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ON INTEGERS OF THE FORM 2*+p AND SOME
RELATED PROBLEMS *;

By P. Erdos

Romanoff (') proved that the integers of the form 2*+4p have
positive density. In other words, the number of integers < z of
the form 2¢4-p is greater than ¢;z. Throughout this paper the c’s
denote pesitive absolute constants. This result is surprising since
it follows from the prime number theorem (or a more elementary
result of Tchebicheff) that the number of solutions in k and p of
2k 4p <z is less than c,z. Romanoff (!) proved in fact the follow-
ing result: Denote by f(n) the number of solutions of 2¥4p=n.
Then

(1) lim . sup. % ,‘Z_:I 12 (n) L

The fact that the numbers of the form 2*4-p have positive den-
sitv follows immediately from (1), Schwartz’s inequality and the
fact that the number of solutions in k and p of 2%4-p <z iz >eg2.

Following a question of Turdn (’) we first pro've the following .
TaeoreM 1. lim.sup f(n)=ow. In fact for infinitely many n

(2) : f(n) > ¢ loglog n.
THEOREM 2. For every k

T

@y lim.sup.% S ) <.

nei
Also following a question of Romaneff (*) we prove

THEOREM 3. There exists an arithmetic progression consisting
only of odd numbers, no term of which is of the form 2%4-p.
Finally we prove

(*) Manuserito recebido a 3 de Janeiro de 1950,

(1) Bee e. g. Landau, Uber einize neuere Fortschritte der additiven Zahlentheorie. Cambridge
traot p. 63-T0. 3

(2) Written communication.
(3) Written communication.
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P. ERDOS

THEOREM 4. Let a, < ag < ... be an infinite sequence of integers,
salisfying ayp | @x1. Then the necessary and sufficient condition thal
the sequence p--a; should have positive demsity is that

(4) lim .sup . !—iﬂ < o,
(®) Y ~'ge
d,‘rl,' d we

Finally we discuss a few related unsolved problems.

Proof of Theorem 1. Define A as the product of the odd ¢onse-
cutive primes < (log 2)*% . It follows from the results of Tchebicheff(*)
on the function 6(z) that

4 < exp 0 [(log 2)%] < exp 2 (log 2)* ,

where exp z=¢°

Denote by S the number of solutions of
24+ p=0(mod 4), 2+ p <=z.

Let k < loguz, then if p < z/2, 2°4p < 2. The number of primes
satisfying
p <z/2, p=-—2% (mod 4)

is, by the result of Rodosskii (°), greater than

s z log log z
2AA*logx ° Alogz ’

A* =10 (1 - l) = 0(-—1——-) (see 9 ,.
pld P log log 2

Thus by summing on k& we obtain

[1 4+ o(1)] W [l 6] e
where

(6) 8> ¢y xloglog z/A.

{4) Bee e.g. the first few pages of Ingham’'s Cambridge tract on the distrdbution of primes or
Hardy and Wright's Number Theory,

5} On the distribution of prime numbers in short arithmetic progressions. Izvestiva Akad.
Nauk. 8.8.8.R. Ser. Mat. 12, 123-128 (1948).
6) 4 ibid.
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ON INTEGERS OF THE FORM 2°+p

But
z/A

@) = kgf(kA)-

Hence from (6) and (7) we obtain that for some multiple [4A of A4
not exceeding z we have f(l4) > ¢; log log z, which proves Theorem
1. If we only want to prove that lim .sup .f(n) = =, the application
of the prime number theorem for arithmetic progreaslons would
have been sufficient.

It can be conjectured that f(n)=o(log »). This if true is probably
rather deep. I cannot even prove that for all sufficiently large n
not all the integers

log n
(8) n.— 2%, 15k<}g2
can be prime. For n=105 all the integers (8) are prime, but it
easy to see from a study of the prime tables that in the interval
105 < n <3 .5%.11.13.19=203775 there is no other such integer.
It seems likely that 105 is the largest exceptional integer. I believe
that the following result holds: Let ¢ be any constant and n suf-
ficiently large, a; < a3 < ...<a, =n, z > logn. Then there
exists. an m so that the number of solutions of m=p+a; is
greater than ¢. This would be a generalization of Theorem 1.
Proof of Theorem 2. Denote by ¢ (z;1i,...,1x) the number
of solutions of the equations R

RO pir+ 21 = piy + 22 = ., = pij + 2k

in priﬁes pi,<z. A simple argument shows that

) D < [ZSe@i, ..., 0)+al

n=]

where the summation is extehded over all the distinet 2’s satisfying
2 <z, (The first term of the right side of (10) comes from the n
with f(n) 2 k, the second term from the n with f(n) < k).

3 (Sum. Bras, Marn, 11 — Fasc. 8, 115 — 1950)
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P. ERDOS

Let g < 2%, ¢ pﬁige, ¢; sufficiently small, and g does not divide
Dy =11 (2:’0_2:"7)’ 1= V< U=k Then if Pi1 > z% satisfies
(9), we clearly must have

pii = — (21 — 2r) (modyg) false for r = 1,2, ...,k

(since pi;+2ir—2'1=p,, is a prime). Since g/Ds; . . .1y is false, these
k residues are all different. Thus by Brun’s method (7)

(11) olz; i, ..;,z'k)<x°v+cszr,r1(1 _ —)

<c,;a )kH3(1+ k)

where II;, denotes the product for ajll g <z, g/ Diy. . .ip false
and Il the product for all g/ Diy. . .i. )
Now by the inequality ef the geometric and arithmetic means

k k k(k—1)/2
H2(1+ ) k(k 1) ‘H‘*(H'__) :

where 2, denotes the sum subject to the condltlons ISV<US k-
and I3 the product for all ¢/ 2'v— Z'V
Thus by a simple argument

k(k —1)2

a2 nm (1+ 2)<eotosarrzm (14 %) ,

on the left side of (12) the summation Z; being extended over the
distinet sets of 7’s satisfying 2 < z and on the right side Z3 denot-
ing the sum subject to

<logz

1 g 2

1sv<u

and IT; the product over all ¢ l 2v—2°, Now trivially for a fixed
B=B (k)

k (k—1)/2 .
(13) (1+£.) <1+£.

() See e.q. P. Frdds, Proc. Cambridge Phil, Soc. 33, 6-12 (1937).
4 (Sum. Bras. Matu. II — Fase. 8, llB - lﬂ50)
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ON INTEGERS OF THE FORM 2%4-p

Thus to prove Theorem 2 it will suffice to show that (by (10), (11),
(12) and (13))

_ E;H;(l-{- §)< ¢y log z .

where Z, denotes the sum subject to 2* < z and II, refers to the
product extended over all g /2%—1.

Now if I;(d) denotes the smallest exponent z for which 2°=1 (mod d)
and o(d) denotes the number of distinet prime factors of d, then
by a simple argument (interchanging the order of summation)

B Bv{tﬂ i Bv(d}
EH(l —)<225—< 1 —
4414 - + g 4 - d Ci2 ngﬁgl dtz(d)
where Zj; refers to the sum subject to d/2%—1.
Thus to compléte the proof of Theorem 2 we have to prove that

= Brd

(14) ?;1 FTRC) <

The proof of (14) will be very similar to the proof gwen by Turin

and myself (]) for the theorem of Romanoff E = lg( d)

To prove (14) we split the integers into two classes. In the first
class are the integers with Ix(d) < (logd)°3, ¢;3 > B and in the
second class are the other integers. Clearly the -integers of the
first class are all composed of the prime factors of the set

(15) 2k -1, 1<k = (ogz)s.

Since the number of prime factors of 2¢—1is clearly < k, the number
of the prime factors of the sequence (15) is clearly < (log z)*13.
Denote the prime factors of the sequence (15) by p1, p2, ..., Dn
r < (log 2)*1B. Clearly the number of integers of the first class is
less than the number of integers < z composed of ps, Pg, .. ., Py
We split the integers =< z composed entirely of theé p’s into two
groups. In the first group are the integers having less than

D =loga-/4_-c13'-loglogx

(8) Ibid 1 p. 68.
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different prime factors and in the second group are the other
integers composed of the p’s. The number of integers of the first
group is clearly less than

(16) [(;) + (Dr_l) Foonit (;)] -

X !(ig—x)b <r"(10g"ﬁ")D < o¥ for z >
log 2 log 2 . e

The factor (log z / log 2)? comes from the fact that the number of

log 2:] log x
- =< .
powers p z equals I:log 5 log 2

The number of integers of the second group is clearly less than

h

2 ; 1, P 2 D 1—8
(17) DI (E Zs: i’?) <57 (1, log log log 7)? < =

i=1

gince D! > 2% and

_ZI E ;1; < epsloglogr < ¢4 logloglog .
Thus from (16) and (17) we obtain that the number of integers <z of
the first class is less than 2x'~® for sufficiently large z. Denote by
dy <dy < ...the integers of the first class. We evidently have
for sufficiently large k

(18) dk > g 42,

Since ir(d)l< ¢ log d [ log log d, we obtain by (18)

and} = 1
(o] S SR - — ee)
(19) 2@ <O E; o <

where in the left side of (19) thc'aummation is extended over the
integers of the first class, i.e. the integers satisfying ls(d).- < (log d)°13.
Now we have to show that
Ba{dl
(2-0) Z m < @

6 (Sum. Bras. Marn, IT — Fasc. 8, 118 - 1950)



ON INTEGERS OF THE FORM 2%}p

where in (20) the summation is extended over the integers satisfying
lo(d) > (log d)°s. In fact we shall prove that

v(d)
1d (log d)’s <

1) > T

and this clearly implies (20). By partial summation we obtain
that to prove (21) it will suffice to show that

S % - 3 e
(22) §1 2% (log 7)™ < where o, §1 B*@
We have
Z 4 = Z [%] = 0(alog z)

1=1
~(=0

Assume now that

dil (B — 1)@ = 0 [z (log z)B~2] .

We then have by induction, mtercha.ngmg the order of summation
and partial summation

- T B-D4+110 =3 (B 1)0 [H P
d=1 =

. B0
z _lnm = 14 33—5&
Z B <cx;1£%§-)-—~={)[x(logz)3_‘].

Thus (22) converges for ¢;3 > B. Hence from (19) and (20) it follows
that (14) converges, which completes the proof of Theorem 2.
Proof of Theorem 3. Clearly every integer, satisfies at least one
of the following congruences: 0 (mod 2), 0 (mod 3), 1 (mod4), 3
(mod 8), 7 (mod 12), 23 (mod 24). Therefore, if z is congruent to:
F(mod2), 1(mod7), 2(mod5), 23(mod17), 27 (mod 13), 2%
(mod 241), then for any k, 2 —2* is a multiple of one of the primes
3, 5, 7, 13, 17, 241. This proves Theorem 3.
7 (Sml‘. Bras, Maru, IT — Fase. 8, 119 = 1950)
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The reason for the success of this proof is that, by a well known
theorem (°), for any n>%6 there exists a prime p satisfying p /2"—1
and p [2"—1 false for all m < n.

The simplest system of congruences a,(modn), n; < ng < ... <
n 80 that every integer satisfies at least one of them is: 0 (mod 2),
0 (mod 3), 1 (mod 4), 5 (mod 6), 7 (mod 12). But because of the
modulus 6 this system cannot be used to prove ;Theorem 3.

The following such system does not contain the modulus 2:
0 (mod 3), 0 (mod 4), 0 (mod’5), 1 (mod6), 6 (mod8), 3 (mod 10),
5 (mod 12), 11 (mod 15), 7 (mod 20), 10 (mod 24), 2 (mod 30),
34 (mod 40), 59 (mod, 60), 98 (mod 120). Davenport found a slightly.
more complicated system somewhat earlier. It seems likely that for
every c¢ there exists such a system all the moduli of which are > c.
This would imply, by the same argument which proved Theorem
3, that for every ¢’ there exists an arithmetic progression no term
of which is of the form 2¥+u, where v (u) < ¢'.

Proof of Theorem 4. The proof of the necessity is easy. If (4)
is not satisfied then for a suitable sequence n; the mumber "of the
ar <n,is o (logn) ‘and since m (n,) < 2n;[logn, we obtain that
the number of the integers of the form p+ar < n, is o (n), or (4)
is necessary.

To show the necessity of (5), assume that (5) does not hold.
Let A be large and j chosen so large that a; 1/d > A. Let n be

sufficiently large. We split the integers of the form p+ar <n
into three classes. In the first class are the integers <n of the form

p"‘l"a‘k! kSJ;

the number of these integers is less than j w(n) =o0(n).

The integers of the second class satisfy p/a; The number of
these integers is clearly less than v(a;) times the number of the’
a’s not exceeding =, thus it is 0{log n)=o(n).

In the third class are all the other integers of the form p+ax <n.
Clearly from a; [ ax for j < k and (p, a;)=1, we obtain that these

© Tbid 1 p. 54.
& (Susm, Bras, Maru, II — Fase. 8, 120 — 1950)



ON INTEGERS OF THE FORM 2¥4-p

integers are all relatively prime to @, Thus the number of integers
of the third class is less than

1 1\7' n
IT I——)+01 < ( —) ey
nr.-'a,- P (L<n gjd A

which completes the proof of the necessity of (4) and (5).
Now we prove the sufficiency of (4) and (5). We shall prove
that the number of distinet integers of the form

pta. =n, k <ecplogn

is. greater than cign. Tirst of all it follows from (4) that if ¢;5 is
sufficiently small then ar < n/2 for 1 <k < c;zlogn. Now we esti-
mate from below the number of integers of the form p+ar <n
which are not of the form p+4a;, 1 <j < k. If pytoer=p:+a,
then

Pz — P1=0Gr — G;.

By a result of Schnirelmann (%) the number of aqlut.ions of this
equation in primes p; < n, ps < n is less than (by(5))

n IR D T
(23) Cap (log ﬂ)2 Hs (1 + » < Cyg uog n)z ED d <

n 1
< og a1 d

where I1; is extended over all p/ar—a;, Zs refers to the sum extended
over all d/ar—a, and 2y is extended over all d [ ar—a;, (d, ux)=1
Now we make use of the following

LeEmMA. Let a; < as < ..., Gx/@rx+1, and assume that (4) and
(5) are satisfied. Then there exists an absolule constant csy so that

E 4"?"?‘l ‘(ngk.
i<k d

Let us assume that the lemma is already proved. Since ar < nf2
the number of integers of the form p+a; =< n is by the results of

9 (Sum. Bras. MaTa, II — Fase. 8, 121 — 1950)
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Tchebicheff greater than n/4 log n. Thus from (23) and our lemma
we obtain that the number of integers < n of the form p+a, which
are not of the form p+a,, 1 <) < k is greater than

B — €91 Coa C L2 > 2
4logn C 18l 5log-n

for sufficiently small ¢;s. Thus the number of integers = n of the
form p+ag, k <ciglogn is greater than ¢;gn/5 > ¢;9n which proves
Theorem 4.

Thus to complete the proof of Theorem 4 we only have to prove
our lemma. We split the integers d, (d, ax)=1, into two classes.
In the first class are the d’s for which there are less than k/(log d)®
values of ! with ax—a;=0 (mod d), and in the second class are the
other d’s. We evidently have

(24) KZ;ES <kEgdﬂ =
where in Zg the summation is extended over the d’s of the first
class. Next we prove that for sufficiently large y the number of
d’s of the second class not exceeding y is less than y/(log y)®. Let
d =< y be any integer of the second class. Denote by 1 =1I; <l <
< ... <1, =k the I's satisfying

)2 < Gggk

. k k
- = > > :
(25) ar — @, = 0 (modd), r ToxdP = oz
1 k ;
Clearly for at least 2 (o y)? of the l’s we have

(26) I, —liy <2(ogy)?.

We consider only these I’s. Further we consider only the I s sa-
tisfying

(27) a,/a, , <exp(logy)®.

We evidently have by (4)

II a;, /G;,‘l Sﬂk <|‘.‘,M

i=1

10 (Soum, Bras, Marn. 11 — Fase. 8, 122 — 1960



ON INTEGERS OF THE FORM 2F+4p

Thus if U denotes the number of {’s which do not satisfy (27),
we_ have

(28)  exp U (logy)®) < e or U =o(k/(ogy?

Denote now by ljy, lis, ..., li; the I's which satisfy (26) and (27).
We evidently have t > k /4 (log y)°>. Therefore if d runs through
all the integers of the second class (and if we assume that the
number of integers of the secand class is greater than y/(log y)?)
we obtain at least ky/4 (logy)* differences | —I;y for which [ sa-
tisfies (26) and (27). But these differences are all < 2 (log y)>. Thus
there must exist a fixed I, and [y satisfying (26) and (27) which
occurs for at least y/8 (log ¥)® d’s. In other words the integer T

T = ay/a, — 1 < exp (log y)*

has at least y/8 (log ¥)°® divisors rot exceeding y. But this is easily
seen to be impossible. Denote by p;, ps, ..., p, the prime factors
of T. Clearly s < (logy)®. Clearly all the d’s dividing 7' must be
= y and composed of the p’s. We split these ir tegers into two, classes.
In the first class are the integers having less than 100 log log y
different prime factors and in the secord class are the other integers
= y composed of the p’s. The number of integers of the first class
is less than (by the same argument as used in proving (16))

lo_gy)li)u.'ugloszu <y%

3.100 log lo 4
(log v) oy (log 9

If m is an integer of the second class then d(m) = 2190l lezy  Thyg
W
from Z d(m)=0 (ylogy) we obtain that the number of integers

of the selcond class is y/(log ). Thus T has less than y/(log y)°+
+y% <y/8 (log y)® divisors for ¥ > y,. This contradiction proves the
lemma and therefore Theorem 4 is proved.

Theorem 4 clearly generalizes Romanoff’s (') result according
to which the density-of the integers of the form 2%+p is positive.

UNIVERSITY OF ABERDEEN SCOTLAND

11 (SuMm. Bras, Mars. II — VFase, 8 123 — 1050
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