
Remarks otl the size of L(1, x). 
By P. T. BATEMAN, S. CHOWLA and P. ERD~S in Princeton, New Jersey, U. S. A. 

Q 1. Ihroduction. 

In this paper we consider the value of the Dirichlet L.(s, x} functions 
at s = 1, x being a non-principal residue-character and L (s, x) being defined 
for 9~(s)sO by 

L(s,X)=~XO* 
?a=1 ns 

(For the basic properties of residue-charakters and L-functions see LANDAU 

[1,4]). It is known’) that if k is the modulus of x, then 

(1) C,k-“<~L(l,~)~<logk, 
where E is any positive number and C, is a positive number depending 
only upon E. 

It is obviously of interest on the other hand to obtain results showing 
that /L(l,x>l actually can be small or large relative to k. It is known (cf. 
CHOWLA [3, 41) that for any positive E there are infinitely many real primi- 
tive x satisfying any one of the foiloving four pairs of conditions2) (y is EULER’S 
constant): 

(2) L(l,~)>(l--+?‘loglogk, x(-1)=1; 

(3) 
I+& L(1, x) < ~-- 6 r2 0 loglog k ,x(--4= 1; 

(41 f.(l,x)>(l--t$eYloglogk, x(-1)=-1; 

(5) L(l,x)< 
1-i-e 

6 ca ey log log k 
,x(-1)=-1. 

1) For the proof of the left-hand inequality of (1) for real primitive x see SIEGEL 
111, LAXDAU [?I], HEILBRONK [l], CHOWLA [5], and EBTERMANN [I]. The extension to any 
real non-principal 3: is immediate. For complex x see LANDAU [2]. The right-hand side 
of (1) is proved trivially by partial summation; cf. §9 below. Of course the extended 
RIEMANN hypothesis gives much stronger results than (1): cf. LITTLEWOOD [l]. 

2) If x is a real non principal character, L(l,x) is positive. Actually CHOWLA pro- 
ved only (2) and (3) explicitly, but (4) and (5) can be obtained merely by replacing 

ra:+bl 
wherever it occurs in either of CHOWLA'S two papers by (qe), ,and 

(Sn:+bj 
wherever it occurs by (/r-n). 
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Now the only real primitive (non-principal) characters x(n) are given 

for positive R by the KRONECKER symbol -$ ( 1 
, where d is a fundamental dis- 

criminant (cf. WALFISZ [I]). Thus if we put 

the Kronecker symbol 

statements (2)-(5) may be written as follows: 
If d runs through positive fundamental discriminants, 

(3’) lim (loglog d) L, (1) S 6 ,‘z ey ; 
d-tm 

if d runs through negative fundamental discriminants, 

(4’) 

(5’) 

L,(l) 
,+?a loglog IdI - 

2 e7, 

lim (loglogldl) Ld(l)S 6n!2eY . 
a+--oo 

The statements (2)-(5) or (2’)-(5’) say nothing about the nature of 
the modulus k or (dl. We shall prove in this paper that stafements similar 
to these can still be made if we restrict the modulus to be prime. (The 
results are poorer by the numerical factor 18). If q is a prime congruent to 
1 modulo 4, then q is a fundamental discriminant and the Kronecker sym- 

bol (+) is the same as the Legendre symbol 

If q is A prime congruent to 3 modulo 4, then -q is a fundamental discri- 

minant and the Kronecker symbol is the same as the Legendre symbol 

so that 

Our results are as follows: 

Theorem 1. I” q runs through the primes congruent to 1 mudulo 4 then 

(4 
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If q runs throught the primes congruent to 3 module 4, then 

6) 
lim L-,(l) = i& 
c/+m log log 4 9+= 

(D) @ (ioglogq)L-,(l)=h (loglogq)~~(!-)is ” 
q-*co q-too (jn-2@ ’ 

On the other side we give the following upper estimate for L (1, x) for 
any non-principal x, which is an improvement on the right-hand inequality 
in (1) for those k which have matiy distinct small prime facfors (here y (k) 
denotes Euler’s function): 

Theorem 2. If x is any non-principal characler, module k, then 

Further, if E is a small positive number, then for k sufficiently large 

The proof of Theorem 2 is rather simple. Theorem 1 requires a gene- 
ralization by RI?NYI [2,3] of the large sieve of LINNIK and the work of PAGE 
[l] on primes in arithmetic progressions. The factor IS in Theorem 1 could 
be improved to 4 by using stronger results (see the remarks at the end of 
3 7), but a factor greater than 1 definitely enters because of the limitations 
of the sieving method. 

BATEMAN and CHOWLA [I] have remarked that (4) or (4’) implies the 
following Q-result for the summatory function of a real primitive character 
(a slightly stronger form of the D -result of PALEY [I]): If 

then if d runs through negative fundamental discriminants 

(This is an immediate consequence of the formula 

which holds for d a negative fundamental discriminant. Cf. LANDAU [4, Satz 
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2171). We now remark that similarly part (C) of Theorem 1 implies that if 
Q runs through the primes congruent to 3 modulo 4 then 

A-, ey 2-. 
;!+!! ?I2 loglogq- 18 ~7 

Consequently for q a prime (and + the Legendre symbol) 
( i 

max ,z f- = 52, (q*$ loglog q), 
m i 1 

a result previously proved by CHOWLA [l] only under the assumption of the 
extended Riemann hypothesis. 

PROOF OF THEOREM 1. 

3 2. Necessary lemmas. 

We shall need the following lemmas. The letter p always runs over the 
prime numbers with limitations as specified. 

Lemma 1. (RENYI [2, Theorem 31 and RENYI [3, Theorem 31). Suppose 
we have a sequence of Z integers n, < n? < . . . < n, 2 N. Let f (p) and Q (p) be 
two arbitrary arithmetical functions with 0 < f(p) Ip and 1 < Q (p). Put 

min f(p)_=~, max Q W=Q. 
p < +‘!3 p p <+:3 

if 2 (p, h) denotes ihe number of integers of the sequence n, (j= 1,2, , , ., Z) 
which are congruent to h moiulo p, then we have for every prime number 
p < +- N1”, except possibly for at most 9NQel(Zz) abnormal primes, and for 
every residue h module p, except possibly for at most f (p) irregular residues, 
the relation 1 

I 
1 Z(p,h)-- 5 cp&. 

In the application of Lemma 1 we shall refer to the primes p as the 
“sieving primes”. 

Lemma 2. (PAGE [I, pp. 128 and 1351). There exist absolute positive 
constants u and’ b with the following property. Zf II is a posifive integer there 
is at most one real primitive charncter with modulus not exceeding u such 
that the associated L-function has a real zero greater than 1 - a/(log u). 
If kI is the modulus of this character (if it exists) and if k does not exceed 
u and is not a multiple of k,, then for mlexp (iog u)” and (l, k)= 1 we have 

where the constant implied by the Q-symbol is an absolufe one. 
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Lemma 3. In Lemma 2 a given real primiiive characier can be ex- 
ceptionai with respect to at most finitely many positive integers u. Also, if 
(as in Lemma 2) kcu, k, J k, mlexp (log a)‘, and (I, k) = 1, then 

where Cl,, is a number depending only UpOR 1 and k and where the consiant 
implied by the O-symbol is an absolufe one. 

The first part of Lemma 3 is clear, To prove the second part we assume 
that m is integral and put 

Then 

Since g(n) = 0 (n e- bl 09’1) for n2m, we may write - 

=~n~J~l)+O (e-$bl’log). - . 
This proves Lemma 3. 

§ 3. Outline of the proof. 

We shall give in detail the proof of (A) and shall indicate what changes 
are necessary in order to prove the other parts of Theorem 1, 

It suffices ‘to show that for every large positive integer x there exists 
a prime q not exceeding x and congruent to I modulo 4 such that 

(6) iogL,(1)aogloglogx+~-log 18+0(l). 

(In the proof of Theorem 1 the notation “0” is with respect to x tending 
to infinity, statements made shall be understood to be akompanied by the 
phrase ,,for large x“, and the constants implied by the O-symbol are absolute 
ones). To prove (6) we shall define a certain set S=,Z(x) of primes q (con- 
gruent to 1 modulo 4) not exceeding x and shall prove that 

(71 clogL,(l)~sloglogiogx$-s(y-log IS)+o(S), 
YES 
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where S=S(x) is the number of primes in Z (In general the quantities 
introduced in the course of the proof of Theorem 1 will depend uporl x, 
unless otherwise specified). 

The set 5 is defined as follows. Consider the odd primes pl, p2,. . .,o,, 
not exceeding 

,r- 
(8) y = &c$. 

Put M=Bp,a,. . .p,,, and consider the moduli 

(9) 
M M M M 

- -. 
P,,1 ’ P,,$-l’* * * ’ PJ ’ PI 

Each of the moduli (9) is not greater than 

and their greatest common divisor is 8. (Here O(y) denotes the sum of the 
logarithms of the primes not exceeding y), Now we apply Lemma 2 with 
u=[el’lG] and m=x’. By Lemma 3 the corresponding exceptional modulus 
k, of Lemma 2 tends to infinity with x (if it exists) and so (if it exists) is 
greater3) than 8 for large x. Hence at least one of the moduli (9) is not 
a multiple of k,. Suppose k=M/p, is the smallest such modulus, that is, the 
first in the order in which the moduli are written in (9). (If kl does not 
exist, pI=pn,). Since if k, exists, 

'M 
k, p’...,kli% ,I, I Pwl 

we see that k, j (PI. I .pJ and so p,. tends infinity with x (It can be proved 
that l/p,=o(l/ioglogx), but this is not needed). We have 

If (1, k)= 1 we know by Lemma 2 that 

We define a residue 2 modulo k in the following way. Suppose gi is a certain 
quadratic residue module pi (1 sisrrt, i+ t). We define I by 

(12) 1~1 (mod S), Irg, (mod pi) (lsilm, ij=r). 

3) As a matter of fact it is easy to see that the L-functions corresponding to real 
primitive characters with modulus not exceeding 8 have no positive real zero, so that 
kl is always greater than 8. Cf. CHOWLA [2] and ROSSER [3]. 



Remarks on the size of L.(l, x). 171. 

Now of the primes congruent to 1 module Ir and not exceeding x there is 
by Lemma 2 (with U=X) at most one prime q. such that the corresponding 
L-function 

C&1. 
,5 qo ns ( 1 

has a real zero greater than 1 - a/(iogx). For our set ‘5 of primes we now 
take those primes q such that 

(13) q=l(mod k), ]‘Xcqcx, q+qo, 

By (11) the number S of primes in E satisfies 

Since by (8) and (10) r ’ Y1G is. of larger order of magnitude than k log X, 
(14) implies in particular 

s=-(1 +o( 1)) 
x 

y(k)logx * 

Now, since the product formula for the L(s,y;) functions holds for s= 1 
for non-principal x (cf. LANDAU [l, $ 109j), we have 

log L,(i)=- 2 log 1 
2’ I -(9~l- 

Hence for q in Z we have (using (12), (13), and the quadratic reciprocity law) 

(16) log L,(l)=- 2 

Now by a theorem of MERTENS (cf. LANDAU [l, § 361) 

07) -~~og(l-jJ=loglogyt14- u(kj 
= log 

( 
a log log x - log fog log x )f~‘+O(log:agJ 

=logloglogx- log2 +y+o i 
loa loa IOU x A- 

log log x 1 
. 

Combining (16) and (17) gives 
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Thus 

(i9) 2’logL,(,I)=Sloglo~logx+S~-liog2)$-Rfo(S), 
qts 

where 

To prove (7) from (19) we must consider how the double sum R behaves 
for large x. We split the suin into four p3rts RI, Ra, R3, R4, according as the 
summation over p is extended over the following intervals respectively: 

Z3: (2xj3 cpsexp (lo,a~)~+~~ 

Z4 : exp (log x)2+23 < p . 

Here d can be any positive number, which for convenience we take less than 
f. In the four subsequent sections we shall show that 

cw RI = 0 (3, 
01) iRp! < Slog9+o(S), 

(22) Rs =0(S), 

(23) R4 =0(S). 

These estimates give 

Thus, in view of (19), we get (7) and thus part (A) of Theorem 1. 
The estimation of I& is trivial, while R4 is estimated rather simply by 

means of PAGE’S theorem (Lemma 2). For R, we use RI?NYI’S theorem (Lemma 1) 
with the primes p in II as the sieving primes, while for R3 we use R~NYI’S 
theorem with the primes q in E as the sieving primes, 

For the proof of (B) we must replace the condition lr 1 (mod 8) in 
(12) by 2~5 (mod 8) and the condition that g, be a quadratic residue 
module p, by the condition that it be a quadratic non-residue. For (C> we 
would need ir 7 {mod 8) and -g, a quadratic residue module pl, while for 
(D) we would have 1~3 (mod 8) and -g, a quadratic non-residue modulo 
pi. Also for (C) and (D) the quadratic reciprocity law ($) ==($ which we 
used in (16) above and which we shall use in (24) below must of ccurse 
be replaced by ($ = (2). 
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Further for (B) and (D) we must replace (17) by 

-*~lor(l+f)=~~log(l-~)-~~~oa(l-~)= 
=&+f) +~og~+~~y~+~)= 

log log log x =-logloglogX+log2-~~+log~+O -~ 
i log log x 1 

. 

5 4. Estimation of RI. 

We use Lemma 1 with the primes q of S as the integers n,, . . . , n, and 
the primes p in I1 as the sieving primes. Then Z= S and N=x. We take 

f(P) = P 0% P)F” and Q(p) = (logp)5. Now by the quadratic reciprocity law 

We use 8’ to denote summation over the normal primes p and 8* to denote 
summation over the abnormal primes p. Thus 

(23 

First we consider the normal primes p. If we denote by S(p,h) the 
number of elements of G which are congruent to h module p, then 

By Lemma 1 if p is normal we have 

(26) 

except for at most f(p) irregular residues h modulo p, For p normal we use 
8’ to denote summation over the regular residues h modulo p (that is, those 
for which (26) holds) and B* to denote summation over the irregular residues 
h module p (other than the residue zero). Now for the total number of q 
in E5 which fall into regular residue classes modulo the normal prime p we 
have by (26) 

f(P) s >&s-s---- 
P Q(P) ’ 

Hence for the total number of q which fall into irregular residue classes 
modulo the normal prime p we have 



174 P. T. Bateman, S. Chowla, P. Erd6s 

(27) 

Thus for p normal we have by (26) and (27) 

Thus 

Now we consider the abnormal p. If we put 

li@x 
z=loglogx =yloglogx, 

we claim first that there can be at most one abnormal prime not exceeding 
e=. For (with k as in (53) consider the moduli pk for the primes p in the 
interval y<ple’. By (10) we have 

for large x. Since k is not a multiple of the basic exceptional modulus k, 
(with respect to zf=[e vJG]),it follows that pk can be a multiple of k, for 
at most one p in the interval y<pse*. Hence for any p in this interval 
except possibly one, and for any residue h module p prime to p, we have 
(by U3), Lemma 2, (141, W), W), and W 

wo+= c l= 2 1 +o(yx) = 
PEE, q-h(modj,) qcs,qEl(mod k), q--h(modp) 

Thus for any p but one in the interval y<pSeZ and for any residue h prime 
to p we have (for x large) 
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Thus except for one prime pa all primes p in the intdval y <pi? are normal. 
(Actually the primes p in this interval other than pa have no non-zero irregular 
residues). 

With this information the abnormal primes are easily settled. By Lemma 
1 the total number of abnormal primes p does not exceed 

9x(logx)‘O 
S(log x)-j = ( 1+0(l)} 9y(k)(logx)‘“. 

Since, aside from pa, all the abnormal primes are greater than eZ, we have 
for the sum over the abnormal primes 

Finally (25), (28), and (29) give (20). 

5 5. Estimation of R2. 

Actually the estimation of I& is effected by estimating for each q in G 
separatefy and then multiplying by S. Thus we could have made the appropriate 
estitnak already in (18) before summing aver 4. A similar remark is true 
for R4. 

By another asymptotic formula of MERTENS (cf. LANDAU [ 1,§36]) we have 

=log9f log -I- O(&)=log9+0(&). 

Thus 

lR~l=l~~(-~)~l<Slogg+O(~), 

which proves (21). 

5 6. Estimation of R3, 

We divide the interval l3 into intervals Jt of the form 

Jt : f < p 5 i e (IoP-~. 
Clearly the number of such intervals needed to fill out Z, is less than 
(log ~)~+~~~(logx)8. In each interval Jt we use Lemma 1 with the primes p 
in Jf as the integers n,, , . . ,n, and the primes q of 1s as the sieving primes. 
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This is possible, since rsff’l3 by the definition of 13. We note in advance 
that if Z, is the number of primes p in Jt, then 

= (lo&ogx) + O ((,og t) ;1ogxp ’ 
To estimate 

we first replace I/~ by 1/f before applying the large sieve. By (30) the error 
made in doing this is 

We now apply the large sieve to estimate 

in the manner outlined above. Thus, in Lemma 1, Z= 2, and N=tec*Ogz),“- 
We take f(q).= q (log q)-’ and Q(q) = (log q)5. As in 5 4 we use 2 to denoti 
summation over the normal q and 8* to denote summation over the abnormal 
q, and for a normal q we use 2’ to denote summation over the regular residues 
j modulo q and Z* to denote summation over the irregular residues j modulo 
q (other than the residue zero), 

The abnormal primes q are easily disposed of. In fact since log t 
5 (logx)2+2d5 (logx)3, the number of abnormal q does not exceed 

Hence for the sum over the abnormal q we have 

(32) kX(-;jl = 0 ((log x)45) = 0 ( 1 -+ 
Suppose we denote by Z,(q,j) the number of p in J which are con- 

gruent to j modulo q, Then if q is normal we have for the total number of 
p in JI which fall into regular residue classes module q 
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Hence for the total number of p in J: which fall into irregular residue classes 
module a normal q we have 

f(4) -z )‘:*zi(q,j)sz,-+-. 
J Q(s) 

Thus if q is normal 

Hence by (30) 

(33) 

Thus by (31), (32), and (33) we have 

Since there are less than (iogx)’ intervals Ji in I,, we have finally 

which proves (22). 

5 7. Estimation of R, and concluding remarks, 

Suppose 1: and w are integers such that 

exp (log x)2+26 -( 7’ &< w 

and suppose q C E. Now by (13) qCx and q =/= qo; therefore by Lemma 3 
with U=X and m = T , w we have 

Hence 
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Thus 

%=C 2’ (+0(f), 
PE’S P>exp(logz)2+2~ 4 P 

which proves (23). This completes the proof of Theorem 1. 
The reduction of the numerical factor 18 in Theorem 1 to the factor 4 

(the possibility of which we mentioned in the introduction) would be effected 
as follows. Firstly, by using- the results of RODOSSKI~ [l] we could replace 
the definition of y given in (8) by y=(logxjl+, where c is an arbitrarily 
small positive number. This procedure would replace the term {-log 2) in 
(17) by log (l- c) and thus improve our final results by a factor 2. Secondly 
we could replace Lemma 1 by another form of RPNYI’S generalized large sieve 
in which the range of the sieving primes extends to IiN at the expense of 
a relatively harmless increase in the upper bound for the number of abnormal 
primes to 3nN”Q”/(22*‘~‘/~). (This is staled in R~NYI [2] to be a consequence 
of the method used in Chapter 2 of RBNYI [I]. We have used the form of 
the large sieve given in Lemma I because it is proved explicjtly in both 
RY&NYI [2] and RBNYI [3]). This alternative version of the large sieve would 
enable us to change the limits of I, to 1;; and x’ respectively and thus (21) 
would be replaced by 1 Rzl < Slog 4$ o(S) ; this procedure would improve our 
final results by a factor of 9/4. 

PROOF OF THEOREM 2. 

S 8. Necessary Lemmas. 

Lemma 4. For k a positive integer greater than 1 let ry(x, k) denote 
fhe number of positive integers not exceeding x and relatively prime to k. Then 

TV4 yW4-xx- < 2 tr) (7;) -1 
, 

where o(k) is the number of distinct prime divisors of k. 
Proof. By a familiar theorem of Legendre 

where ,U is the MOBIUS function and the sum extends ov:r all the divisors 
of k. Hence 

- 2 1 <x qLy(X,i)< 2 I. 
d,L,p(d)=-I d!I;:/r(d)=l 

Now since 
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This proves the lemma. 
Lemma 5. Let pn denote the nllL prime and cl(x) the sum of the 

logarithms of the primes not exceeding x. Then as r tends to infinity 

fl(PJ Q\l - fj 

-{I +0(l)).@, 

R 

while fur r any positive integer 

equality occurring only for r = 2. 
Proof. The first part of the lemma follows immediately from the theorem 

of MERTENS referred to earlier (cf. L;ZKDAU [I, § 36) and the prime number 
theorem : 

re)’ log p 
-L={l +o(l)).eY . 

8(p.)~~~l-~)=:l+o(‘)} pr 

The second part of the lemma may easily be checked for r < 15. For rz 15 
we proceed as follows. ROSSER [ 11 has proved that 

increases with r. Hence for YS 15 we have 

Also by Theorems 5, 7, 23, 29 of ROSSER [2] O(x) > 0.8 x for x 2 100. Thus 
with the aid of a little computation for I5 crc 25 we see that /i (p,.) > 0.8 p, 
for rz 15. By ROSSER [I] p,. > r log r, and so we have 

H (p,) 1 0.8 r log r (rz 15). 
Hence for r& 15 

6 
(0 8) (h.3755) < -&i? ’ 

Thus the second part of the lemma is proved for all r. 
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Lemma 6. if k is any posifive integer 

(I) (k) 5; ~ -; ___ ’ ‘tk) lovk, 

As k temis fo itzfinify 
logb k b 

Y (4 w(/l)“C~io(l)}e:‘-logk. 

Proof. For lhnsr k for which w(k) has a given value r, the function 
k-l y (k) log k is smallest for the product of the first f primes. Hence 

(‘1 Ck) r co (k) ~ -, ~~ . 
y Uc) k log k 0 (pmp,) T;‘i’ (1 - d’! 

11 =l 

Thus the frrst part of the lemma follows from Lemma 5. For those large k 
such that co(k) > log log k the second part of the lemma also follows from 
Lemma 5, sir:ce for such k certainly CO(~) tends to infinity with k. On the 
other hand if m(k) 2 log log k, the second part of the lemma follows from the 
fact that 

logIcgk=o(k-‘g’(k)logk). 
This completes the proof of the lemma. 

5 9. The estimation proper. 

For comparison we recall how the right-hand inequality in (I) is proved. 
Suppose x is a non-principal residue-cilaracter module k and let us put 

Let d be the smallest integer such that /S(n)/ Sd for all n. Clearly dcc(k- 1). 
Now 

For n <d we use the estimate IS(n)l=c, n, while for n Ld we use the estimate 
/S(n)Is:. This gives 

dx 
< -=log(2d+ !):.logk. 

X 

The change we make in the above proof in order to get Theorem 2 is 
as followa. In addition to the above two eslimates for S(n) we use a third 
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estimate which is valuable in a certain intermediate range of summation. This 
estimate is an immediate consequence of Lemma 4; it is 

IS(n)Isy(n,k)‘nq f:!~*@)-l* 

Let b and c be positive integers to be chosen later, b < c. Then, using 
the three estimates for S(n) in the intervals 1 Ln < 6, 62 n <: c, c I: n < 00 
aespectively, we have 

(f1 we choose b=2ca(iL), c-d. 2”(Q, we get 

(34) ~r,(l,x)~<,(logZ)c~~(k)+ Flogd+I. 

To get the first part of Theorem 2 we now use the first part of Lemma 6 
in (34) and apply the trivial estimate d< k. To get the second part of Theorem 
2 we apply the second part of Lemma 6 and use the deeper estimate 

d= O(l)% log k) . 
Cf. LANDAU 3, pp. 85-861). 

(Received April 12, 1950.) 
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