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- Double points of paths of Brownian motion in n-space.
By A. DVORETZKY, P. ERDOS and S. KAKUTANI in Urbana, Illinois. - -

§ 1. Introduction.

Let (2, &, Pr) be a probability space, i. e. 2= {w} is a set of elements o,
&={E} is a Borel field of subsets E of 2 called “events”, and Pr(E) is
a countably additive measure defined on & with the normalization Pr(Q)=1.
Pr(E) is called the “probability” of the event E.

A one-dimensional Brownian motion [cf. 3,5,6,7]1is a real-valued function
x(f, w) of the two variables f and o, defined for all non-negative real
numbers f, 0=1¢< oo, and for all w€Q, with the following properties :

(B,) x(0, w)=0, 2

(B,) for any 'real numbers s, { with 0<s<f<oo, x(f, w)—Xx(s5, ®)
is &-measurable in w and has a Gaussian distribution with mean value O
and variance f—s, i.e. )

(l) Ez,s,t,a,ﬁE{w | a<x(f? “})_—x(s!w)<ﬂ}fg!
and 1 8 u?

2 Pr(Esstapg)=———— | e 2¢-9

@ tEaned) = gy ) € T

for any real numbers «, § with —co <@ < <o,
(B;) for any real numbers s, 8, (k=1,...,p) with0=s,<ti=s, <=

=...=s,<t,<os, the functions x(f, w)—x(s, w), k=1,..., p, are indepen-
dent in the sense of probability theory, i.e. -
(3) Pr (n:=1 Ex”k' ‘k'“k’l&k) == H:=1 P (Ez,sk,i*,uk,ﬂk)

for any real numbers «,, 8, with —<<e, <8, <o, k=1,...,p.

" An n-dimensional Brownian motion is an n-system of mutually independent
one-dimensional Brownian motions, i. e. an n-system {x'({, w) | i=1,...,n} of
one-dimensional Brownian motions x(f, w), i=1, ..., n, with the property that
@ Pr (VB =T, Pr(E"),
where E*is any subset of Q determined by x(f,w), i.e. a subset of Q
which belongs to the Borel subfield &' of & which is generated by
{Ex,a,i,a,ﬂ I O<s<i< oo, —ooL @< ﬁ < ovo}, = s :’n-

1) {® |...} denotes the set of all w having the properties. .., and similarly in other
cascH.
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If we consider x(f, w) = {x(f, w) | i=1,. .., n} as a point in an n-dimen- -
sional Euclidean space R, then, for each flxed w, X(f, w) can be considered
~ as an Rr-valued function of ¢ defined for 0=t < co.

It is easy to see that this definition of an n-dimensional Brownian
motion is independent of the choice of the rectangular coordinate system,
- i.e. it is invariant vis-a-vis rotations of the coordinate system. -

It is assumed (cf. DooB [1]) that the Borel field & is already extended
by adding null sets in such a way that the subset C of £ consisting of all
o for which x(f,w) is a continuous function of ¢ for 0 <f < oo is F-measur-
able and satisfies Pr(C)=1.

For any y={y",...,"}eR" and fot any weL, let us put
G) Loy o)={y+x(tw)|astsb}, 0=a<b<e,

6) Li(y;o)={y+x(tw)]ast<o}, 0=a<es,

(M) L¥(y; )= LEu(y; @),

B LO()=L30;0), Liu(0)=La(0;w), L(@)=L"0;w), .
where y + X (¢, 0)={)+x(t, w) | i=1,...,n}. L¥(y; w) is called the (a, b)-path
of the n-dimensional Brownian motion starting from y and L*®(y; o) is called
the path of the n-dimensional Brownian motion starting from y. -~ - -

For almost all @ (i.e. for all w€C), L¥)(y; w) is a continuous image
of a closed interval [a, b] ={t | a < f< b}, and is hence a compact subset of R".

X=={al... »>X}€R is called a double point of L%, (y; w) [resp. of Lf,::,,(y, w)],
if there exists a pair of real numbers s, ¢ with a <s <#<b [resp. a<s <t<od]
such that X,=y-+x (5, 0) =y +X (f, ») (i.e. xi =) 4% (5, 0)=y+x(1, w),
i=1,...,n).Itis clear that x, is a double point of L{,(y;w) [resp. L& (y; w)]
if and only if x,—y is a double point of L, (0; w) = L& (w) [resp. LPW(0; @)=
=L{%(@)].

It is known that (i) [LEvy 6].in R?, almost all paths L®(w) ofa 2- dlmen-
sional Brownian motion have double points and (ii) [3] in ‘RS, almost all
paths L®(w) of a 5-dimensional Brownian motion have no double points.
(ii) evidently implies that almost all paths in R" with n=5 have no double
points. Thus the problem of double points of paths of an n-dimensional
Brownian motion is unsettled only for the cases n=23,4. These cases do
not yield to the methods used in proving (i) and (ii); it is the purpose
of this paper to dispose of these undecided cases by showing that (iii) in R,
almost all paths L®(w) have double points, while (iv) in R*, almost all paths
L®(w) have no double points.

The proof of these results will be given in § 3 and § 4respect1vely

Our proof is based on the notion of capacity which plays an important role
in the theory of harmonic functians in R~ The definition of capacity and the
statement of those of its fundamental properties which we need in the proofs
of § 3 and § 4 will be found in § 2.
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s e §2 Capacity

. Let Fbea compact subset of R"(nali) Let M (F) be the family of
alt countably additive measures m(B) defmed for all Borel subsets B of F

with m(F)=1. Let us put
m(dx) m(dy)

@ o ae@=n[r@Ond

where |X| denotes the distance of x from the origin-0 of R, so that [x—y|
is the distance of x and y in R"; the double integral is extended over FXF,
and inf denotes the infimum for all measures m €N (F). A% (F)=oc if and
only if the double integral is o for all mE‘)?E(F) The u-dlmensmnal capacity
C"”(F) of Fis defined by

PAET AN : [1"“(!")] = 1‘”‘(F) < 0,
(.I_Q) C‘nl(F)—-' i 20(F)—= oo,

- The notion of capacity is important in the theory of harmonic funchons
in R", where under a harmonic function f(x) defined in a domain D of R" we
understand a real-valued function f(X) with continuous second partial derivatives
which satisfies

: _ L fL e i
an w=3 (L w=0
In this paper we need the following properties of the capacity : _
(C,) [FrRosT™MAN 2] Let F={x(f)|la<f<b}cR" be the continuous
image of a closed interval [a, b]={f| a<{<b} of real numbers through the

mapping {-X(f). (This mapping need not be one-to-one,) Then the n-dimen-
sional capacity of F is pomilve if \ e

T

; dsdf 2
“'_2’ f f RKO—X@OF <

(C.) [POLYA—SZEGO 9] For any compact subset F of R" ‘let us put
3 =it ]

p(p—1) =<, TX,— X7’
where inf denotes the infimum for all p-systems {X,,...,X,}CF. Then

(14) . Iim 2""(F) = A™(F).

(C;)[9] The union of a flmte number of compact subsets of R™ each of
which has zero n-dimensional capacity has again zero n-dimensional capacity.
- (€)[2] In order that a compact subset F of R™ have positive n-dimen-
sional capacity, it is necessary and sufficient that there exist a function g(y)
harmonic, positive and smaller than 1 in R"-F, and satisfying g(y)+0 as |y|>ce.
- We need also the following result:

Lemma 1. EebeeacompactsabsetofR*(ngB) For any yER" F let
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us put 2(y; F) {wlL‘“’(y,fn)nF#ﬂ} %) Then 2(y; F)€ &and PriQ(y; F}=
=f(y;F) is a harmonic funcfion of y defined in Rr-F. Furthermore, (i)
f(y;F)=0in R*-F if C"(F)=0; (11)0<f(y F)<1lin R" F,and f(y;F)~0
as |y|»oco. if CO(F)>0.

In the two-dimensional case the situation is rather different: (i) is st:ll
valid, but if the two-dimensional (logarithmic) capacity ?) of F is positive then
f(y;F)=1. This result can be found in {4] and the method of proof used
there yields also our Lemma 1 for #=>3. This is due to the property (C,) of
the capacity which holds only for n >3 )

§ 3. The &dimensicnal case.

Lemma 2. Lef 0=<a<b<oo. Then, for almost all w, the (a, b)—patf!
L@, (w) of a 3-dimensional Brownian motion has positive 3-dimensional capacity.
Proof. Due to property (C,) of the capacity, it suffices to show that

' LR ! !

dsdt
(15) - JT |x(t, w)—Xx(s, w)]| e

for almost all w, and hence it suffices to show that

dsdt
(16) _ *deJ’ TS 6.9 < os,
It is easy to see {by (B,) and (Bs) of § !] :mat
do €xp ("‘;ﬂ;ﬂ'?;:*f}“) _
) o) —xG, ] (Vant—-s} J f J' f [Frotw dudvin=
(17) -0 -0 —wm

[Vfﬁ].[exp(fz“ 1) Anrdr= (Vz:r]lt si) 4n|t—s|= V;I_I;Z-%:I

and consequently, by the Fubini theorem,

(18) _H‘”"’f e V—” Vﬁs_dts]

We can now prove our first main result:

Theorem 1. In a 3-dimensional Brownian motion, almost all patﬁs
~ L®(w) have infinitely many double points.

Proof. Let 0=a <b <c <o By Lemma 2, almost all (g, b)-paths L} (w) -
have a positive 3-dimensional capacity. By Lemma 1 and by the property (By)
of Brownian motion, it is easy to see that Pr{w | L®,(w)NLE(w) 60} >0.
From this it follows that there exists a real number d with ¢ <d < oo such

2) @ denotes the empty.set.
8) 'Cf. e.g. R. NEvaNLmvna [8].
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that Pr{w | L&, (w) nng),(m) $6}=0>0. Let us put o,=a-+kd, b,—=b-+kd,
G=c+kd, dy=(k+1)d, k=1,2,... Then Pr{w|LD, (0)NLY, (w)F6}=
=d4>0, k=1,2,..;, and consequentlg,lr (since the independence property (B;)
enables us fo reproduce the standard argument of the zero or one law)
Pr{o|L 5}‘(I'ﬂ)nLe 4 (w) 5= 0 for infinitely many k} =1.

Remark. It is easily seen from the proof that for all 0=<a < b < o and
for almost all w the (g, b) path L?,(w) has infinitely many double points.
Thus if we count only the doube points for which 0 <Z—s < d where d is an
arbitrarily small positive number, then again almost all paths L®(w) have infini-
tely many such double points. Similarly, for any arbitrarily large & < oo, almost
all paths L®(w) have infinitely many double points with #—s > 4. (Of course,
the probabilify that L®,(w) have such double points is always smaller than

it is zero if 4<b—a and positive otherwise.) \ .

§ 4. The 4-dimensional case.

Lemma 3. Let 0<a<b<oc. Then for almost all w, the (a, b)-path
L®,(w) of a 4-dimensional Brownian motion has zero 4-dimensional capacify.

Proof. By the uniform Lipschitz property of Brownian motion {L&vy 5,
~ §52, pp. 166—173], there exist a finite constant M -and a positive number
- 0(a, b, w) mth 0 <4d(a, b, w) <t .such that for almost all «
(19) |x(t, @) —x(s,. )1<MVtt—s!log 1/[t—s|
holds for all s and ¢ with a<s<¢<¥& and {—s < d(aq, b, w). Since the closed
interval [a, b] is a union of a finite number of closed intervals of length
<d(a, b, w), the property (C,) of the capacity inplies that it is sufficient to show
that LY,(w) has zero 4-dimensional capacity whenever b—a <1 and (19) is
satisfied for all s,¢ with a<s < ¢<&. Thus, by property (C,) of the capacity
it suffices to prove

Lemma 4. If we put

2 1

{20 TP N S

@ P T 1<, —ETog 1]
where inf denofes the infimum for all p-systems {t,...,t,} of real numbers
t, (i=1,...,p) such that 0<t<...<f, <1, then '

(1) lim 4, == os,
P>
Proof. Let N,, be the number of pairs (£, ;) such that 2-"<{,—£<2-"",
m=1,2,.... Then

(22) N, w—P(P-—l)
ad, g 1 2. & N,

p(p— 1)|sé<p|f —t;|log 1/{t; —tf P(P—l)u |2 Tlog 2
23 1 N,

Cplp—1)log2 &= m
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On the other hand, if we denote by N, . the number of ¢ satisfying
(k—1)2-"<t <k2™, k=1,...,2", then -

m
(24) gNme
~and i
(25) 3 Nz 2 3 NNo— ).

I=m+l >
This follows from the fact that (k—1)2-"<{ <f; < k2 ™ implies {,—f <2™™.
Consequently, by the Schwarz inequaiity,

2m
N,= S, Na—, i— Z;N,ﬂ,k‘a
k=1

I=m+l
2" pz 'p’
DN (I;‘Nm,k] , Z m, k __(z_m_ )g m+27?

where the last inequality holds for those m which satisfy 2"*'<p, i.e. for

logp ] _
log 2
Consequently, by Abel’s transformation, we have

S5 5N mﬁzmurf{zm“ --2—M)N;é

(26)

mm,=]

m=1 M m=1 m=1 m+l m
_ y m—1 oo 1 2N, 1 g2m p?
@D =L rmIn TN ET s %@..,2;-;; i =
gl p P

=T§F25—3-ﬁ[10§¢mp+1)—10g2]g—2(10g log p—2 log 2)
which, together with (20) and (23), imply

loglogp 1
@8 4= T2log2 6

—> 00
as p—»oco,

From this 1t is easy to deduce our last result:

Theorem 2. In a 4-dimensional Brownian motion, almost all paths L (w)
have no double points.

Proof. In view of (By), it suffices to show that, for any rational numbers
a, b,c,d, with 0<a<b<c<d<oc, we have Pr{w|L¥,(w) N LY, (w) & B} =0.
But this last fact is an easy consequence of Lemmas 1 and 3.
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