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— ¢* 4 11.5866485¢c — 20,1285 = 0,
6 = 2, 128067661,
¢y = 11.5866485 — ¢; = 9458580839,

ar
¢r = 20,1285 = ¢ = 9.458580838,
The case of two angles and one side is handled by the Law of Sines, with the
sines of the three es found by series.

0. Solution of triangles with machine and tables. For the quickest possible
method of solving triangles, use both tables and machine. Follow the methods
of Section 8, and whenever it is necessary to find a trigonometric function of a
given angle, or to find the value of the angle from one of the trigonometric func-
tions, use the tables. The machine will be found helpful in the interpolation.

With the necessary multiplying, squaring, extracting the square root, and
other computation done on the machine, every triangle can be solved with 3
applications to the tables. In some cases, this includes the check, in other cases,
a fourth reference to the tables will be required for a check. This contrasts with
8 applications to the tables, when the computation is done by logarithms instead
of machine.
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1. Introduction. Klee! denotes by Sy(m) the number of solutions of ¢(x) =,
where x has exactly & prime factors which appear to the first power in the
factorization of x. Lampek! observed that

"'( :E::n) -

Klee!' remarks that except for the prime 2, all prime factors of #u!/d(n!) are
multiple. Thus Su(n!) >0. Klee! conjectures that for all s, 5i(n!)>0. Gupta®
recently proved this conjecture, in fact he proved that lim,—., Si(n!) =, In the
present note we prove that lim..., Si(n!)= = for every k, and state without

! This MowtiLY, vol. 56 (1949), pp. 21-26.
* [hid., vol., 57 (1950), pp. 326-320,




MATHEMATICAL NOTES 99

L a few other problems and results,
2. Lemmas. First we prove three lemmas.

mia 1. Let b |a, and assume that a/b has the same printe factors as a (that i,
e prime fuctors of b occur in a with a higher exponent). Then

(___ qb{ﬂJ

Thls follows immediately from the definition of the ¢ function.

ne 2. The number of primes g, n<g<2n, gm1 (sod 6), 15 greater than
for a swilable constant ¢, and sufficiently large n.

follows immediately from the prime number theorem [or arithmetic
ons (or also from a more elementary result).?

ma 3. Let n be sufficiently large. Put
M !
I - — D=1 (ge— 1)

p runs through the primes =n and n<q<2n, gm1 (mod 6). Then
L 15 an integer, and p| A, ... 4 for pSm.

Agiias--,

of all from Lemma 2, for sufficiently large n the number of ¢'s is
og nw>k: thus 4, .., is defined. Let ! be a prime. For n/2<tZn,
p Since $|7:1 while t#;&—l gi—1#0 {mn-d 1) (since gi—1=0 (mod &)).
t 3<t=n/2. The denominator of 4,,...,, can be written as

2,1‘[ P H gi —

=1 -2

I the factors are distinet integers =#. But ¢ and 24 are never of the
1};’2 (since {g:—1)/2=0 (mod 3)). Further not both ¢ and 2! can be
—1}/2, since either 2t41 or 4¢41 is a multiple of 3. Thus any
_ﬂm:urs with a higher expnm:nt in #! than in the denominator of
Ift=3and n=12, then 3| Ay, .. ¢ since 125 (p—1)/2, 125 (g:— 1) /2.
=2. The even numhera.ﬁu+2 are clearly not of the form p—1 (6u4-3
31). Thus n!/ [I(p—1) is a multiple of 2te—2m, Tf JTi_(g—1) is a
= of 2% we clearly have 24 <2%:* and, for sufficiently large n,
20— 5 (D)8,
vovup and Lemma 3 is proved,

_ eorem. We shall establish the following result.

Math. Zeitschrift, vol, 34 (1932), pp. 505-526; see also P. Erdos, ibid., vol, 30
1.
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THEOREM, For sufficiently large n, we have

k

Se(nl) > ¢ .
#(n!) 2 (log n)*
Proof: We have, by Lemmas 1 and 3, with
! (nl)?
Baivovir = Hi‘i 3

k

) [T (g: — 1)
i

h !
O(Bey i) = @ 1;-[ ? Ill g - E
=T I1e— 01 (g — 1)

PEn i1

== d:( 1 85 pﬁq‘.—.{u,_...,“) = nl.

rEn Tl

i=1

It follows [rom Lemma 2 that there are more than e*/(log n)* choices for
gy + -+, g also, by Lemma 3, B,,....,, contains exactly & prime factors which
appear to the first power in the factorization of By,,... q. This completes the
proof of the Theorem.

4, Further questions. One can ask the question how large has # to be in order
that Se(n!) >=0. Our proof gives that » has to be greater than csk log & By a
more complicated argument we can show that for a suitable constant ¢y, we
have ¢ [esk|!| >0. It is probable that for every €>0 and sufficiently large n
we have ¢l [(1+e)k]!) >0, It is easy to see that S,(u!)=0 for n>2.

We can also show that lim,—. Si(n!)i"=1. On the other hand there exists an
absclute constant ¢; so that the number of solutions of ¢(x) =n! is greater than
{n!)=, Previously it was known that there are infinitely many integers m, so
that the number of solutions of ¢{x) =m iz greater than m*. It is an open ques-
tion whether ¢; can be chosen arbitrarily close to 1.

It seems a difficult question to decide whether ¢(x} =#u! is always solvable in
squarefree integers x. Similarly it seems difficult to decide whether for suffi-
ciently large #, the equation o(x) ==! is solvable (r(x) denotes the sum of the
divisors of 2).

If one wants to prove Gupta's? result, Si(#!) >0 for all #, it suffices to remark
that for n=4 there always is a prime g=1 (mod 6) in the interval (n, 2n).* Also
that for n=8§,

[He-1

(since 8 contains 2 with exponent 3), Further since g=2n, g=1 (mod ), if
Z“E {g—1) we have 2*<2x/3. Thus if

Dlin—2)8] 42
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U168 > /6,

Si(n!) >0, and this holds for 5= 14. For n <14, the relation Si(n!) >0 can
own by a short computation. By a slightly longer computation we can
‘ghow that Sy(n!)>0 for all n22.

PERFECT SQUARES OF SPECIAL FORM*
Vicror Tufeaurt, Tennie, Sarthe, France

- 1. Introduction. This note carries further** the determination of systems of
- numeration in which there exist pairs of perfect squares having the form
aabl = (cc)?, bhaa = (dd)

-

2. Necessary and sufficient conditions. It is easy to show{ that necessary
sufficient conditions for the above are;

a+b=FE+41, 2y 1=ad c<B,
f=a(B—1)+1, (4) @ = BB — 1) + 1,
ere 5, @, &, ¢ are positive integers.

3. Special cases. The form of (3) suggests an examination of the special cases

¢ =ma + 1,
with m an arbitrary positive integer.
From (1), (3} and (5), the following equations result immediately:
B=mlma +2)+1,
b= (m % 1)[(m F 1)a £ 2].
(4}, (6) and (7) combine to give
; d* = mm + 1)(ma + 2)[(m + 1)a + 2] + 1.

equation is satisfied by a=0, d=2m+1, and by a=4, d=4m*+2m—1.
ce the coefficient of a? is not a square, there will be infinitely many
for each positive integer m (and for many fractional values of m as

* Translated (and abridged) from the French by E. P. Starke, Rutgers University,

W, Thébault, Mathesis, 1936 (Supplement); This MoxTHLY, Twe Classes of Remarkable
M.Pu:r.r, 1949, pp. 443448,

2 V. Thibault, Mathesis, fae. i,
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