . 5), taking 2 = y. Apart from
case 5, this leads to (1 . 6) with 'b 1, = 1 . Therefore we can apply the
results of ERDÖS, FELLER and POLLARD [3], and we obtain

(2.2)

	

lim f(n) yn = {C'(y)}- ' in cases 2 and 3,

0

	

in case 4 .

If the limit is = 0, we have not yet an asymptotic formula for /(n),
and such a formula seems to be hard to obtain without introducing very
special assumptions (see [1]) .

In case 5 we have, just as in case 4, /(,),n -* 0 . For, it follows from
(1 . 4) that

(2.3)

375

:~T f(n) Y"° = Y/( 1 - C(Y) )

hence the series on the left is divergent in cases 2, 3, 4 but convergent in
case 5 .

In case 2 it can be shown that for some C > 0 and some 6 > y we have

(2.4)

	

f(n) = C
y-n

+ 0(o -n) .

For, the coefficients of C(x) being positive, we have C(x) 1 (x < y,
x # y) and C'(y) # 0 . Now (1 . 4) shows that F(x) is regular in I xI < y
apart from a simple pole at x = y. This proves (2 . 4) .

Apart from case 1 we have y > 0, C(y) < 1 and so, by induction

(2.5)

	

1(n) < Y,J1 -

	

(n = 1, 2, 3, . . . ) .



In all cases we put

lim inf f( f(+) 1) = a
n- .
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lim sup
f(

	 f(n) _ (3
21-00

	

n+1)

	

'

and we have

(2.6)

	

0<a<y<(3<c;1<oo .

For, (2 . 1) shows that a < y < (3, and /3 < cl 1 follows from the inequality
/(n + 1) > c I f (n), which immediately follows from (1 . 1) .

§ 3 . Linear recursion ; existence o f lim {f(n)}-1/11
We shall show (theorem 2) that {f(n)}-1/11 tends to a finite limit in all

cases. Denoting the limit by L, it is easily proved afterwards that L = y .
The existence of the limit will be shown for a slightly more general

recursion formula .
Theorem 1 . Let 0 < ck,k_F1 < ck.k+2 -- ck.k+3 < . . . (k - 1, 2, 3, . . . ) .

n-1
(3. 1)

	

f( 1 ) = 1 , f(n) = ~ ck.n f(n - k)

	

(n = 2, 3, . . . ) .
k=I

Then we have

(3 .2)

	

/(n + k - 1) > f (n) 1(k-)

	

(k, n = 1, 2, 3, . . . ) .

Proof . We apply induction with respect to n. If n = 1, (3 . 2) is trivial .
Now assume that (3 . 2) holds for n = 1, . . ., N. Then we have

N+k-1
I(N + k) _

	

c i. N+k AN + k -1) >
a=1

:~i ct.N+kf(N+k - 1) > : ca.N+If(N+k - l)
IN

ct.N+1 AN + 1 - l) f(k) = AN + 1 ) f(k),
and the induction is complete .

Theorem 2 . Under the assumptions of theorem 1 we have, putting
inf {/(n + 1)} -I/n = L

	

(0 < L < cc),

that
lim {f (n + 1)}-1/n = L.
nE_oo

Proof . Clearly we have f(n) > 0 (n = 1, 2, . . .) . Putting
g(n) _ - log /(n

we infer from (3 . 2) that g(n) is sub-additive :
g(n + k) < g(n) + g(k)

	

(n, k = 0, 1, 2, . . . ) .
It follows that

- oc> < inf g (n) = lim ~ (n) < co .n

	

n-co n
i
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(See [4], vol. 1, p. 17 and 171 . An extension of this theorem will be
given in § 7) .

We next show for the equation (1 . 1) that L = y . We have /(n) > c.-,
for all n > 1 ; therefore the radius of convergence of F(x) is < R, and so
L < R . In case 1 this means L = 0 = y .

In case 2 we have L = y by (2. 4) .
In the remaining cases we have R = y, and so L < y . On the other hand

(2 . 5) gives L > y .

§ 4 . Linear recursion ; existence o/ lim f(n)//(n + 1)

If lim f (n)//(n + 1) exists, it equals y (see (2 . 6)) : In the cases 2 and 3 the
limit exists (by (2 . 2)) . In the other cases /(n)/f(n + 1) can be oscillating,
and we can even have (with the notations of (2. 6)) /3 > a = 0 .

In cases 4 and 5 we construct an example as follows. Let a be a number,
0 < a < 1 ; and let p1 + p2, + . . , be a series of positive terms whose sum
is 2a. We shall construct a series c 1 + C2 + . . . with c k > p k , whose sum
is a, and such that c,,//(n) is not bounded.

Let E1, 112 , . . . be a sequence with Ek > 0, £k -* 0 . Take ck = p k for
k = 1, 2, . . ., K1 - 1, where K1 is the first k with 1(k) < 1 ela. The existence
of this k follows from the inequality

m-1
(4. 1)

	

/(1) + . . . + AM) < { 1 -

	

Ck}_1 ,

1

which is obtained by addition of the formulas (1. 1) with n = 1, 2, . . . , m,
respectively .
Now take ck = 4 a + p k if Ic = K, which does not alter the values of

/(I), . . . , /(K 1 ) . If k = K1 + 1, . . . , K 2 - 1 we take ck = Pk again, where K2
is the first k > KI with A IC) < 11 e2a . For k = K2 take ck = 8'a + PI etc .
If k = K1 , K2 , . . . we have c,11(1c) > e l 1 , £a 1 , . . . , respectively . As
1(k + 1) > ck for all k, we also find that 1(k + 1)11(k) is not bounded .
Therefore a = 0 . On the other hand we have /3 > 0 by (2 . 6), since y is
positive. It can be shown that y = 1, C(y) = a .

A sufficient condition for a to be positive is that 1'c,/f(k) < oc . For,
writing down (1 . 1) with n = N + 1 and n = N, respectively, we infer

f(N+1) < max f(k+1) +	 CN

f(N)

	

1-<k<N f(k)

	

f(N)'

whence /(n + 1) = Off(n)j .
In case 1 the series Xck/f(k) does not converge since it would lead to

a > 0 . In cases 2 and 3 the series always converges (see (2 . 2)) . In case 4
the condition may be useful, and we can show that it implies a = (3
(theorem 11) . In case 5 however the condition never applies

Theorem 3 . In case 5 we have fck/f(k) = 00 .
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Proof . We have E,- c k y'/ < 1 . Assume Zck / f(k) < oo .
Put 1 - Z-cky~ = 2e . Choose 1 such that 2yZ+ 1 ck/f(k) < c, and 8 > 0

such that e 61 c ky1 < 1 - a, es < 2 . Then we can show by induction
(4 .2)

	

1(k) < 2e- 670 y1-k

If k = 1, (4. 2) is trivial . Next assume (4. 2) to be true for 1c = 1, . . , n- 1 .
Then by (1 . 1)

S

	

n-1
f(n) < L.Ck f(n-k) + ~

I

	

s+1

where s = min (n - 1, 1), and the second sum is empty if n - 1 < 1 . It
follows that

s

	

n-1
f(n) < ck

eak
Yk . 2e-an

yl-n + 4 i

	

e-an y2-n <
1

	

s+I Pk)

2e-6 n y1-n {6 61 :E i ck Yk + 2 y :~ + 1 cklf(k)} < 2 e
-an

y1-n .

This proves (4. 2) . However, (4 . 2) contradicts (2. 1) . Therefore our
assumption Eck lf (k) < oo is false .

We next discuss the condition c k = off(k)j . We do not know whether
this guarantees the existence of lim /(n)//(n + 1) . On the other hand it is a
necessary condition in cases 2, 3 and 4 (theorem 4), but it is not necessary
in case 5 .

In case 5 we can give an example where

(4 .3)

	

f(n+1)

	

1,f(n)

In order to construct this example, require (1 . 1) and c,,

	

'/(n) for all n.
Then we have F(x) - x = 1 F 2 (x), and so

F(x) = 2 {1 -(1 -x)'}, f(n) = 4-n (2n)!
2n-1 n! n!

We are in case 5 indeed, for the radius of convergence of C(x) = 4F(x)
equals 1, and

:~i Ck = M . F(1) = 2

Theorem 4 . If, in case 2, 3 or 4, lim f(n)/f(n+ 1) exists I ), then we
have c„ = o{f (n)}.

Proof . If the limit exists, we know that it equals y. And, if n > k_+ 1,
we have
(4.4)

	

f(n + 1) > c1 f(n) + . . . + Ck+1 /(n - k) + Cn .

Dividing by f (n) and making n ~ co, we infer

Y-1 % C1+ c2Y + . . . + Ck yk-1 + lim sup cn/f(n),
lim sup c.//(n) < y-1 { 1 - c ly - c2 y 2 - . . . - ckyk} .

This holds for every k. Since E'c k yk = 1 we infer Cn = o{ f (n)} .
1)

Cn+1 -> 1

	

C -> 1
Cn

	

f(n)

	

4

In case 2 or 3 the limit exists automatically .

f(k) f(k) f(n - k),

I'

r

i



379

Theorem 5 . If, in case 2, 3, or 4, lim cn+1/cn exists, then we have
cn = o{f(n)} .

Proof . The limit of c, lc. equals y- 1 , of course. If n > k, we have

f(n) > cn f(1) + cn-1 f(2) + . . . + cn-k f(k) .

Dividing by cn and making n > co, we infer

lim inf f(n)/ C n > f( 1 ) + f(2 ) y + . . . + 1(k) Y k-1 •

The theorem follows from the fact that f (k)y '~-1 = oo (see (2 . 3)) .

The following simple theorem applies to the cases 2, 3, 4, 5 (in case 1
the condition is never satisfied) .

Theorem 6 . If, for some fixed k, we have c,, = O(cn_1 + cn_2 + . . +
+ c.-J, then /(n + 1) = Off(n)j, that is a > 0 .

Proof . For n > k we have

cn-1, f(k+1)+	+ c1(1)

	

max f(1+1) +
C(Cn-k +	. . . + cn-I)

	

B
Cn-k f(k) + . . . . + Cn-1 f(1)

	

157<-k f(9)

	

Cn-kk f(k) + . . . cn-1 f(1)

	

'

B not depending on n . Furthermore, if n > k,

/(n+1)=~ic,f(n+1-~)<
n-k^-1

	

f(l+1)

	

n-I
c; f(n-j) . max	+ B ~ c;/(n-j)

1

	

1_< Z<n f(l)

	

n-k

1(n) max { B, max f(l+1) } .
1-1d<n f( l )

It follows by induction that f (n + 1) < B f (n) for all n .

We shall give a necessary and sufficient condition for the existence of
lim /(n)// (n + 1) in the cases 2, 3, 4, 5 . That is, we assume

(4.5)

	

y > 0, :~100 ck yk < 1 ; 1 <

	

ck xk < oo if x > y .

Put, if 1 < k < n,

Y{Ckf(n-k+1)+ . . •+ Cnf(1)}-{ckf(n-k)+ . . .+cn-if(1)} =
AS~nk

(4 . 6)

	

f(n)

lira sup ISn . k I = 92 (k) < o o .

7 . In the cases 2, 3, 4, 5 a necessary and sufficient con-
dition for the existence of lim f (n)//(n + 1) is that T(k) > 0 when k > oo.

Proof . We have, if 1 < k < n,
k-1

	

k-1
(4 .7)

	

yf(n+1)-f(n) =Y

	

c,f(n+1-j)-

	

c, f(n-j) +/(n) Sn.k .

If f (n)//(n + 1) - y, it easily follows by making n > oo that 9(k) = 0
for all k .
We next show that 99(k) > 0 is also sufficient. We have (see (2 . 6))



0 G a < /3 < oo . First we prove that a > 0. We have /(l + 1) > ci /(l)
for all 1. Hence, dividing (4 . 7) by /(n) we obtain

Y
f(n+1) < 1

	

k-1
Ci

	

}
I Sn,klf(n)

	

-}-

	

C,
Z

Choose k such that T(k) < oo, and make n ---> oo . It follows that /(n + 1) _
= 0(/(n)), that is a > 0 .
Let {n i l be a sequence for which

(4 . 8)

	

/(ni)//(ni + 1) - a

	

(i

	

oo) .

Then we have, for any fixed 1 > 0, also
(4. 9)

380

/(ni - l)//(ni + 1 - l) --i a

	

(i - oo).

The same holds if a is replaced by /3 both times . We only prove it for the
lower limit ; the other case can be proved analogously .

Assume (4. 9) false for some 1 > 0 . Then there is a subsequence {m i l
and a number 8 (6 > a) such that

1 (mi - 1) > 6 /(mi + 1 - 1)

	

(i = 1, 2, . . . ) .

Further, if E > 0 and i > io (E, k) then we have

l(mi - j) > (a - E) /(mi + 1 - j)

	

( 1 < j < k)

It follows, if k > 1, i > io (E, k), that

D--I c, {Y/(mi + l - 9) - /(mi - 9)} <

< :E ;--- l' c; (Y-a+E)/(mi + 1- j) -ca(a-a)/(mi+1-l) <

< (y-a+E)/(mi+1) -cl(8-a)/(mi+1-l),

and so, by (4 . 7),
(a- E) 1(mi + 1 ) + ca (6 - a) 1(mi + 1 - 1) < /(MO {I Smi.kI + 1}.

If i -->- oc, we have /(mi)//(mi + 1) --* a, lim inf 1(m i + 1 - l)//(m i + 1) > al .
Therefore

a-E+c i (~-a)a1 <a+aT(k),

which holds whenever k > 1, 8 > 0. Making k -i oc, E -- 0 we obtain
S = a, and a contradiction has been found . This proves (4 . 9) .

We can now show that a = y. Assume a < y, and let the sequence {ni l
satisfy (4 . 8). Now write down (4 . 7) with n = ni , divide by /(n i + 1)
and make i --i oo (k is fixed). We obtain

k-1

~y-a-

	

c;(yai-a'+1)I <a9'(k),
1

which leads to
k-11

	

C, all < a m(k)
1

	

y-a

Making k ->- oo we infer C(a) = 1, which is impossible since a < y .

^1



In the same way the assumption /3 > y leads to C(fl) = 1 . Thus the
proof of theorem 7 is completed .

For some applications we can better deal with T.,,,, where, if n > k >, 1,

(4.10) T

	

S _ ckf(n-k+1) = 1 n-1

	

-

	

c

	

c •}n, l - n, k

	

Y

	

f(n)

	

f(n)

	

f(n9) f y y+1 - y ,
7=7c

and put lim sup ITn,kJ = ?P(k) < 00 -n-00

Theorem 8 . In the cases 2, 3, 4, 5 a necessary and sufficient con-
dition for the existence of Jim /(n)//(n + 1) is that y(k) -- 0 as k - oo .

Proof. In the first place, if /(n)//(n + 1) -> y is given, then we deduce

lim I Tn, k - Sn, k = ck y k
n->oo

and ck yk --->- 0 since XC k yk converges. Hence p(k) -* 0 .
Next assume V(k) -~ 0 . As in the beginning of the proof of theorem 7

-we deduce /(n + 1) < CI(n) for some C and all n . Therefore we have, if
n >2K

min yrkf(n-Ic+1) < Y 	
ck f(n - k + 1) <

Yc ,
K k 2K

	

f(n)

	

K f(n) x

	

K

and hence

(4.11)

	

lim lim sup min I Sn , kl =0 'K-noo

	

n- 00 K<_k(2K

It is easily seen that with this condition, instead of T(k) - 0, we are also
able to give the remaining part of the proof of theorem 7 .

Theorem 9 . In all cases the condition c./c.+, -> y implies

/(n)//(n + 1) - ,y .

Proof ., We exclude case 1 here ; the proof for case 1 will be given in § 5 .
If e > 0, then for j >A (E) we have

l
yc;+I -c;

I
<eC .

Hence, for k > A(E), n > k, we have by (4. 10),
n-1

f(n)ITn.kI < :~ Ec;f(n - j)<Ef(n)e

3 8 1

k

Therefore V(k) -> 0 as k --~- oo, and theorem 8 can be applied .

Theorem 10 . In the cases 2, 3, 4, 5, the condition

IYCn- en-1l
<

oo
f(n)2

implies /(n)//(n + 1) - y.
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Proof . By (4. 10) and by theorem 1 we have, if n > k > 1,

n-1 f(n)	 Y ~)-~ 1 - 11
f(n) ITn,,I < ~ f(f+1) lycj+I - c;~ < f(n) _1 f(j)

Consequently p(k) - 0 as k - oc, and theorem 8 can be applied .

Theorem 11 . If -Yen/An) < oo, then /(n)//(n + 1) --> y .
Proof. As; was remarked before, the convergence of the series implies

f (n + 1) = O{ f (n)}, and it excludes case 1 . Thus we may apply theorem 10,
since

CV-1

	

00

	

Cn

	

en
2 f(n)

	

f(n+l) <

	

cl f(n) < 00 '

Possibly the condition
00

(4.15)
1

Cn+1 _ Cn
/(n+ 1)

	

f(n) , <

is also sufficient for f (n)/ f (n + 1) ~ y, but we could not decide this .

A sufficient condition which applies to all cases, is

Theorem 12 . If C"+1 C"-1 > cn (n > 1), then l(n)//(n + 1) - y .
Proof . It was proved in [1] that cn+1 cn-1 e cn (n > 1) implies

/(n + 1) • f(n- 1) > f2(n) (n > 1) . (The proof did not depend on the
assumption Zck = 1 which was made throughout that paper) . Conse-
quently /(n)//(n + 1) is non-increasing, and its limit exists .
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