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§ 1. [Tatroduction
We shall mainly deal with linear recursion formulas of the type

n=1
“* 1) J'r“}'—":[; f{rf'J:*E_l':'kHﬂ“'k} (n=2,3,..)
and with quadratic formulas of the type
(1.2 (=1 fo) =3 A= (=23

We assume that o =0, dp =0 (k= 1, 2, ...). In a previous paper [1]
we disenssed (1. 1) under the condition e, = 1, and further special
assumptions. Presently we deal with it more generally, We shall show
that lim [f(n)} """ always exists, and we shall give several sufficient con-
ditions for the existence of lim fin)/f(n = 1). Some of the results can he
applied to (1. 2) (see § 6), and some of the methods ean be extended to
recurrence relations with coefficients ¢ depending on » also (see § 3 and § 7).

In [1] az well as in the earlier paper of Enpis. FrLier and Pornarp [3],
referred to below, the condition on the e, was ¢, =0(k= 1,2, ...},
whereas the g.odd. of the b's with ¢ = 0 was assumed to be 1. For con-
venience we assume ¢, > 0 throughout. Consequently we have, both for
{1. 1) and for {1.2), fin) =0 {n=12 ...}

Dealing with the linear relation (1. 1) we put formally

oo )
(L 3) Ole) = Zepa™ o Flo) =7 flnya

1 1
and we have formally
(1. 4) F(z} = = + C{x) Flz).

Furthermore, if o is a positive number, and if we put

(1. 5) fin) = o= g(n),
then we have
(1.6) g =3 beglh—k) . g1} =1,

k=1

where b = oo, Formula (1. 6) is again of the type (1. 1), and &, = 0
for all L.
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§ 2. Linear vecursions, different cases

We diseern amongst 5 different cases with respeet to the behavionr
of the series C'(x) (see (1.3)). Let R be the radius of convergence
{0 == R =Zoc) and let 3 he the Lub. of the numbers a with (a) =< 1.

Case 1. y= R=0

Case 2, 0 <y < R<oo, Uy)=1.

Case 3, 0<y=R <o,y =1, 0<Cy) < oo,
Case 4. 0 <y =R <00, Ofy) = L, ('(y) = o

Case 6. D<y=RBR=oo, 0 <0y <1.

Since the coefficients ¢, are positive it is easily seen that all possibilities
are listed here:

§ 6 will be specially devoted to case 1; nevertheless case 1 is not éxcluded
in §§ 2, 3, 4 unless explicitly stated.

In all cases we ean show (§ 3)

. &
(2. 1) {fin)) "=y,
In gase | we infer that also F(z) has 0 as its radius of convergence.
In the other cases we ean transform by (1. 5), taking s = ». Apart from

case 5, this leads to (1, 8) with Zb, = 1. Therefore we ean apply the
results of Erpos, Feruer and Porcaro [3], and we obtain

= {("(p)}~" in ecases 2 and 3,

e e R A R

It the limit is = 0, we have not yet an asymptotic formula for fin),
and such a formula seems to be hard to obtain withount introducing very
special assumptions: (see [1])

In case 5 we have, just ag in case 4, f(n)y" — 0. For, it follows from
(1.4) that

(2.9) S ) = pi(1—C(3))3

henee the series on the left m divergent in cases 2, 3, 4 but convergent in
case 5.
In eage 2 it ean be shown that for some C = 0 and some 4 > 3 we have

(2. 4) fln) =€y + 067,
For, the coefficients of C(z) being positive, we have () =1 (|2 <<y,
@ = y) and '{y) = 0. Now (1. 4) shows that Fiz) is vegular in |z| < ¢
apart from a simple pole at » = 3. This proves (2. 4).

Apart from case 1 we have y =0, CYf+) = 1 and so, by induction

{Euﬁ‘J Hﬂ'} ‘-{:?l_!‘ [ﬁ""l*ﬂ!al'"}'
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In all eases we put

fim) fiw)
AR =8 NuSE R =

and we have

(2. 6) basy<f<e <oo,

For, (2. 1) shows that a = ¢ < §, and § < ¢; ! follows from the inequality
fin + 1) = e,f(n), which immediately follows from (1. 1).

§ 3. Linear recursion; existence of lim {f(n)}-1"

We shall show (theorem 2) that [f(n)}~'" tends to a finite limit in all
cases, Denoting the limit by L, it is easily proved afterwards that L = y.

The existence of the limit will be shown for a slightly more general
recursion formula,

Theorem 1. Let u{nk.kl-'l gﬂk..wz “'\-{:hﬂu'i.‘,.i'+3"'-::--"" {k=1,2, 3,...:'.

@D =1, ) =3 Gk (=23,

Then we have

(3.2) flntk—1) =) f(B)  (komw=1,2,3,...).
Proof. We apply induction with respeet to n. If & = 1, (3. 2) is trivial.
Now aszsume that (3.2) holds for = =1, ..., N. Then we have

¥+k=-1
fAN+Ek) = :21 C,x+n (N +Ek=1) =

=2V e IN+E-D =3V e i AN +E-0) =
=21 opn AN +1=0) fik) = f(NV + 1) f(k),
and the induection is complete,

Theorem 2. Under the assumptions of theorem 1 we have, putting

inf{fin+1)}" =L (0L <o0),
that
lim {f{n+1)}~1 = L

Proof. Clearly we have fin) > 0(n = 1,2, ...). Putting
gin) = — log f(n +- 1),
we infer from (3. 2) that g{n) is sub-additive:
gln+k) <glr) +gk) (k=012 ..)
It follows that
&mgmf“{“’ —Hmﬂ‘-’{m

o TF




aTT

(See [4], vol. 1, p. 17 and 171, An extension of this theorem will he
given in § 7).

We next show for the equation (1. 1) that L = 3. We have [(n) =e¢,_,
for all n > 1; therefore the radius of convergence of Fiz) is < R, and so
L=R. In caze | this means L=0=y,

In case 2 we have L =y by (2.4).

In the remaining cases we have R — », and so L < 4. On the other hand
(2, 5) gives L = y.

§ 4. Linear recursion; existence of lim fin)/fin + 1)

If lim f(n)/f(n + 1) exists, it equals y (see (2. 6)). In the cases 2 and 3 the
limit exists (by (2. 2)). In the other cases f(n)/f(n + 1) can be oscillating,
and we can even have (with the notations of (2. 6)) # >a = 0.

In eases 4 and 5 we construet an example as follows. Let o be n number,
0<a=1;andlet p, + p, + .., be a series of positive terms whose sum
is Jo, We shall construct n series ¢ + ¢y + ... with ¢, = p,, whose sum
is @, and such that ¢, /f(n) is not bounded.

Let #.#, ... be a sequence with g >0, £, — 0. Take ¢, = p, for
k=1,2, ..., K;— 1, where K, is the first k with j{k) < } £0. The existence
of this I follows from the inequality

(4.1) f1) 4 oo+ fm) < {1 ~'§‘n}-h

which is obtained by addition of the formulas (1. 1) withn = 1, 2, ..., m,
respectively.

Now take ¢, = }o + p, if k= K,, which does not alter the values of
1), oo UK. k= K, + 1, ..., Ks— | we take ¢, = p, again, where K,
is the first k& > K, with f(k) < |go. For k = K, take ¢, = |0 + p, ete.
If k=K, K, ... we have offik) > &1, 657, ..., respectively., As
f(k 4+ 1) >¢, for all k, we also find that f(k -+ 1)/f(k) is not bounded,
Therefore e = 0. On the other hand we have # > 0 by (2. 8), since y is
positive. It can be shown that y =1, O(y) = a.

A sufficient condition for a to be positive is that Xe/f(k) < oo. For,
writing down (1. 1) with n = N + 1 and » = N, respectively, we infer

JiN+1) - flk41)
10 e Mg 1 T +?T'
whenee fln 4 1) = ﬂ{jtn}}
In ease 1 the series Yey/f(k) does not converge sinee it would lead to
a > 0. In cases 2 and 3 the series always converges (see (2. 2)). In case 4
the condition may be useful, and we can show that it implies o = g
(theorem 11). In case 5 however the condition never applies:

Theorem 3. In case 5 we have Ze/f(k) = oo,
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Proof. We have X¥e 4% < 1. Assume Xelf(f) < oo.
Put 1 — E@cgt = 26 Choose I such that 29 X%, e /f(k) < &, and & >0
such that ¢"Xleat < | —g e < 2. Then we can show by induction

(4. 2) flk) < 2otk 1t

If k= 1,(4. 2)is trivial. Next assume {4. 2) to be true for b = 1, ..., n—1L
Then by (1. 1)

&

lﬂ:ﬂ'} ?'&Hn 'H""'L. ﬂﬂ-} I:Hfl:ﬂ k}r

where & = min (n — 1, {), and the second sum is empty if n—1 1. Tt
follows that

fin) < Eckﬂ"i"?" T S N 2 ok, grdnp =t o
& f®

< 2ot e T e " + 2y 2 aff ()} < Zem iR

This proves (4. 2). However, (4. 2) contradiets (2.1). Therefore our
sssumption Xe /f(k) < oo is false.

We next digeuss the condition ¢, = o{f(k)}. We do not know whether
this guarantees the existence of lim f{n)/f(n 4+ 1). On the other hand it is a
necessary condition in cases 2, 3 and 4 (theorem 4), but it is not necessary
in case 5.

In case 5 we can give an example where

n--1 oy
kB ﬂr{:: 1, b gl
In order to construct this example, require (1. 1) and ¢, = 1f(n) for all ».
Then we have F(z) — 2 = } F¥x), and so

4-n (2

Zn—1nlnl’

We are in case 5 indeed, for the radius of convergence of C(z) = [ Fix)
equals 1, and

Flz) = 2{1 (1 —=)}, fln) =

e =M. F(1)=1.
Theorem 4. If, in case 2, 3 or 4, lim f(n)/f(n 4 1) exista !), then we
have ¢, = off(n)}.
Proof. 1If the limit exists, we know that it equals ». And, if n = &+ 1,
we have
(4. 4) fin+1) Z ¢ fin) + ..o + 6y fln — K) + 6.
Dividing by f(n) and making n -» co, we infer
P Z 6 Gyt .. Gt o limosup g, /f(n),
lim sup ¢, /f(n) < 7t {1— ey — 538 — ... — ).
This holds for every k. Since X'e,3* = 1 we infer ¢, = o{fin}}.

1 In case 2 or 3 the limit exists automatically.
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Theorem 5. I, in case 2, 3, or 4, lim e, /e, exists, then we have

o = of(n}}.
Proof, The limit of e, e, equals !, of course, If » =&, we have

flm) = e fll) + e (2) + o 0o ey SR
Dividing by ¢, and making n — co, we infer
lim inf f(m)je, = f(1) + f(2) y + ... + f(R) 570
The theorem follows from the fact that Xj(k)*' = oo (see (2. 3)).
The following fﬂmp}ﬂ theorem applies to the cases 2, 3, 4, 5 (in case 1
the condition is never satisfied).

Theorem 6. If, for some fixed &, we have e, =Ole; .y + €op+ .+ -+
+ 6,y then fin + 1) = O{f(n)}, that is « = 0.
Proaf, TFor n =k we have

Cast M) b e (1) o MGHY) Okt oo o o)
Ea—pe JUR) + oov ﬂn—lﬁ“ 1€isk fid) ﬂna—kﬂ-&}' gy (1)

B not depending on n. Furthermore, if n = k,
fln+1) =3 e fln+1—j) <

= B,

=+

L i+ | gt ;
S‘; ? E:"ii .ﬂﬂ' _.'” Ill&x ﬂi:l =+ B nzt E=:Il fl:?’l—jl:l “'-C‘:;-
. N1

<< fin) max | B, ;Iglilil I

It follows by induction that f(n + 1) == Bf{n) for all «.
We shall give a necessary and sufficient condition for the existence of

lim f(n)/f(n + 1) in the eases 2, 3, 4, 5. That is, we assume
(45)  p>0,3SPar<l; 1<SPae <ooif 2>,
Put, if 1 <k < n,

ylepfin—k+1) + ... + ca f(1)} — {ew fln—h) + ... + ar fALF
(4.6) fin) S
lim sup |8, = @ (k) < oo
=0

k3

Theorem 7. In the cases 2, 3, 4, 5 a necessary and sufficient con-
dition for the existence of lim [{n)/f(n + 1) is that @(k) — 0 when I — cc.
Proof. We have, if 1 <k <un,

(£.7)  yfintl)—fin) =y ? e fln+1—j) — ? ¢ fln—3) -+ fim) S, &

If fin)/fin + 1) — p, it easily follows by making n — oo that g(k) =0
for all &, '
We next show that g@(k) — 0 is also sufficient. We have (see (2. 6))




380
0 <<a=<fi<oo First we prove that a > 0. We have f(I + 1) = ¢, f(l)
for all {. Hence, dividing (4. 7) by f(n) we obtain

find1) =
i e R Ec + |8l

Choose & such that g(k) < oo, and make n — oo. It follows that f(n + 1) =
= O{f{n)), that is o« =,
Let {n;} be a sequence for which

(4. 8) findffing + 1) = a (i — oo).
Then we have, for any fixed [ == 0, also
(4. 9) [y =Dffng + 1 <1) > a (# — oo).

The same holds if a is replaced by g both times. We only prove it for the
lower limit; the other case can be proved analogously.

Assume (4. 9) false for some | = 0. Then there iz a subsequence {m }
and a number & (§ > a) such that

flmg—=10) >8flm, +1—10 (=12 ...)
Further, if & >0 and i > 1, (¢, k) then we have
fomi— ) >le—eHflm +1—4) (A <j<k)
It follows, if & =1, i > iy (e, &), that
Zicte {pflm +1—j) — flm—j)} <

< Xjleily —a+e) fim+1—j) —¢ (8 —a) fim+1-1) <

< (y—ate) fom+1) — ¢, (8 —a) fom+1 1),
and so, by (4. 7),

(a—e) fimy + 1) + ¢ (6 — @) flm; + 1 —1) < f(my) {|8,, ] + 1}

If i — oo, wo have f(m)/f(m; + 1)—»a, lim inf f(m, + 1 —1)/f(m, + 1) =a'.
Therefore
a— e+ o (d— a)a' = a+ aplk),

which holds whenever & =1, ¢ > 0. Making &k — oo, ¢ = 0 we obtain
d = a, and a contradiction has been found. This proves (4. 9).

We can now show that e = p. Assume « << p, and let the sequence {n,}
satisfy (4. 8). Now write down (4. 7) with n = m, divide by f(n; + 1)
and make § — oo (k is fixed), We obtain

|y —a — .'%Z e (ya' —a*)| < aq (k)
which leads to
k=1 H
i i a ikl
[1 %c_,ﬂ‘:f;‘—?_a.

Making L — oo we infer ('(a) = 1, which is impossible since a < .
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In the same way the assumption f =y leads to C(f) = 1. Thus the
proof of theorem 7 is completed.

For some applications we can better deal with T, ,, where, if n > & = 1

] —k
{'1'1{-'} jmk_ mk_?ﬂw {:1,1 th{n r"!:fl-:l_cﬂ}

and put lim sup [T, ;| = p(l) < oo

Theorem 8. In the cases 2, 3, 4, 5 a necessary and sufficient con-
dition for the existence of lim f(n)/f(n + 1) is that p(k) - 0 ask — oo,
Proof. In the first place, if f(n)/f(n + 1) — y is given, then we deduce

]-i-“:n ]Trr.k = E:d..kl = o 3%,

and ¢ 9% — 0 since X 9* converges. Hence yp(k) —= 0.

Next assume (k) —» 0. As in the beginning of the proof of theorem 7
we deduce f{n + 1) < Cf(n) for some € and all n. Therefore we have, if
n = 2K

wop fln—kL1) y_l“_'-’
E<p=tk fim) S Kﬂ“] % £ e K
and hence
(4.11) lim lim sup Tl'll:l'.l |82l =0
K=o [ ] K=he

1t i3 easily seen that with this condition, instead of g(k) — 0, we are also
able to give the remaining part of the proof of theorem 7.

Theorem 9. In all cases the condition e¢,/e,., — p implies

fln){f{n - 1) -= 3.

Proof. We exelude case 1 here; the proof for case 1 will be given in § 5.
If &€ = 0, then for § = Az} we have

|7 601 — €| < & ¢y
Hence, for & = A(e), » =k, we have by (4. 10),
=1
) | Tl < 3 e fin—j) <ef(n).
Therefare (k) — 0 as & — oo, and theorem 8 can be applied.

Theorem 10. In the cases 2, 3, 4, 5, the condition

\)— .r"fﬂr fn—1 = oo
(k)

implies f(n)/f(n + 1) - p.
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Proof. By (4. 10) and by theorem 1 we have, if n >k > 1,

—‘i - 'l -
f{ﬂHTﬂil{ 2 fﬂ }]h' Gl = E,]{f‘[ﬂ- El |i m;;;{ ll..

Consequently y(k) — 0 as k- o, and theorem 8 can be applied.

Theorem 11. If Ze [fin) < oo, then fin)/fin + 1) = .

FProof. As was remarked before, the convergence of the series implies
fin + 1) = Off(n)}, and it excludes case 1. Thus we may apply theorem 10,
ginee

Sy
g
b1

= 2Ty < Z i < o

Possibly the condition

Cn+1

5 o L5
ety 2| 7oxn — T

= o

is also sufficient for f{n)/fin 4 1) =4, but we could not decide this.
A sufficient condition which applies to all cases, is

Theorem 12, If ¢, e, 3 =08 (n >1), then f(n}/fin+ 1) - 5.

Proof. Tt was proved in [1] that e¢,.,¢, ; =ci(n =1) implies
fin + 1) f(n— 1) = f4n) (n =1). (The proof did not depend on the
assumption Xe, = 1 which was made throughout that paper). Conse-
quently fin)/f{n + 1) is non-increaging, and its limit exists,
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(To be combinued)
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