ACTA SCIENTIARUM MATHEMATICARUM

TOMUS XII.

LEOPOLDO FEJER ET FREDERICO RIESZ LXX ANNOS NATIS DEDICATUS.

PARS B.

A. Dvoretzky, P. Erdős and S. Kakutani Double points of paths of Brownian motion in η-space.

S Z E G E D, 1950.

TOMUM IUBILAREM
ADIUVANTE ACADEMIA SCIENTIARUM HUNGARICA
EDIDERUNT
INSTITUTUM BOLYAIANUM UNIVERSITATIS SZEGEDIENSIS
ET SOCIETAS MATHEMATICA DE IOHANNE BOLYAI NOMINATA

ACTA SCIENTIARUM MATHEMATICARUM

12. KÖTET

FEJÉR LIPÓT ÉS RIESZ FRIGYES

70. SZÜLETÉSNAPJÁRA.

B. RÉSZ

SZEGED, 1950.

AZ ÜNNEPI KÖTETET
A MAGYAR TUDOMÁNYOS AKADÉMIA TÁMOGATÁSÁVAL
KIADTA
A SZEGEDI TUDOMÁNYEGYETEM BOLYAI-INTÉZETE
ÉS A BOLYAI JÁNOS MATEMATIKAI TÁRSULAT

Double points of paths of Brownian motion in n-space.

By A. DVORETZKY, P. ERDÖS and S. KAKUTANI in Urbana, Illinois.

§ 1. Introduction.

Let $(\Omega, \mathcal{E}, \Pr)$ be a probability space, i. e. $\Omega = \{\omega\}$ is a set of elements ω , $\mathcal{E} = \{E\}$ is a Borel field of subsets E of Ω called "events", and $\Pr(E)$ is a countably additive measure defined on \mathcal{E} with the normalization $\Pr(\Omega) = 1$. $\Pr(E)$ is called the "probability" of the event E.

A one-dimensional Brownian motion [cf. 3,5,6,7] is a real-valued function $x(t,\omega)$ of the two variables t and ω , defined for all non-negative real numbers t, $0 \le t < \infty$, and for all $\omega \in \Omega$, with the following properties:

$$(B_1) x(0, \omega) \equiv 0$$

(B₂) for any real numbers s, t with $0 \le s < t < \infty$, $x(t, \omega) - x(s, \omega)$ is \mathscr{E} -measurable in ω and has a Gaussian distribution with mean value 0 and variance t-s, i. e. ¹)

(1)
$$E_{x,s,t,\alpha,\beta} \equiv \{\omega \mid \alpha < x(t,\omega) - x(s,\omega) < \beta\} \in \mathcal{E},$$
 and
$$Pr(E_{x,s,t,\alpha,\beta}) = \frac{1}{\sqrt{2\pi(t-s)}} \int_{\alpha}^{\beta} e^{-\frac{u^{s}}{2(t-s)}} du$$

for any real numbers α , β with $-\infty < \alpha < \beta < \infty$,

(B₃) for any real numbers s_k , t_k (k = 1, ..., p) with $0 \le s_1 < t_1 \le s_2 < t_2 \le ... \le s_p < t_p < \infty$, the functions $x(t_k, \omega) - x(s_k, \omega)$, k = 1, ..., p, are independent in the sense of probability theory, i. e.

(3)
$$\Pr(\bigcap_{k=1}^{p} E_{x, s_{k}, t_{k}, \alpha_{k}, \beta_{k}}) = \prod_{k=1}^{p} \Pr(E_{x, s_{k}, t_{k}, \alpha_{k}, \beta_{k}})$$

for any real numbers α_k , β_k with $-\infty < \alpha_k < \beta_k < \infty$, k = 1, ..., p.

An *n*-dimensional Brownian motion is an *n*-system of mutually independent one-dimensional Brownian motions, i. e. an *n*-system $\{x^i(t,\omega) \mid i=1,\ldots,n\}$ of one-dimensional Brownian motions $x^i(t,\omega)$, $i=1,\ldots,n$, with the property that

(4)
$$\Pr\left(\bigcap_{i=1}^{n} E^{i}\right) = \prod_{i=1}^{n} \Pr\left(E^{i}\right),$$

where E^i is any subset of Ω determined by $x^i(t, \omega)$, i.e. a subset of Ω which belongs to the Borel subfield \mathcal{E}^i of \mathcal{E} which is generated by $\{E_{x,s,t,\alpha,\beta} \mid 0 \le s < t < \infty, -\infty < \alpha < \beta < \infty\}, i = 1, ..., n.$

¹⁾ $\{\omega \mid ...\}$ denotes the set of all ω having the properties ..., and similarly in other cases.

If we consider $\mathbf{x}(t,\omega) = \{x^i(t,\omega) \mid i=1,\ldots,n\}$ as a point in an *n*-dimensional Euclidean space R^n , then, for each fixed ω , $\mathbf{x}(t,\omega)$ can be considered as an R^n -valued function of t defined for $0 \le t < \infty$.

It is easy to see that this definition of an *n*-dimensional Brownian motion is independent of the choice of the rectangular coordinate system, i. e. it is invariant vis-à-vis rotations of the coordinate system.

It is assumed (cf. Doob [1]) that the Borel field $\mathscr E$ is already extended by adding null sets in such a way that the subset C of Ω consisting of all ω for which $\mathbf x(t,\omega)$ is a continuous function of t for $0 \le t < \infty$ is $\mathscr E$ -measurable and satisfies $\Pr(C) = 1$.

For any $\mathbf{y} = \{y^1, \dots, y^n\} \in \mathbb{R}^n$ and for any $\omega \in \Omega$, let us put

- (5) $L_{a,b}^{(n)}(\mathbf{y};\omega) = \{\mathbf{y} + \mathbf{x}(t,\omega) \mid a \leq t \leq b\}, \quad 0 \leq a < b < \infty,$
- (6) $L_{a,\infty}^{(n)}(\mathbf{y};\omega) = \{\mathbf{y} + \mathbf{x}(t,\omega) \mid a \leq t < \infty\}, \ 0 \leq a < \infty,$
- (7) $L^{(n)}(\mathbf{y};\omega) = L^{(n)}_{0,\infty}(\mathbf{y};\omega),$
- (8) $L_{\mathbf{q},b}^{(n)}(\omega) = L_{\mathbf{q},b}^{(n)}(\mathbf{0};\omega), \quad L_{\mathbf{q},\infty}^{(n)}(\omega) = L_{\mathbf{q},\infty}^{(n)}(\mathbf{0};\omega), \quad L_{\mathbf{q},\infty}^{(n)}(\omega) = L_{\mathbf{q},\infty}^{(n)}(\mathbf{0};\omega),$

where $\mathbf{y} + \mathbf{x}(t, \omega) = \{y^i + x^i(t, \omega) \mid i = 1, ..., n\}$. $L_{n,b}^{(n)}(\mathbf{y}; \omega)$ is called the (a, b)-path of the n-dimensional Brownian motion starting from \mathbf{y} and $L^{(n)}(\mathbf{y}; \omega)$ is called the path of the n-dimensional Brownian motion starting from \mathbf{y} .

For almost all ω (i. e. for all $\omega \in C$), $L_{a,b}^{(n)}(\mathbf{y}; \omega)$ is a continuous image of a closed interval $[a, b] = \{t \mid a \leq t \leq b\}$, and is hence a compact subset of R^n .

 $\mathbf{x}_0 = \{x_0^1, \dots, x_0^n\} \in \mathbb{R}^n$ is called a double point of $L_{a,b}^{(n)}(\mathbf{y}; \omega)$ [resp. of $L_{a,\infty}^{(n)}(\mathbf{y}; \omega)$], if there exists a pair of real numbers s, t with $a \le s < t \le b$ [resp. $a \le s < t < \infty$] such that $\mathbf{x}_0 = \mathbf{y} + \mathbf{x}(s, \omega) = \mathbf{y} + \mathbf{x}(t, \omega)$ (i. e. $x_0^i = \mathbf{y}^i + \mathbf{x}^i(s, \omega) = \mathbf{y}^i + \mathbf{x}^i(t, \omega)$, $i = 1, \dots, n$). It is clear that \mathbf{x}_0 is a double point of $L_{a,b}^{(n)}(\mathbf{y}; \omega)$ [resp. $L_{a,\infty}^{(n)}(\mathbf{y}; \omega)$] if and only if $\mathbf{x}_0 - \mathbf{y}$ is a double point of $L_{a,b}^{(n)}(\mathbf{0}; \omega) = L_{a,b}^{(n)}(\omega)$ [resp. $L_{a,\infty}^{(n)}(\mathbf{0}; \omega) = L_{a,\infty}^{(n)}(\omega)$].

It is known that (i) [Lévy 6] in R^2 , almost all paths $L^{(2)}(\omega)$ of a 2-dimensional Brownian motion have double points and (ii) [3] in R^5 , almost all paths $L^{(5)}(\omega)$ of a 5-dimensional Brownian motion have no double points. (ii) evidently implies that almost all paths in R^n with $n \ge 5$ have no double points. Thus the problem of double points of paths of an n-dimensional Brownian motion is unsettled only for the cases n = 3, 4. These cases do not yield to the methods used in proving (i) and (ii); it is the purpose of this paper to dispose of these undecided cases by showing that (iii) in R^3 , almost all paths $L^{(3)}(\omega)$ have double points, while (iv) in R^4 , almost all paths $L^{(4)}(\omega)$ have no double points.

The proof of these results will be given in § 3 and § 4 respectively. Our proof is based on the notion of capacity which plays an important role in the theory of harmonic functions in R^n . The definition of capacity and the statement of those of its fundamental properties which we need in the proofs of § 3 and § 4 will be found in § 2.

§ 2. Capacity.

Let F be a compact subset of $R^n (n \ge 3)$. Let $\mathcal{M}(F)$ be the family of all countably additive measures m(B) defined for all Borel subsets B of F with m(F) = 1. Let us put

(9)
$$\lambda^{(n)}(F) = \inf \int \int \frac{m(d\mathbf{x}) \, m(d\mathbf{y})}{|\mathbf{x} - \mathbf{y}|^{n-2}},$$

where $|\mathbf{x}|$ denotes the distance of \mathbf{x} from the origin $\mathbf{0}$ of R^n , so that $|\mathbf{x}-\mathbf{y}|$ is the distance of \mathbf{x} and \mathbf{y} in R^n ; the double integral is extended over $F \times F$, and inf denotes the infimum for all measures $m \in \mathcal{M}(F)$. $\lambda^{(n)}(F) = \infty$ if and only if the double integral is ∞ for all $m \in \mathcal{M}(F)$. The *n*-dimensional capacity $C^{(n)}(F)$ of F is defined by

(10)
$$C^{(n)}(F) = \begin{cases} \left[\lambda^{(n)}(F)\right]^{-\frac{1}{n-2}} & \text{if } \lambda^{(n)}(F) < \infty, \\ 0 & \text{if } \lambda^{(n)}(F) = \infty. \end{cases}$$

The notion of capacity is important in the theory of harmonic functions in \mathbb{R}^n , where under a harmonic function $f(\mathbf{x})$ defined in a domain D of \mathbb{R}^n we understand a real-valued function $f(\mathbf{x})$ with continuous second partial derivatives which satisfies

(11)
$$\Delta f(\mathbf{x}) \equiv \sum_{i=1}^{n} \left(\frac{\partial}{\partial x^{i}}\right)^{2} f(\mathbf{x}) \equiv 0$$
 in D .

In this paper we need the following properties of the capacity:

(C₁) [FROSTMAN 2] Let $F = \{x(t) | a \le t \le b\} \subset \mathbb{R}^n$ be the continuous image of a closed interval $[a, b] = \{t \mid a \le t \le b\}$ of real numbers through the mapping $t \to x(t)$. (This mapping need not be one-to-one.) Then the *n*-dimensional capacity of F is positive if

(12)
$$\iint_{a}^{b} \frac{dsdt}{|\mathbf{x}(t)-\mathbf{x}(s)|^{n-2}} < \infty.$$

(C₂) [PÓLYA—SZEGŐ 9] For any compact subset F of Rⁿ, let us put

(13)
$$\lambda_p^{(n)}(F) = \inf \frac{2}{p(p-1)} \sum_{1 \le i < j \le p} \frac{1}{|\mathbf{x}_j - \mathbf{x}_i|^{n-2}},$$

where inf denotes the infimum for all p-systems $\{x_1, \ldots, x_p\} \subset F$. Then

(14)
$$\lim_{p\to\infty}\lambda_p^{(n)}(F)=\lambda^{(n)}(F).$$

 (C_3) [9] The union of a finite number of compact subsets of R^n each of which has zero n-dimensional capacity has again zero n-dimensional capacity.

(C₄) [2] In order that a compact subset F of R^n have positive n-dimensional capacity, it is necessary and sufficient that there exist a function g(y) harmonic, positive and smaller than 1 in R^n -F, and satisfying $g(y) \rightarrow 0$ as $|y| \rightarrow \infty$.

We need also the following result:

Lemma 1. Let F be a compact subset of R^n $(n \ge 3)$. For any $y \in R^n - F$ let

us put $\Omega(\mathbf{y}; F) = \{\omega \mid L^{(n)}(\mathbf{y}; \omega) \cap F \neq \emptyset\}$. Then $\Omega(\mathbf{y}; F) \in \mathcal{E}$ and $\Pr[\Omega(\mathbf{y}; F)] = \emptyset$ = f(y; F) is a harmonic function of y defined in Rⁿ-F. Furthermore, (i) $f(y;F) \equiv 0$ in R^n -F if $C^{(n)}(F) = 0$; (ii) 0 < f(y;F) < 1 in R^n -F, and $f(y;F) \to 0$ as $|\mathbf{v}| \to \infty$ if $C^{(n)}(F) > 0$.

In the two-dimensional case the situation is rather different: (i) is still valid, but if the two-dimensional (logarithmic) capacity 3) of F is positive then $f(\mathbf{v};F)\equiv 1$. This result can be found in [4] and the method of proof used there yields also our Lemma 1 for $n \ge 3$. This is due to the property (C₄) of the capacity which holds only for $n \ge 3$.

§ 3. The 3-dimensional case.

Lemma 2. Let $0 \le a < b < \infty$. Then, for almost all ω , the (a, b)-path $L_{a,b}^{(3)}(\omega)$ of a 3-dimensional Brownian motion has positive 3-dimensional capacity.

Proof. Due to property (C_1) of the capacity, it suffices to show that

(15)
$$\int_{0}^{\infty} \frac{dsdt}{|\mathbf{x}(t,\omega)-\mathbf{x}(s,\omega)|} < \infty$$

for almost all w, and hence it suffices to show that

(16)
$$I = \int_{\Omega} d\omega \int_{a}^{b} \int_{a}^{b} \frac{dsdt}{|\mathbf{x}(t,\omega) - \mathbf{x}(s,\omega)|} < \infty.$$

It is easy to see [by (B2) and (B3) of § 1] that

and consequently, by the Fubini theorem,

(18)
$$I = \int_{a}^{b} \int_{a}^{b} ds dt \int_{\Omega} \frac{d\omega}{|\mathbf{x}(t,\omega) - \mathbf{x}(s,\omega)|} = \sqrt{\frac{2}{\pi}} \int_{a}^{b} \int_{a}^{b} \frac{ds dt}{\sqrt{|t-s|}} < \infty.$$

We can now prove our first main result:

Theorem 1. In a 3-dimensional Brownian motion, almost all paths $L^{(8)}(\omega)$ have infinitely many double points.

Proof. Let $0 \le a < b < c < \infty$. By Lemma 2, almost all (a, b)-paths $L_{a,b}^{(3)}(\omega)$ have a positive 3-dimensional capacity. By Lemma 1 and by the property (B₂) of Brownian motion, it is easy to see that $\Pr\{\omega \mid L_{\alpha,b}^{(3)}(\omega) \cap L_{\alpha,\omega}^{(3)}(\omega) \neq \theta\} > 0$. From this it follows that there exists a real number d with $c < d < \infty$ such

²⁾ A denotes the empty set.

⁸⁾ Cf. e.g. R. NEVANLINNA [8].

that $\Pr\{\omega \mid L_{a,b}^{(3)}(\omega) \cap L_{c,d}^{(3)}(\omega) \neq \theta\} = \delta > 0$. Let us put $a_k = a + kd$, $b_k = b + kd$, $c_k = c + kd$, $d_k = (k+1)d$, k = 1, 2, Then $\Pr\{\omega \mid L_{a_k,b_k}^{(3)}(\omega) \cap L_{c_k,d_k}^{(3)}(\omega) \neq \theta\} = \delta > 0$, k = 1, 2, ..., and consequently (since the independence property (B_3) enables us to reproduce the standard argument of the zero or one law) $\Pr\{\omega \mid L_{a_k,b_k}^{(3)}(\omega) \cap L_{c_k,d_k}^{(3)}(\omega) \neq \theta \text{ for infinitely many } k\} = 1$.

Remark. It is easily seen from the proof that for all $0 \le a < b < \infty$ and for almost all ω the (a, b) path $L_{a,b}^{(3)}(\omega)$ has infinitely many double points. Thus if we count only the doube points for which $0 < t - s < \delta$ where δ is an arbitrarily small positive number, then again almost all paths $L^{(3)}(\omega)$ have infinitely many such double points. Similarly, for any arbitrarily large $\Delta < \infty$, almost all paths $L^{(3)}(\omega)$ have infinitely many double points with $t - s > \Delta$. (Of course, the probability that $L_{a,b}^{(3)}(\omega)$ have such double points is always smaller than 1; it is zero if $\Delta \le b - a$ and positive otherwise.)

§ 4. The 4-dimensional case.

Lemma 3. Let $0 \le a < b < \infty$. Then for almost all ω , the (a, b)-path $L_{a,b}^{(i)}(\omega)$ of a 4-dimensional Brownian motion has zero 4-dimensional capacity.

Proof. By the uniform Lipschitz property of Brownian motion [Levy 5, § 52, pp. 166—173], there exist a finite constant M and a positive number $\delta(a, b, \omega)$ with $0 < \delta(a, b, \omega) < 1$ such that for almost all ω

(19)
$$|\mathbf{x}(t,\omega) - \mathbf{x}(s,\omega)| < M\sqrt{|t-s|\log 1/|t-s|}$$

holds for all s and t with $a \le s < t \le b$ and $t-s < \delta(a,b,\omega)$. Since the closed interval [a,b] is a union of a finite number of closed intervals of length $< \delta(a,b,\omega)$, the property (C_3) of the capacity inplies that it is sufficient to show that $L_{a,b}^{(0)}(\omega)$ has zero 4-dimensional capacity whenever $b-a \le 1$ and (19) is satisfied for all s,t with $a \le s < t \le b$. Thus, by property (C_2) of the capacity it suffices to prove

Lemma 4. If we put

(20)
$$\lambda_{p} = \inf \frac{2}{p(p-1)} \sum_{1 \leq i < j \leq p} \frac{1}{|t_{i} - t_{i}| \log 1/|t_{i} - t_{i}|},$$

where inf denotes the infimum for all p-systems $\{t_1, \ldots, t_p\}$ of real numbers t_i $(i=1,\ldots,p)$ such that $0 \le t_1 < \ldots < t_p < 1$, then

(21)
$$\lim_{p\to\infty}\lambda_p=\infty.$$

Proof. Let N_m be the number of pairs (t_i, t_j) such that $2^{-m} \le t_j - t_i < 2^{-m+1}$, m = 1, 2, ... Then

(22)
$$N_{m} = \frac{1}{2}p(p-1)$$
 and
$$\frac{2}{p(p-1)} \sum_{1 \le i < j \le p} \frac{1}{|t_{j} - t_{i}| \log 1/|t_{j} - t_{i}|} \ge \frac{2}{p(p-1)} \sum_{m=1}^{\infty} \frac{N_{m}}{2^{-m+1} \log 2^{m}} = \frac{1}{p(p-1) \log 2} \sum_{m=1}^{\infty} \frac{2^{m} N_{m}}{m}.$$

On the other hand, if we denote by $N_{m,k}$ the number of t satisfying $(k-1)2^{-m} \le t_i < k2^{-m}$, $k=1,\ldots,2^m$, then

(24)
$$\sum_{k=1}^{2^m} N_{m,k} = p$$
 and
$$\sum_{k=1}^{\infty} N_k \ge \sum_{k=1}^{2^m} \frac{1}{2} N_{m,k} (N_{m,k} - 1).$$

This follows from the fact that $(k-1)2^{-m} \le t_i < t_j < k2^{-m}$ implies $t_j - t_i < 2^{-m}$. Consequently, by the Schwarz inequality,

(26)
$$N_{m}^{*} \equiv \sum_{l=m+1}^{\infty} N_{l} \ge \frac{1}{2} \left\{ \sum_{k=1}^{2^{m}} N_{m,k}^{2} - \sum_{k=1}^{2^{m}} N_{m,k} \right\} \ge \frac{1}{2} \left\{ \left(\sum_{k=1}^{2^{m}} N_{m,k} \right)^{2} / 2^{m} - \sum_{k=1}^{2^{m}} N_{m,k} \right\} = \frac{1}{2} \left(\frac{p^{2}}{2^{m}} - p \right) \ge \frac{p^{2}}{2^{m+2}},$$

where the last inequality holds for those m which satisfy $2^{m+1} \le p$, i.e. for $m \le m_p = \left[\frac{\log p}{\log 2}\right] - 1$.

Consequently, by Abel's transformation, we have

$$\sum_{m=1}^{\infty} \frac{2^{m} N_{m}}{m} = \sum_{m=1}^{\infty} \frac{2^{m} (N_{m-1}^{*} - N_{m}^{*})}{m} = 2 N_{0}^{*} + \sum_{m=1}^{\infty} \left(\frac{2^{m+1}}{m+1} - \frac{2^{m}}{m}\right) N_{m}^{*} \ge$$

$$\geq \sum_{m=2}^{\infty} \frac{m-1}{m(m+1)} 2^{m} N_{m}^{*} \ge \frac{1}{3} \sum_{m=2}^{\infty} \frac{2^{m} N_{m}^{*}}{m} \ge \frac{1}{3} \sum_{m=2}^{m_{p}} \frac{2^{m}}{m} \frac{p^{2}}{2^{m+2}} =$$

$$= \frac{p^{2}}{12} \sum_{m=2}^{m_{p}} \frac{1}{m} \ge \frac{p^{2}}{12} [\log (m_{p} + 1) - \log 2] \ge \frac{p^{2}}{12} (\log \log p - 2 \log 2)$$

which, together with (20) and (23), imply

(28)
$$\lambda_{p} \ge \frac{\log \log p}{12 \log 2} - \frac{1}{6} \to \infty$$

as $p \rightarrow \infty$.

From this it is easy to deduce our last result:

Theorem 2. In a 4-dimensional Brownian motion, almost all paths $L^{(4)}(\omega)$ have no double points.

Proof. In view of (B_3) , it suffices to show that, for any rational numbers a, b, c, d, with $0 \le a < b < c < d < \infty$, we have $\Pr\{\omega | L_{a,b}^{(4)}(\omega) \cap L_{c,d}^{(4)}(\omega) \neq \theta\} = 0$. But this last fact is an easy consequence of Lemmas 1 and 3.

Bibliography.

- 1. J. L. Doob, Stochastic processes depending on a continuous parameter, *Transactions American Math. Soc.*, 42 (1937), pp. 107-140.
- 2. O. Frostman, Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Meddelanden Lunds Univ. Mat. Sem., 3 (1935).

- S. KAKUTANI, On Brownian motion in n-space, Proceedings Academy Tokyo, 20 (1944), pp. 648-652.
- 4. S. KAKUTANI, Two-dimensional Brownian motion and harmonic functions, *ibidem*, 20 (1944), pp. 706-714.
- 5. P. LEVY, Théorie de l'addition des variables aléatoires (Paris, 1937).
- P. Levy, Le mouvement brownien plan, American Journal of Math., 62 (1940), pp. 487-550.
- 7. P. Levy, Processus stochastiques et mouvements browniens (Paris, 1948).
- 8. R. NEVANLINNA, Eindeutige analytische Funktionen (Berlin, 1936).
- 9. G. Pólya—G. Szegő, Über den transfiniten Durchmesser (Kapazitätskonstante) von ebenen und räumlichen Punktmengen, Journal für die reine und angewandte Math., 165 (1931), pp. 4—49.
- 10. N. Wiener, Generalized harmonic analysis, Acta Math., 55 (1932), pp. 117-258.

ACTA SCIENTIARUM MATHEMATICARUM SZEGED (HUNGARIA', ADY-TÉR 1.

TOMUM IUBILARE COMPLURIBUS ADIUVANTIBUS REDIGEBAT

BÉLA SZ.-NAGY

AZ ÜNNEPI KÖTETET
TÖBBEK KÖZREMŰKÖDÉSÉVEL
SZERKESZTETTE
SZŐKEFALVI-NAGY BÉLA