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ON INTEGERS OF THE FORM 2k+p AND SOME
RELATED PROBLEMS

By P. Erdös
Romanoff (1) proved that the integers of the form 2k +p , have

positive density . In other words, the- number of integers < x of
the form 2''+p is greater than c1x . Throughout this paper the c's
denote positive absolute constants . This result is surprising since
it follows-from the prime number theorem (or a more elementary
result of Tchebicheff) that the number of solutions in k and p of
2k + p <x is less than c2x . Romanoff ( 1 ) proved in fact the follow-
ing result: Denote by f (n) the number r of solutions of 2k+p =n .
Then

1 X

(1)

	

lim .sup .

	

E f 2 (n) < o0
x n=1

The fact that the numbers of the form 2k+p have positive den-
sity follows immediately from (1), Schwartz's inequality and the
fact that the number of solutions in k and p of 2k+p <x is > c 3x .

Following a question of Turán (2 we first prove the following
THEOREM 1 . lim.sup .f (n) = co . Tn fact for infinitely many n

(2)

	

f (n) > c : log log n .
THEOREM 2 . For every k

I x(3)

	

lim . sup
. x
E f k (n) < o0 .
nE1

Also following a question of Romanoff (3) we prove
THEOREM 3 . There exists an arithmetic progression consisting

only of . odd numbers, no term of which is of the form 2 1-'+ p.
Finally we prove

(4 ) Manuscrito recebido a 3 de Janeiro de 19 .50 .
(1) See e. g . Landau, Uber einige neuere Fortschritte der additiven Zahlentheorie . Cambridge

tract p. 63-70.
(2) Written communication .
(3) Written communication .
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THEOREM 4 . Let a1 < a2 < . , be an infinite sequence of integers .
satisfying ak 1 ak+1 . Then the necessary and sufficient condition that
the sequence p -{-a k should have positive density is that

(4)

	

lim . sup . log ak
< 00p

	

k

	

'

(5)

(6)

Y
d; ai
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d
< C5 .

S > cb x log log x/A .

Finally we discuss a few related unsolved problems.

Proof of Theorem 1 . Define A as the product of the odd conse-
cutive primes < (log a,)/2 . It follows from the results of Tchebicheff (4 )
on -the function O(x) that

A < exp . O [(log x)''2 ] < exp 2 (log x)'/2 ,

where exp z = ez .

Denote by S the number of solutions of

2k + p =- 0 (mod A), - 2k + p < x .

Let k _< log x, then if p < x/2, 2 k+ p < x . The number of primes
satisfying

p < x/2, . p - 2k (mod A)

is, by the result of Rodosskii ( 5), greater than

[1 +0(1)1

	

x

	

11+0(1)1
	 x

	

c xloglog x
2cp (A) log x .

	

2 AA* log x

	

A log x '
where

- II / 1 - 1 )
PlA \

	

1I

Thus by summing on k we obtain

(1
log log x

	

(see

(4) See e .g. the first few pages of Ingham's Cambridge tract on the distribution of primes or
Hardy and Wright's Number Theory .

5) On the distribution of prime numbers in short arithmetic progressions . Izvestiya Akad .
Nauk . S .S .S .R . Ser. Mat. 12, 123-128 (1948) .

(6) 4 ibid .
2 (Sum . BRAS. MATH . II - Faso . 8, 114 - 1950)



But

(7)

Hence from (6) and (7) we obtain that for some multiple 1A of A
not exceeding x we have f (M) > c6 log log x, which proves Theorem
1 . If we only want to prove that lim sup J(n) (n) _ , the application .
of the prime number theorem f or arithmetic progressions would
have been sufficient .

It can be conjectured that J(n) = o(log n) . This if true is probably
rather deep . I cannot even prove that for all sufficiently large n

not all the integers

(8)

(g)

ON INTEGERS OF THE FORM 2k+p

pil + 2

n k

can be prime. For n - 105 all the integers (8) are prime, but it
is easy to see from a study of the prime tables that in the interval
105 < n 3 .52 .11 .13 .19=203775 there is no other such integer .
It seems likely that 105 is the largest exceptional integer . I believe
that the following result holds : Let c be any constant. and n suf-ficiently large,a1< a2<... < ax <_ n, x > log n..Thenthere

exists- an m so that the number of -solutions of m=-p+ai is

greater than c . This would be a generalization of Theorem 1 .

Proof of Theorem 2 . Denote by pp,(x ; i1, . . ., ik) the number
of solutions of the equations

in primes ptir < x. A simple argument shows that

x
. y fk(n) < kk[Y cp(x ;
n=1

where" the summation is extended- over all the distinct i's satisfying
2i < x. (The first term of the right side of (10) comes from the n
with J (n) > k, the second term from the n with J (n) < k) .
3 (Sum . BRAS. 'MATH. II
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1: f (kA) .
k=1

1
:!r-

k .< log n
log 2

1 _ pit '-L 212 - . . - - pik + 2 1k

1 . . . ,ik) +x



D, 1 : . sk=11 (2i u-2i v), 1 << V < U < k . Then if p i l > xt'7 satisfies
(9), we clearly must have

(since pi i+2= ,. 2 4, pi, is a prime) . Since g/Di 1 . . ik is false these
k residues are. all different . Thus 'by Brun's method - C?)

Let g <X'7,- g prime c7 efficiently small, -and g does not divide

Pi - • -- . (2i1

cp(x; i 1,

2' ,) (mod -g) . false for r = 1, 2, .

. , i k) < xc7 + C8 X IT 1 1

P . ERDÖS

Now by the inequality of the geometric and arithmetic means

2
g 5 k (k 1)

2; 1 ,H3

where 2; 1 denotes the sum subject to the conditions 1 < V < U :5 k
and I13 the product for all g /Tu -2iv .

Thus by a simple argument

(12) 22 112 1 +

	

< C 1O (log x)k-2 Y II } 1 ++~
9

-on the left side of *(12) the summation Z2 being- extended over the
distinct sets of i's satisfying .2i < x and on the- right side Z3 denot-
ing the sum subject to

log x1 <v < 21
< l0g 2

and 11 4 the product- over all g / 2L 2 . Now trivially for a fixed
B=B (k)

k (k - 1)/2

	

B
(13)

	

1

	

< 1 +
9

	

9
(7) See e.g. P . 'Erdös, Proc . Cambridge Phil . Soc 33, 6-12 (1937) .
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`k ~ 2 ' 1 'F' g '
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~

	

I

where. 11 1 -denotes the product for all g < x~7, g / Dti1 . . . ik false
and I1 2 the product -for all g / D$1

I

k (k ----1)/2

9
1

. . , k.

k (k -- I)/2
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Thus to prove Theorem 2 it will suffice to show that (by (10), (11),
(12) and (13))

(15)

4 T14

where Z4 denotes the sum subject to 2u <_ x and I1 4 refers to- the
product extended over all g / 2u -1 .

Now if l2 (d) denotes the smallest exponent z for which 2±-1 (mod d)
and v(d) denotes the number - of distinct prime factors of . d, then
b y a simple argument (interchanging the order of summation)

Bl (d)

	

CO

	

Bn(d)
X4 114 1 +

	

< ;4 ~;

	

< C12 log x
9

	

. d

	

d=1 d 12 (d)

where 1 5 refers to the sum subject 'to -d / 2" 1 .

Thus to complete the proof of Theorem 2 we have to prove that .

(14)

	

B
v

(d)

~
d =1 d 12 (d)

The proof - of (14) will be very similar to the proof -,given by Turin

and myself (8) for the theorem of Romanoff

	

-1 < .
d=1 d .2 (d)

To prove (14) we split the integers into two classes . -In the first
class are the integers with 12(d) < (log d)'13, , c13 > B and in the
second class are the other integers . Clearly the .-integers . of the
first class. are all composed of the prime factors of the set-

2k

	

1

(i+
81
91

< C11 log x .

1 < k < (log x)'13 . .

Since the number of prime factors of 2k -1 is clearly < k, the number
of the prime factors of the . sequence (15) is clearly < (log x) 2c13
Denote the prime factors of the sequence (15) by pl, p2,	r,
r < (log x)2c13 . Clearly- the number of integers of the first , class is
less than the . number of -integers, < x composed of pl-, p2, p
We split the integers < x composed :entirely of the p's into two
groups . In the first group are the integers having less than

D

	

log x / 4 , C13 . log log x

(8) Ibid 1 p . 68 .
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different prime factors and in the second group are the other
integers compose d of the p's . The number of integers of the first
group is clearly less than

(16)

(20)

C \DI + (Dr 1! +
. . .-I- ( 0 )]

x
`

	

Dlog x
log 2

P. ERDÖS

By (d)

~dl2.
(d)

< CO

(lot
log 2 I

x \ D

X

The factor (log x / log 2)" comes from the fact that the number of

S

	

log x

	

log X -

log
pS x equals

log 2

	

log 2

The number of integers of the second group is clearly less than

r

	

D

(17)

	

x

	

E E S

	

x (c i t log log -log x) °< x 1-- 8
D (i= i S p~

	

D

since D! > xa and

r

E F, 8 < c 15 log log r < c14 log log log x
i=1 s p y

.

Thus from (16) and (17) we obtain that the number of integers < x of
the first class is less than 2x 1-' for sufficiently large x. Denote by
d1 <d2 < . . .- the integers of the first class . We evidently have
for sufficiently large k
(18)

	

dk > x1 + s!2

Since v(d) < c 16 log d / log log d, we obtain by (18)

Bv(d)

	

I
< C1;

	

1 -{- 6/4 < o~
d lz (d)

	

k=1
EI k

f

where in the left side of (19) the summation is . extended over the
integers of the first class, i . e . the integers satisfying 1 2(d). :!-< (log d)'13 .

N ow we have to show that

<

	

for x > x0 -
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(22)

We 'have

x

	

x

.2-(d) _

	

x = 0 z log x)
d=1

	

l=1

	

l
µ(i)0

Assume now that

x
E (B -- 1)v(d). - 0 [x (log .x)B-2 ] .
dal

We then have by induction, interchanging the order of summation
and partial summation

x
~x =

	

(B 7 1) + 1]v(d) _

	

B

	

x
<

d=1

	

l=1

	

l
µWOO

< x

x1: (B -- 1)v(l)

	

c x
x 1 (log l) 8-- 2= 0 x

	

x B-1 12

	

[ (log )

	

.
I =1

	

l

	

l =1

	

l

Thus (22) converges for cla > B. Hence from (1g) and (20) it follows

that (14) converges, which completes the proof of Theorem - 2 .

Proof of Theorem 3. Clearly every integer, satisfies at least one
of the following congruences: 0 (mod 2), 0 (mod 3), 1 (mod 4), 3
(mod 8), 7 (mod 12), .23 (mod 24). Therefore,. if x is congruent to :
I (mod 2), 1 (mod 7), 2 (mod 5), 2 3 (mod 17), '27 (mod 13), 223
(mod 241), then for any k, x - 2k is a multiple of one of, the primes
3, 5, 7, 13, 17,'241. This proves Theorem 3 .

°° B.(.

7 (Sum . BRAS . MATH. II -- Fast. 8, 119 - 1950)
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wherein.(20) the summation is extended over the integers satisfying
12(d) > (log d)e=3 . In fact we shall prove that

d _ 1, d (log d)' I3

and this clearly implies (20) . By partial summation we . obtain
that to prove (21) it will suffice to show that

oa

	

x
6x

2

	

c

	

where

	

or, = E - Ba(d)
X =.: 1 x log x) I3

	

d=1



The reason . for the success of this proof is that ., by a well known
theorem ( 9), for any n;& 6 there exists a prime p satisfying p / 2' 1
and p /2" -1 false for all m < n.

The simplest system of congruences a i(mod-n ), n 1 < n2 < . . . <

nk so that every integer satisfies at least one of them is : 0 (mod 2),
0 (mod 3), 1 (mod 4),, 5 (mod 6), 7 (mod 12) . But because of the
modulus 6 this system cannot be used- :to prove  Theorem 3 .

The following such system does not contain . the modulus 2 :
0 (mod 3), 0 (mod 4), 0 (mod :5), 1 (mod 6), 6 (mod 8), 3 (mod 10),
5 (mod 12), 11 (mod 15), 7 -(mod 20), 10 (mod 24), 2 (mod 30),
34 (mod 40), 59 (mod 60), 98 (mod 120) . Davenport found a slightly
more complicated system somewhat earlier. it. seems likely that for
every c there exists such a system all the moduli of which are > c .
This - would imply, by the same argument which proved Theorem
3, that for every c' there exists an arithmetic progression no term
of which is of the form 2k+ u, where v (u) < c' .

Proof of Theorem 4.- The proof of the .necessity is easy. If (4)
is not satisfied then for- a suitable sequence n i the number "'of -the
ak -< n i -is o (log n) ±and 'since i ( n) < 2n~ / log n i we obtain that
the number of the integers of the form p±ak < n i is o (n), or (4)
is necessary .

To show the necessity of (5), - assume that (5) does not hold .
Let A be large and j chosen so large that E 1/d > A. Let n be

_sufficiently large . We. split the integers of the form sp+ak s n
into three classes. In the first class are the integers 5 n of the form

p+ak,

	

k <j

the number of these integers is less than j 7r(n) - (n) .

The integers . of the second class satisfy p /'aj. The number of
these integers is clearly less than v(a;) times the number of the
a's not exceeding n, thus it is 0(log n) = o(n) .

In the third class are all the other integers of the form p + ak fl .

Clearly from a; / ak- for j < k and (p;a;) 1 we obtain that these

(9) Ibid 1 p.

8 (Sum . BRAS. MATH . II -- Faso . 8, 120 - 1950>
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integers are all relatively prime to a 1. Thus the number of integers
of the third class is less than

n II- 1
xlaj

ON . INTEGERS OF THE . -FORM 2b+p

p
+ 0 (1) < n

(: 17
Kk

1
d

< C22 k .

1 -1

	

n
<

	

,
Way d

	

.A

which completes the proof -of the necessity of (4) and (5) .

Now we prove the sufficiency of (4) and (5). We shall prove
that the number of distinct integers of the form

p+ak < n ,

	

k :!-," cl3log n

is- greater than c19n . First of all it follows from (4) _that if c 18 is-
sufficiently small then a k- *< n/2 for I ~ k < c 18-log n . Now. we esti-
mate from below the number of integers of the form . p+ak < n
which are not of the form p + a;, 1 < j < k. If p l -!- a k - p2+ a,,

then

p2 - p1 - ak - a,- .

By a - result . of Schnirelmann (s) the number of solutions of . this
equation- in primes p1 :!~ n, p2 5 n is less than (by(5))

(23)

	

C20

	

n
2 I.I, 1 + 1 < c20

	

n
(log n)2(log nn) 2

	

P

	

g n)

n
< C2 1 (log n)2

where H5 is extended over all p/ak- al, 2; 6 refers to the sum extended
over all d / a k-a, and 27 is extended over all d / a k - a,, (d, ilk) 1

Now we make use of the following

LEMMA . Let a1 <,a2 < . . ., ak/ak+1, and assume that (4) and

(5) are satisfied . . Then -there exists an absolute constant c22 so that

.Let us assume that the lemma is already proved . Silnce ak < n/2

the number of integers of the form p +ak < n is by the results of

9 (SUM . BRAS . MATH. II -- Fast . 8, 121 - 19 .50)



Tchebicheff greater than n/4 log n . Thus from (23) and our lemma
we obtain that the number of integers < n of the form p + ak which
are not of the form,p + a;, 1 < j < k is greater than

n

	

C21 C22 C18
n

>

	

n
4 log n

	

log n 5 log n

for sufficiently small C18. Thus the number of integers < n of the
form p+ak, k <_ c18 log n is greater than c18n/5 > c19n which proves
Theorem 4.

Thus to complete the proof of Theorem 4 we only have to prove
our lemma . W e split the integers d, (d, a k) =1, into two classes.
In the first class are the d's for which there are less than k/(log d)z
values of 1 with ak --al=- 0 (mod d), and in the second class are the
other d's . W e evidently have

1: ~s 1 < k 2; 8

	

1

	

< C23 k ,(24)

	

21<k

	

d

	

d (log d)

where in 2;8 the summation is extended over the d's of the first
class . Next we prove that for sufficiently large y the number of
d's of the second class not exceeding y is less than y/(log y)2 . Let.
d < y be any integer of the second class. Denote by 1 < 1 1 < 1 2 <
< . . . < 1,. :5 k the l's satisfying

(25)	 a

	

a = 0 mod d), r	 k > k
(5)

	

k -- a i r

	

(

	

)~

	

d 2

	

(log) 2 .
(log )

	

Cg)

Clearly for at least 1	k 	of the l -'s we have
2 (log y)2

(26)

	

l { - l i-1 < 2 (log y)2

We consider only these l i 's . Further we consider only the ti
tisfying

(27)

	

a, i / a1 _1 < exp (log y)3 .

W e evidently have by (4)

I~ al .

	

`1 <_ ak < C24k .
i=1
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ON INTEGERS OF THE FORM 2k+p

Thus if U denotes the number of l 's which do not satisfy (27),
we have

(28)

	

exp U (log y)3 ) < c24/:

	

or

	

U = o (k / (log y) 2)

Denote now by 1j1 , 132i . . ., ljt the l's which satisfy (26) and (27) .
W e evidently have ,t > k / 4 (log y)2 . Therefore if d runs through
all the integers of - the second class (and if we assume that the
number of integers of the second class is greater than y/(log y)2)
we obtain at least ky/4 (log y)'1 differences l - l i_ 1 for which 1 sa-
tisfies (26) and (27) . But these differences are all < 2 (log y)2 . Thus
there must exist a fixed 1 1 and 1 2 satisfying -(26) and (27) which
occurs for at least y/8 (log y)6 d's . In other words the integer T

T = a12 / a ll - 1 < exp (log y) 3

has at least y/8 (log y) 6 divisors not exceeding y . But this is easily
seen to be impossible. Denote by p x , p2, . . ., p s the prime factors
of T . Clearly s < (log y)3. Clearly all the d's dividing T must be

y and composed of the p's. We split these integers into two, classes .
In the first class are the integers having less than 100 log log y
different prime factors and in the second class are the other integers
<_ y composed of the p's . The number of integers of the first class
is less than (by the same argument as used in proving (16))

100 log log II
100 log lo ' -, ( iOY	 g

	

<(log Y)1-

	

l0g 2

If m is an integer of the second class then d(m) ~ 2100 log log y . Thus

from 2; d (m) = 0 (y log y) we obtain that the number of integers
"i=1

of the second class is y/(log y) 10 . Thus T has less than y/(log y)'0+
+y'/Z < y/8 (log y) 6 divisors for y > yo . This- contradiction proves the
lemma and therefore Theorem 4 is proved .

Theorem 4 clearly generalizes Romanoff's (1 ) result according
to which the density-of the integers of the form 2k+p is positive .

UNIVERSITY OF ABERDEEN SCOTLAND
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