SOME LINEAR AND SOME QUADRATIC RECURSION FORMULAS.

1

BY

N. G. DE BRULIN AND P. ERDÖS

(Communicated by Prof. H. D. Kloosterman at the meeting of Novemver 24, 1951)

§ 1. Introduction

We shall mainly deal with linear recursion formulas of the type

(1.1)
$$f(1) = 1;$$
 $f(n) = \sum_{k=1}^{n-1} c_k f(n-k)$ $(n = 2, 3, ...),$

and with quadratic formulas of the type

(1, 2)
$$f(1) = 1$$
; $f(n) = \sum_{k=1}^{n-1} d_k f(k) f(n-k)$ $(n = 2, 3...).$

We assume that $c_k > 0$, $d_k > 0$ (k = 1, 2, ...). In a previous paper [1] we discussed (1.1) under the condition $\Sigma_1^{\infty} c_k = 1$, and further special assumptions. Presently we deal with it more generally. We shall show that $\lim \{f(n)\}^{-1/n}$ always exists, and we shall give several sufficient conditions for the existence of $\lim f(n)/f(n+1)$. Some of the results can be applied to (1.2) (see § 6), and some of the methods can be extended to recurrence relations with coefficients c depending on n also (see § 3 and § 7).

In [1] as well as in the earlier paper of Erdős, Feller and Pollard [3], referred to below, the condition on the c_k was $c_k \ge 0$ (k = 1, 2, ...), whereas the g.c.d. of the k's with $c_k = 0$ was assumed to be 1. For convenience we assume $c_k > 0$ throughout. Consequently we have, both for (1, 1) and for (1, 2), j(n) > 0 (n = 1, 2, ...).

Dealing with the linear relation (1.1) we put formally

(1, 3)
$$C(x) = \sum_{n=1}^{\infty} c_n x^n$$
, $F(x) = \sum_{n=1}^{\infty} f(n) x^n$,

and we have formally

(1, 4)
$$F(x) = x + C(x) F(x)$$
.

Furthermore, if ϱ is a positive number, and if we put

(1.5)
$$f(n) = \varrho^{-n+1} g(n),$$

then we have

(1.6)
$$g(n) = \sum_{k=1}^{n-1} b_k g(n-k)$$
, $g(1) = 1$,

where $b_k = c_k \varrho^k$. Formula (1, 6) is again of the type (1, 1), and $b_k > 0$ for all k.

§ 2. Linear recursions, different cases

We discern amongst 5 different cases with respect to the behaviour of the series C(x) (see (1, 3)). Let R be the radius of convergence $(0 \le R \le \infty)$ and let γ be the l.u.b. of the numbers α with $C(\alpha) \le 1$.

Case 1.
$$\gamma = R = 0$$
.

Case 2.
$$0 < \gamma < R \leq \infty$$
, $C(\gamma) = 1$.

Case 3.
$$0 < \gamma = R < \infty$$
, $C(\gamma) = 1$, $0 < C'(\gamma) < \infty$.

Case 4.
$$0 < \gamma = R < \infty$$
, $C(\gamma) = 1$, $C'(\gamma) = \infty$.

Case 5.
$$0 < \gamma = R < \infty, \ 0 < C(\gamma) < 1.$$

Since the coefficients c_k are positive it is easily seen that all possibilities are listed here.

§ 5 will be specially devoted to case 1; nevertheless case 1 is not excluded in §§ 2, 3, 4 unless explicitly stated.

In all cases we can show (§ 3)

$$(2. 1) \qquad (f(n))^{-\frac{1}{n}} \rightarrow \gamma,$$

In case 1 we infer that also F(x) has 0 as its radius of convergence. In the other cases we can transform by (1.5), taking $\varrho = \gamma$. Apart from case 5, this leads to (1.6) with $\Sigma b_k = 1$. Therefore we can apply the results of Erdős, Feller and Pollard [3], and we obtain

(2. 2)
$$\lim_{n\to\infty} f(n) \, \gamma^n \begin{cases} = \{C'(\gamma)\}^{-1} & \text{in cases 2 and 3,} \\ = 0 & \text{in case 4.} \end{cases}$$

If the limit is = 0, we have not yet an asymptotic formula for f(n), and such a formula seems to be hard to obtain without introducing very special assumptions (see [1]).

In case 5 we have, just as in case 4, $f(n)\gamma^n \rightarrow 0$. For, it follows from (1.4) that

(2, 3)
$$\sum_{1}^{\infty} f(n) \gamma^{n} = \gamma / (1 - C(\gamma));$$

hence the series on the left is divergent in cases 2, 3, 4 but convergent in case 5.

In case 2 it can be shown that for some C > 0 and some $\delta > \gamma$ we have

(2.4)
$$f(n) = C \gamma^{-n} + O(\delta^{-n}).$$

For, the coefficients of C(x) being positive, we have $C(x) \neq 1$ ($|x| \leq \gamma$, $x \neq \gamma$) and $C'(\gamma) \neq 0$. Now (1.4) shows that F(x) is regular in $|x| \leq \gamma$ apart from a simple pole at $x = \gamma$. This proves (2.4).

Apart from case 1 we have $\gamma > 0$, $C(\gamma) \leqslant 1$ and so, by induction

$$(2.5) f(n) \leqslant \gamma^{1-n} (n = 1, 2, 3, ...).$$

In all cases we put

$$\liminf_{n\to\infty}\frac{f(n)}{f(n+1)}=\alpha\quad,\quad \limsup_{n\to\infty}\frac{f(n)}{f(n+1)}=\beta\;,$$

and we have

$$(2.6) 0 \leqslant \alpha \leqslant \gamma \leqslant \beta \leqslant c_1^{-1} < \infty.$$

For, (2. 1) shows that $a \leq \gamma \leq \beta$, and $\beta \leq c_1^{-1}$ follows from the inequality $f(n+1) \geq c_1 f(n)$, which immediately follows from (1. 1).

§ 3. Linear recursion; existence of lim {f(n)}-1/n

We shall show (theorem 2) that $\{f(n)\}^{-1/n}$ tends to a finite limit in all cases. Denoting the limit by L, it is easily proved afterwards that $L = \gamma$.

The existence of the limit will be shown for a slightly more general recursion formula.

Theorem 1. Let $0 < c_{k,k+1} \le c_{k,k+2} \le c_{k,k+3} \le \dots$ $(k = 1, 2, 3, \dots)$.

(3.1)
$$f(1) = 1$$
, $f(n) = \sum_{k=1}^{n-1} c_{k,n} f(n-k)$ $(n = 2, 3, ...)$.

Then we have

$$(3.2) f(n+k-1) \geqslant f(n) f(k) (k, n = 1, 2, 3, ...).$$

Proof. We apply induction with respect to n. If n = 1, (3, 2) is trivial. Now assume that (3, 2) holds for $n = 1, \ldots, N$. Then we have

$$\begin{split} f(N+k) &= \sum_{l=1}^{N+k-1} c_{l,\,N+k} \, f(N+k-l) \geqslant \\ &\geqslant \sum_{1}^{N} c_{l,\,N+k} \, f(N+k-l) \geqslant \sum_{1}^{N} c_{l,\,N+1} \, f(N+k-l) \geqslant \\ &\geqslant \sum_{1}^{N} c_{l,\,N+k} \, f(N+1-l) \, f(k) = f(N+1) \, f(k), \end{split}$$

and the induction is complete.

Theorem 2. Under the assumptions of theorem 1 we have, putting $\inf\{f(n+1)\}^{-1/n} = L$ $(0 \le L < \infty)$,

that

$$\lim_{n \to \infty} \{f(n+1)\}^{-1/n} = L.$$

Proof. Clearly we have f(n) > 0 (n = 1, 2, ...). Putting

$$g(n) = -\log f(n+1),$$

we infer from (3.2) that g(n) is sub-additive:

$$g(n+k) \leq g(n) + g(k)$$
 $(n, k = 0, 1, 2, ...).$

It follows that

$$-\infty \leqslant \inf \frac{g(n)}{n} = \lim_{n \to \infty} \frac{g(n)}{n} < \infty$$
.

(See [4], vol. I, p. 17 and 171. An extension of this theorem will be given in § 7).

We next show for the equation (1, 1) that $L = \gamma$. We have $f(n) \ge c_{n-1}$ for all n > 1; therefore the radius of convergence of F(x) is $\le R$, and so $L \le R$. In case 1 this means $L = 0 = \gamma$.

In case 2 we have $L = \gamma$ by (2.4).

In the remaining cases we have $R = \gamma$, and so $L \leqslant \gamma$. On the other hand (2. 5) gives $L \geqslant \gamma$.

§ 4. Linear recursion; existence of $\lim_{n \to \infty} f(n)/f(n+1)$

If $\lim_{n \to \infty} f(n)/f(n+1)$ exists, it equals γ (see (2. 6)). In the cases 2 and 3 the limit exists (by (2. 2)). In the other cases f(n)/f(n+1) can be oscillating, and we can even have (with the notations of (2. 6)) $\beta > \alpha = 0$.

In cases 4 and 5 we construct an example as follows. Let σ be a number, $0 < \sigma \le 1$; and let $p_1 + p_2 + \ldots$ be a series of positive terms whose sum is $\frac{1}{2}\sigma$. We shall construct a series $c_1 + c_2 + \ldots$ with $c_k \ge p_k$, whose sum is σ , and such that $c_n/f(n)$ is not bounded.

Let $\varepsilon_1, \varepsilon_2, \ldots$ be a sequence with $\varepsilon_k > 0$, $\varepsilon_k \to 0$. Take $c_k = p_k$ for $k = 1, 2, \ldots, K_1 - 1$, where K_1 is the first k with $f(k) < \frac{1}{4} \varepsilon_1 \sigma$. The existence of this k follows from the inequality

(4.1)
$$f(1) + ... + f(m) < \{1 - \sum_{k=1}^{m-1} c_k\}^{-1},$$

which is obtained by addition of the formulas (1, 1) with n = 1, 2, ..., m, respectively.

Now take $c_k = \frac{1}{4} \sigma + p_k$ if $k = K_1$, which does not alter the values of $f(1), \ldots, f(K_1)$. If $k = K_1 + 1, \ldots, K_2 - 1$ we take $c_k = p_k$ again, where K_2 is the first $k > K_1$ with $f(k) < \frac{1}{k} \varepsilon_2 \sigma$. For $k = K_2$ take $c_k = \frac{1}{4} \sigma + p_k$ etc. If $k = K_1, K_2, \ldots$ we have $c_k/f(k) > \varepsilon_1^{-1}, \varepsilon_2^{-1}, \ldots$, respectively. As $f(k+1) > c_k$ for all k, we also find that f(k+1)/f(k) is not bounded. Therefore $\alpha = 0$. On the other hand we have $\beta > 0$ by (2.6), since γ is positive. It can be shown that $\gamma = 1$, $C(\gamma) = \sigma$.

A sufficient condition for a to be positive is that $\Sigma c_k / f(k) < \infty$. For, writing down (1.1) with n = N + 1 and n = N, respectively, we infer

$$\tfrac{f(N+1)}{f(N)}\leqslant \max_{1\leqslant k\leqslant N}\tfrac{f(k+1)}{f(k)}+\tfrac{c_N}{f(N)},$$

whence $f(n + 1) = O\{f(n)\}.$

In case 1 the series $\sum c_k/f(k)$ does not converge since it would lead to a > 0. In cases 2 and 3 the series always converges (see (2, 2)). In case 4 the condition may be useful, and we can show that it implies $a = \beta$ (theorem 11). In case 5 however the condition never applies:

Theorem 3. In case 5 we have $\sum c_k/f(k) = \infty$.

Proof. We have $\Sigma_1^{\infty} c_k \gamma^k < 1$. Assume $\Sigma c_{\psi}/f(k) < \infty$.

Put $1 - \Sigma_1^{\infty} c_k \gamma_{\scriptscriptstyle m}^k = 2\varepsilon$. Choose l such that $2\gamma \Sigma_{l+1}^{\infty} c_k / f(k) < \varepsilon$, and $\delta > 0$ such that $e^{\delta l} \Sigma_1^l c_k \gamma^k < 1 - \varepsilon$, $e^{\delta} < 2$. Then we can show by induction

(4. 2)
$$f(k) \leq 2e^{-\delta k} \gamma^{1-k}$$
.

If k = 1, (4. 2) is trivial. Next assume (4. 2) to be true for $k = 1, \ldots, n-1$. Then by (1. 1)

$$f(n) \leqslant \sum_{1}^{s} c_k f(n-k) + \sum_{s+1}^{n-1} \frac{c_k}{f(k)} f(k) f(n-k),$$

where $s = \min (n - 1, l)$, and the second sum is empty if $n - 1 \le l$. It follows that

$$\begin{split} f(n) \leqslant \sum_{1}^{s} c_{k} \, e^{\delta k} \, \gamma^{k} \cdot 2e^{-\delta s} \, \gamma^{1-n} + 4 \, \sum_{s+1}^{n-1} \frac{c_{k}}{f(k)} \, e^{-\delta n} \, \gamma^{2-n} \leqslant \\ \leqslant 2e^{-\delta s} \, \gamma^{1-n} \, \{ e^{\delta t} \, \sum_{1}^{t} c_{k} \, \gamma^{k} + 2 \, \gamma \, \sum_{l+1}^{\infty} c_{k} / f(k) \} < 2e^{-\delta n} \, \gamma^{1-n}. \end{split}$$

This proves (4, 2). However, (4, 2) contradicts (2, 1). Therefore our assumption $\Sigma c_k/f(k) < \infty$ is false.

We next discuss the condition $c_k = o\{f(k)\}$. We do not know whether this guarantees the existence of $\lim f(n)/f(n+1)$. On the other hand it is a necessary condition in cases 2, 3 and 4 (theorem 4), but it is not necessary in case 5.

In case 5 we can give an example where

$$\frac{f(n+1)}{f(n)} \rightarrow 1, \quad \frac{c_{n+1}}{c_n} \rightarrow 1, \quad \frac{c_n}{f(n)} \rightarrow \frac{1}{4}.$$

In order to construct this example, require (1.1) and $c_n = \frac{1}{4}f(n)$ for all n. Then we have $F(x) - x = \frac{1}{4}F^2(x)$, and so

$$F(x) = 2\{1 - (1 - x)^{\frac{1}{2}}\}, f(n) = \frac{4^{-n}}{2n-1} \frac{(2n)!}{n! n!}$$

We are in case 5 indeed, for the radius of convergence of $C(x) = \frac{1}{4}F(x)$ equals 1, and

$$\sum_{1}^{\infty} c_k = M \cdot F(1) = \frac{1}{2}.$$

Theorem 4. If, in case 2, 3 or 4, $\lim f(n)/f(n+1)$ exists 1), then we have $c_n = o\{f(n)\}.$

Proof. If the limit exists, we know that it equals γ . And, if n > k + 1, we have

$$(4.4) f(n+1) \ge c_1 f(n) + ... + c_{k+1} f(n-k) + c_n.$$

Dividing by f(n) and making $n \to \infty$, we infer

$$\gamma^{-1} \ge c_1 + c_2 \gamma + \ldots + c_k \gamma^{k-1} + \limsup_{n \to \infty} c_n / f(n),$$

 $\limsup_{n \to \infty} c_n / f(n) \le \gamma^{-1} \{1 - c_1 \gamma - c_2 \gamma^2 - \ldots - c_k \gamma^k\}.$

This holds for every k. Since $\Sigma c_k \gamma^k = 1$ we infer $c_n = o\{f(n)\}$.

¹⁾ In case 2 or 3 the limit exists automatically.

Theorem 5. If, in case 2, 3, or 4, $\lim c_{n+1}/c_n$ exists, then we have $c_n = o\{f(n)\}$.

Proof. The limit of c_{n+1}/c_n equals γ^{-1} , of course. If n > k, we have $f(n) \ge c_n f(1) + c_{n-1} f(2) + \ldots + c_{n-k} f(k)$.

Dividing by c_n and making $n \to \infty$, we infer

$$\lim \inf f(n)/c_n \ge f(1) + f(2) \gamma + \ldots + f(k) \gamma^{k-1}$$
.

The theorem follows from the fact that $\Sigma f(k)\gamma^{k-1} = \infty$ (see (2. 3)).

The following simple theorem applies to the cases 2, 3, 4, 5 (in case 1 the condition is never satisfied).

Theorem 6. If, for some fixed k, we have $c_n = O(c_{n-1} + c_{n-2} + \ldots + c_{n-k})$, then $f(n+1) = O\{f(n)\}$, that is $\alpha > 0$.

Proof. For n > k we have

$$\frac{c_{n-k}\,f(k+1)+\ldots+c_n\,f(1)}{c_{n-k}\,f(k)+\ldots+c_{n-1}\,f(1)}\leqslant \max_{1\leqslant i\leqslant k}\frac{f(j+1)}{f(j)}+\frac{C\,(c_{n-k}+\ldots+c_{n-1})}{c_{n-k}\,f(k)+\ldots\,c_{n-1}\,f(1)} \leqslant B,$$

B not depending on n. Furthermore, if n > k,

$$\begin{split} f(n+1) &= \sum_{1}^{n} c_{j} \, f(n+1-j) \leqslant \\ &\leqslant \sum_{1}^{n-k-1} c_{j} \, f(n-j) \cdot \max_{1 \leqslant l \leqslant n} \frac{f(l+1)}{f(l)} + B \sum_{n-k}^{n-1} c_{j} \, f(n-j) \leqslant \\ &\leqslant f(n) \, \max \, \Big\{ B, \, \max_{1 \leqslant l \leqslant n} \frac{f(l+1)}{f(l)} \Big\}. \end{split}$$

It follows by induction that $f(n + 1) \leq B/(n)$ for all n.

We shall give a necessary and sufficient condition for the existence of $\lim f(n)/f(n+1)$ in the cases 2, 3, 4, 5. That is, we assume

$$(4.5) \gamma > 0, \sum_{1}^{\infty} c_k \gamma^k \leqslant 1; 1 < \sum_{1}^{\infty} c_k x^k \leqslant \infty \text{ if } x > \gamma.$$

Put, if $1 \leqslant k < n$,

$$(4.6) \begin{cases} \frac{\gamma \{c_k f(n-k+1) + \ldots + c_n f(1)\} - \{c_k f(n-k) + \ldots + c_{n-1} f(1)\}}{f(n)} = S_{n,k}; \\ \limsup_{n \to \infty} |S_{n,k}| = \varphi(k) \leqslant \infty. \end{cases}$$

Theorem 7. In the cases 2, 3, 4, 5 a necessary and sufficient condition for the existence of $\lim f(n)/f(n+1)$ is that $\varphi(k) \to 0$ when $k \to \infty$. Proof. We have, if $1 \le k < n$,

(4.7)
$$\gamma f(n+1) - f(n) = \gamma \sum_{j=1}^{k-1} c_j f(n+1-j) - \sum_{j=1}^{k-1} c_j f(n-j) + f(n) S_{n,k}$$

If $f(n)/f(n+1) \to \gamma$, it easily follows by making $n \to \infty$ that $\varphi(k) = 0$ for all k,

We next show that $\varphi(k) \to 0$ is also sufficient. We have (see (2.6))

 $0 \le \alpha \le \beta < \infty$. First we prove that $\alpha > 0$. We have $f(l+1) \ge c_1 f(l)$ for all l. Hence, dividing (4.7) by f(n) we obtain

$$\gamma \frac{f(n+1)}{f(n)} \leqslant 1 + \sum_{i=1}^{k-1} c_i c_i^{1-i} + |S_{n,k}|.$$

Choose k such that $\varphi(k) < \infty$, and make $n \to \infty$. It follows that f(n+1) = O(f(n)), that is $\alpha > 0$.

Let $\{n_i\}$ be a sequence for which

$$(4. 8) f(n_i)/f(n_i + 1) \rightarrow \alpha (i \rightarrow \infty).$$

Then we have, for any fixed $l \ge 0$, also

$$(4.9) f(n_i - l)/f(n_i + 1 - l) \rightarrow \alpha (i \rightarrow \infty).$$

The same holds if α is replaced by β both times. We only prove it for the lower limit; the other case can be proved analogously.

Assume (4.9) false for some l > 0. Then there is a subsequence $\{m_i\}$ and a number δ ($\delta > a$) such that

$$f(m_i - l) > \delta f(m_i + 1 - l)$$
 $(i = 1, 2, ...).$

Further, if $\varepsilon > 0$ and $i > i_0(\varepsilon, k)$ then we have

$$f(m_i - j) > (\alpha - \varepsilon) f(m_i + 1 - j) \qquad (1 \leqslant j < k)$$

It follows, if k > l, $i > i_0$ (ε, k) , that

$$\begin{split} \sum_{j=1}^{k-1} c_j \left\{ \gamma \, f(m_i + 1 - j) - f(m_i - j) \right\} < \\ < \sum_{j=1}^{k-1} c_j \left(\gamma - \alpha + \varepsilon \right) f(m_i + 1 - j) - c_l \left(\delta - \alpha \right) f(m_i + 1 - l) < \\ < \left(\gamma - \alpha + \varepsilon \right) f(m_i + 1) - c_l \left(\delta - \alpha \right) f(m_i + 1 - l), \end{split}$$

and so, by (4.7),

$$(a - \varepsilon) f(m_i + 1) + c_i (\delta - a) f(m_i + 1 - l) \le f(m_i) \{ |S_{m_i,k}| + 1 \}.$$

If $i \to \infty$, we have $f(m_i)/f(m_i+1) \to a$, $\lim \inf f(m_i+1-l)/f(m_i+1) \ge a^l$. Therefore

$$a-\varepsilon+c_l(\delta-a) a^l \leqslant a+a\varphi(k),$$

which holds whenever k > l, $\varepsilon > 0$. Making $k \to \infty$, $\varepsilon \to 0$ we obtain $\delta = a$, and a contradiction has been found. This proves (4.9).

We can now show that $\alpha = \gamma$. Assume $\alpha < \gamma$, and let the sequence $\{n_i\}$ satisfy (4. 8). Now write down (4. 7) with $n = n_i$, divide by $f(n_i + 1)$ and make $i \to \infty$ (k is fixed). We obtain

$$|\gamma - \alpha - \sum_{j=1}^{k-1} c_j (\gamma \alpha^j - \alpha^{j+1})| \leqslant \alpha \varphi(k),$$

which leads to

$$|1 - \sum_{1}^{k-1} c_j a^j| \leqslant \frac{\alpha \varphi(k)}{\gamma - \alpha}$$
.

Making $k \to \infty$ we infer C(a) = 1, which is impossible since $a < \gamma$.

In the same way the assumption $\beta > \gamma$ leads to $C(\beta) = 1$. Thus the proof of theorem 7 is completed,

For some applications we can better deal with $T_{n,k}$, where, if $n > k \geqslant 1$,

$$(4.10) \quad T_{n,k} = S_{n,k} - \gamma \frac{c_k f(n-k+1)}{f(n)} = \frac{1}{f(n)} \sum_{i=k}^{n-1} f(n-j) \{ \gamma c_{i+1} - c_i \},$$

and put $\limsup_{n\to\infty} |T_{n,k}| = \psi(k) \leqslant \infty$,

Theorem 8. In the cases 2, 3, 4, 5 a necessary and sufficient condition for the existence of $\lim_{x \to \infty} f(n)/f(n+1)$ is that $\psi(k) \to 0$ as $k \to \infty$. Proof. In the first place, if $f(n)/f(n+1) \to \gamma$ is given, then we deduce

$$\lim_{n\to\infty} |T_{n,k} - S_{n,k}| = c_k \gamma^k,$$

and $c_k \gamma^k \to 0$ since $\Sigma c_k \gamma^k$ converges. Hence $\psi(k) \to 0$.

Next assume $\psi(k) \to 0$. As in the beginning of the proof of theorem 7 we deduce f(n+1) < Cf(n) for some C and all n. Therefore we have, if n > 2K

$$\min_{K\leqslant k\leqslant 2K}\frac{\gamma\,c_k\,f(n-k+1)}{f(n)}\leqslant \frac{\gamma}{K\,f(n)}\sum_{K}^{2K}\,c_k\,f(n-k+1)\leqslant \frac{\gamma C}{K}\,,$$

and hence

(4.11)
$$\lim_{K\to\infty} \lim_{n\to\infty} \sup_{K\leq h\leq 2K} |S_{n,k}| = 0.$$

It is easily seen that with this condition, instead of $\varphi(k) \to 0$, we are also able to give the remaining part of the proof of theorem 7.

Theorem 9. In all cases the condition $c_n/c_{n+1} \rightarrow \gamma$ implies

$$f(n)/f(n+1) \rightarrow \gamma$$
.

Proof. We exclude case 1 here; the proof for case 1 will be given in § 5. If $\varepsilon > 0$, then for $j > A(\varepsilon)$ we have

$$|\gamma c_{j+1} - c_j| < \varepsilon c_j$$
.

Hence, for $k > A(\varepsilon)$, n > k, we have by (4. 10),

$$|f(n)|T_{n,k}| < \sum_{k=0}^{n-1} \varepsilon c_j f(n-j) < \varepsilon f(n).$$

Therefore $\psi(k) \to 0$ as $k \to \infty$, and theorem 8 can be applied.

Theorem 10. In the cases 2, 3, 4, 5, the condition

$$\sum_{2}^{\infty} \frac{|\gamma c_{n} - c_{n-1}|}{f(n)} < \infty$$

implies $f(n)/f(n+1) \rightarrow \gamma$.

Proof. By (4.10) and by theorem 1 we have, if n > k > 1,

$$|f(n)| |T_{n,k}| < \sum_{k}^{n-1} \frac{f(n)}{f(j+1)} |\gamma| c_{j+1} - c_j| < f(n) \sum_{k=1}^{\infty} \frac{|\gamma| c_j - c_{j-1}|}{f(j)}.$$

Consequently $\psi(k) \to 0$ as $k \to \infty$, and theorem 8 can be applied.

Theorem 11. If $\Sigma c_n/f(n) < \infty$, then $f(n)/f(n+1) \to \gamma$.

Proof. As, was remarked before, the convergence of the series implies $f(n + 1) = O\{f(n)\}$, and it excludes case 1. Thus we may apply theorem 10, since

$$\sum_{n=0}^{\infty} \frac{c_{n-1}}{f(n)} = \sum_{n=0}^{\infty} \frac{c_n}{f(n+1)} < \sum_{n=0}^{\infty} \frac{c_n}{c_n f(n)} < \infty$$

Possibly the condition

(4. 15)
$$\sum_{1}^{\infty} \left| \frac{c_{n+1}}{f(n+1)} - \frac{c_{n}}{f(n)} \right| < \infty$$

is also sufficient for $f(n)/f(n+1) \rightarrow \gamma$, but we could not decide this.

A sufficient condition which applies to all cases, is

Theorem 12. If $c_{n+1} c_{n-1} \geqslant c_n^2 (n > 1)$, then $f(n)/f(n+1) \rightarrow \gamma$.

Proof. It was proved in [1] that $c_{n+1} c_{n-1} \geqslant c_n^2 (n > 1)$ implies $f(n+1) \cdot f(n-1) \geqslant f^2(n) (n > 1)$. (The proof did not depend on the assumption $\Sigma c_k = 1$ which was made throughout that paper). Consequently f(n)/f(n+1) is non-increasing, and its limit exists.

REFERENCES

- N. G. DE BRUIJN and P. ERDÖS, On a recursion formula and on some Tauberian theorems. Submitted to J. Research Nat. Bur. Standards.
- P. Erdős, W. Feller and H. Pollard. A property of power series with positive coefficients. Bull. Am. Math. Soc. 55, 201-204 (1949).
- G. Pólya and G. Szegő. Aufgaben und Lehrsätze aus der Analysis, vol. 1, (New York, 1945).

(To be continued)